Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
OLinq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
(* This file is free software, part of OLinq. See file "license" for more details. *) (** {1 LINQ-like operations on collections} *) type 'a iter = ('a -> unit) -> unit type 'a equal = 'a -> 'a -> bool type 'a ord = 'a -> 'a -> int type 'a hash = 'a -> int type 'a or_error = [`Ok of 'a | `Error of string ] type 'a printer = Format.formatter -> 'a -> unit let id_ x = x let (|>) x f = f x exception IExit let seq_map ~f seq yield = seq (fun x -> yield (f x)) let seq_filter ~f seq yield = seq (fun x -> if f x then yield x) let seq_filter_map ~f seq yield = seq (fun x -> match f x with None -> () | Some y -> yield y) let seq_fold f acc seq = let r = ref acc in seq (fun x -> r := f !r x); !r let seq_len seq = seq_fold (fun n _ -> n+1) 0 seq let seq_of_list l yield = List.iter yield l let seq_to_list seq = seq_fold (fun l x->x::l) [] seq |> List.rev let seq_exists f seq = try seq (fun x -> if f x then raise IExit); false with IExit -> true let seq_head seq = let r = ref None in try seq (fun x -> r := Some x; raise IExit); None with IExit -> !r module M = OLinq_map module Vec = OLinq_vec type ('a, 'b) map = ('a, 'b) OLinq_map.t type 'a search_result = | SearchContinue | SearchStop of 'a type ('a,'b,'key,'c) join_descr = { join_key1 : 'a -> 'key; join_key2 : 'b -> 'key; join_merge : 'key -> 'a -> 'b -> 'c option; join_build_src : 'key M.Build.src; } type ('a,'b,'key,'c) outer_join_descr = { ojoin_key1 : 'a -> 'key; ojoin_key2 : 'b -> 'key; ojoin_merge : 'key -> 'a list -> 'b list -> 'c option; ojoin_build_src : 'key M.Build.src; } type ('a,'b) group_join_descr = { gjoin_proj : 'b -> 'a; gjoin_build_src : 'a M.Build.src; } type ('a,'b) search_descr = { search_check: ('a -> 'b search_result); search_failure : 'b; } module Iterable = struct type 'a t = | I_list of 'a list | I_vec of 'a Vec.t | I_iter of 'a iter | I_set : ('a, unit) M.t -> 'a t | I_map : ('a, 'b) M.t -> ('a * 'b) t | I_multimap : ('a, 'b list) M.t -> ('a * 'b) t | I_range : int * int -> int t | I_string : string -> char t let to_iter : type a. a t -> a iter = function | I_vec v -> Vec.to_iter v | I_list l -> (fun k -> List.iter k l) | I_iter s -> s | I_set m -> (fun k -> M.to_iter m (fun (x,()) -> k x)) | I_map m -> M.to_iter m | I_multimap m -> M.to_iter_multimap m | I_range (i,j) -> (fun yield -> if i<=j then for k = i to j do yield k done else for k = i downto j do yield k done) | I_string s -> (fun yield -> String.iter yield s) let empty = I_list [] let range i j = I_range (i,j) let return x = I_list [x] let of_list l = I_list l let of_vec v = I_vec v let of_iter s = I_iter s let of_set m = I_set m let of_map m = I_map m let of_multimap m = I_multimap m let of_string s = I_string s let of_opt = function | None -> empty | Some x -> return x let choose : type a. a t -> a t = function | I_list [] -> empty | I_list (x::_) -> return x | I_iter s -> begin match seq_head s with None -> empty | Some x -> return x end | I_vec v -> if Vec.is_empty v then empty else return (Vec.get v 0) | I_set m -> M.choose m |> (function None -> empty | Some (x,()) -> return x) | I_map m -> M.choose m |> of_opt | I_multimap m -> begin match M.choose m with | Some (_, []) -> assert false | Some (x,y::_) -> return (x,y) | None -> empty end | I_range (i,_) -> return i | I_string "" -> empty | I_string s -> return s.[0] let to_vec : type a. a t -> a Vec.t = function | I_vec v -> v | i -> Vec.of_iter (to_iter i) let to_list : type a. a t -> a list = function | I_list l -> l | I_vec v -> Vec.to_list v | i -> to_iter i |> seq_fold (fun l x -> x::l) [] |> List.rev let mem : type a. eq:(a -> a -> bool) -> a t -> a -> bool = fun ~eq c x -> match c with | I_range (i,j) when i<=j -> i <= x && x <= j | I_range (i,j) -> j <= x && x <= i | I_list l -> List.exists (eq x) l | _ -> to_iter c |> seq_exists (eq x) let distinct ~cmp i = let build = M.Build.of_cmp ~cmp () in to_iter i (fun x -> M.Build.add build x ()); of_set (M.Build.get build) (* c -> seq -> f -> seq *) let seq_seq_ ~f c = to_iter c |> f |> of_iter let map f c = seq_seq_ c ~f:(seq_map ~f) let filter f c = seq_seq_ c ~f:(seq_filter ~f) let filter_map f c = seq_seq_ c ~f:(seq_filter_map ~f) let flat_map f c = let v = Vec.create () in to_iter c (fun x -> Vec.append_iter v (f x)); of_vec v (* TODO: add [to_seq] and use it *) let flat_map_seq f c = let v = Vec.create () in to_iter c (fun x -> Vec.append_seq v (f x)); of_vec v let fold f acc i = to_iter i |> seq_fold f acc let head : type a. a t -> a option = function | I_range (i,_) -> Some i | I_list [] -> None | I_list (x::_) -> Some x | I_vec v -> if Vec.is_empty v then None else Some (Vec.get v 0) | i -> to_iter i |> seq_head let take : type a. int -> a t -> a t = fun n c -> match c with | _ when n=0 -> empty | I_range (i,j) when i<=j -> I_range (i, min j (i+n-1)) | I_range (i,j) -> I_range (i, max j (i-n+1)) | _ -> let v = Vec.create () in let i = ref n in begin try to_iter c (fun x -> if !i=0 then raise IExit; decr i; Vec.push v x) with IExit -> () end; of_vec v let take_while p c = let v = Vec.create () in begin try to_iter c (fun x -> if not (p x) then raise IExit; Vec.push v x) with IExit -> () end; of_vec v let sort ~cmp c = let l = to_list c in List.sort cmp l |> of_list let length : type a. a t -> int = function | I_range (i,j) -> abs (i-j)+1 | I_vec v -> Vec.length v | I_iter seq -> seq_len seq | I_list l -> List.length l | I_set m -> M.size m | I_map m -> M.size m | I_multimap _ as i -> to_iter i |> seq_len | I_string s -> String.length s let search obj i = let r = ref None in try to_iter i (fun x -> match obj.search_check x with | SearchContinue -> () | SearchStop y -> r := Some y; raise IExit); obj.search_failure with IExit -> match !r with | None -> assert false | Some x -> x let do_join ~join c1 c2 = let build1 = to_iter c1 |> seq_map ~f:(fun x -> join.join_key1 x, x) |> M.of_iter ~src:join.join_build_src in let v = Vec.create () in to_iter c2 (fun y -> let key = join.join_key2 y in match M.get build1 key with | None -> () | Some l1 -> List.iter (fun x -> match join.join_merge key x y with | None -> () | Some res -> Vec.push v res) l1); of_vec v (* all the pairs from left and right for a given key *) type ('a, 'b) ojoin_cell = { ojoin_left: 'a list; ojoin_right: 'b list; } let do_outer_join ~ojoin c1 c2 = let build = M.Build.of_src ojoin.ojoin_build_src in (* build the map [key -> cell] *) to_iter c1 (fun x -> let k = ojoin.ojoin_key1 x in M.Build.update build k ~or_:{ojoin_left=[x]; ojoin_right=[]} ~f:(fun c -> {c with ojoin_left =x::c.ojoin_left })); to_iter c2 (fun x -> let k = ojoin.ojoin_key2 x in M.Build.update build k ~or_:{ojoin_left=[]; ojoin_right=[x]} ~f:(fun c -> {c with ojoin_right=x::c.ojoin_right})); let m = M.Build.get build in let v = Vec.create () in M.to_iter m (fun (k,cell) -> match ojoin.ojoin_merge k cell.ojoin_left cell.ojoin_right with | None -> () | Some res -> Vec.push v res); of_vec v let do_group_join ~gjoin c1 c2 = let build = M.Build.of_src gjoin.gjoin_build_src in to_iter c1 (fun x -> M.Build.add build x []); to_iter c2 (fun y -> (* project [y] into some element of [c1] *) let x = gjoin.gjoin_proj y in M.Build.update build x ~or_:[] ~f:(fun l -> y::l)); M.Build.get build let do_group_by ~src f c = let m = M.Build.of_src src in to_iter c (fun x -> let key = f x in M.Build.add_multimap m key x); M.Build.get m let do_count ~src c = let m = M.Build.of_src src in to_iter c (fun x -> M.Build.add_count m x); M.Build.get m let product a b = let v = Vec.create () in to_iter a (fun x -> to_iter b (fun y -> Vec.push v (x,y))); of_vec v let append a b = let v = to_vec a in to_iter b (Vec.push v); of_vec v let app a b = let v = Vec.create () in to_iter a (fun f -> to_iter b (fun x -> Vec.push v (f x ))); of_vec v let do_union ~src c1 c2 = let build = M.Build.of_src src in to_iter c1 (fun x -> M.Build.add build x ()); to_iter c2 (fun x -> M.Build.add build x ()); let m = M.Build.get build in of_set m type inter_status = | InterLeft | InterDone (* already output *) let do_inter ~src c1 c2 = let build = M.Build.of_src src in let v = Vec.create() in to_iter c1 (fun x -> M.Build.add build x InterLeft); to_iter c2 (fun x -> M.Build.update build x ~or_:InterDone ~f:(function | InterDone -> InterDone | InterLeft -> Vec.push v x; InterDone) ); of_vec v let do_diff ~src c1 c2 = let build = M.Build.of_src src in to_iter c2 (fun x -> M.Build.add build x ()); let map = M.Build.get build in (* output elements of [c1] not in [map] *) to_iter c1 |> seq_filter ~f:(fun x -> not (M.mem map x)) |> Vec.of_iter |> of_vec let do_subset ~src c1 c2 = let build = M.Build.of_src src in to_iter c2 (fun x -> M.Build.add build x ()); let map = M.Build.get build in let res = try to_iter c1 (fun x -> if not (M.mem map x) then raise IExit); true with IExit -> false in return res end (** {2 Query operators} *) type (_, _) unary = | Map : ('a -> 'b) -> ('a, 'b) unary | Filter : ('a -> bool) -> ('a, 'a) unary | Fold : ('b -> 'a -> 'b) * 'b -> ('a, 'b) unary | Size : ('a, int) unary | Choose : ('a, 'a) unary | FilterMap : ('a -> 'b option) -> ('a, 'b) unary | FlatMapSeq : ('a -> 'b Seq.t) -> ('a, 'b) unary | FlatMap : ('a -> 'b iter) -> ('a, 'b) unary | Take : int -> ('a, 'a) unary | TakeWhile : ('a -> bool) -> ('a, 'a) unary | Sort : 'a ord -> ('a, 'a) unary | SortBy : 'b ord * ('a -> 'b) -> ('a, 'a) unary | Distinct : 'a ord -> ('a, 'a) unary | Search : ('a, 'b) search_descr -> ('a, 'b) unary | Contains : 'a equal * 'a -> ('a, bool) unary | GroupBy : 'b M.Build.src * ('a -> 'b) -> ('a, 'b * 'a list) unary | GroupBy_reflect : 'b M.Build.src * ('a -> 'b) -> ('a, ('b, 'a list) M.t) unary | Count : 'a M.Build.src -> ('a, 'a * int) unary | Count_reflect : 'a M.Build.src -> ('a, ('a, int) M.t) unary | Lazy : ('a lazy_t, 'a) unary type (_,_) set_op = | Union : ('a,'a) set_op | Inter : ('a,'a) set_op | Diff : ('a,'a) set_op | Subset : ('a, bool) set_op type (_, _, _) binary = | App : ('a -> 'b, 'a, 'b) binary | Join : ('a, 'b, 'key, 'c) join_descr -> ('a, 'b, 'c) binary | OuterJoin : ('a, 'b, 'key, 'c) outer_join_descr -> ('a, 'b, 'c) binary | GroupJoin : ('a, 'b) group_join_descr -> ('a, 'b, 'a * 'b list) binary | GroupJoin_refl : ('a, 'b) group_join_descr -> ('a, 'b, ('a, 'b list) M.t) binary | Product : ('a, 'b, ('a*'b)) binary | Append : ('a, 'a, 'a) binary | SetOp : ('a, 'b) set_op * 'a M.Build.src -> ('a, 'a, 'b) binary (* type of queries that return values of type ['a] *) type 'a t_ = | Empty : _ t_ | Return : 'a -> 'a t_ | OfIterable : 'a Iterable.t -> 'a t_ | Unary : ('a, 'b) unary * 'a t_ -> 'b t_ | Binary : ('a, 'b, 'c) binary * 'a t_ * 'b t_ -> 'c t_ | Bind : ('a -> 'b t_) * 'a t_ -> 'b t_ | Reflect_vec : 'a t_ -> 'a Vec.t t_ | Reflect_list : 'a t_ -> 'a list t_ (* type of queries, with an additional phantom parameter *) type ('a, +'card) t = 'a t_ constraint 'card = [<`One | `AtMostOne | `Any] type 'a t_any = ('a, [`Any]) t type 'a t_one = ('a, [`One]) t type 'a t_at_most_one = ('a, [`AtMostOne]) t let of_list l = OfIterable (Iterable.of_list l) let of_vec v = OfIterable (Iterable.of_vec v) let of_iter s = OfIterable (Iterable.of_iter s) let of_array a = of_vec (Vec.of_array a) let of_array_i a = let v = Vec.init (Array.length a) (fun i -> i, a.(i)) in of_vec v let of_hashtbl h = let m = M.of_iter (fun yield -> Hashtbl.iter (fun k v -> yield (k,v)) h) in OfIterable (Iterable.of_multimap m) let range i j = OfIterable (Iterable.range i j) let (--) = range let of_iter seq = of_iter seq let of_queue q = of_iter (fun yield -> Queue.iter yield q) let of_stack s = of_iter (fun yield -> Stack.iter yield s) let of_string s = OfIterable (Iterable.of_string s) let of_map m = OfIterable (Iterable.of_map m) let of_multimap m = OfIterable (Iterable.of_multimap m) (** {6 Execution} *) (* apply a unary operator on a collection *) let do_unary : type a b. (a,b) unary -> a Iterable.t -> b Iterable.t = fun u c -> match u with | Map f -> Iterable.map f c | Filter p -> Iterable.filter p c | Fold (f, acc) -> Iterable.fold f acc c |> Iterable.return | Size -> Iterable.return (Iterable.length c) | Choose -> Iterable.choose c | FilterMap f -> Iterable.filter_map f c | FlatMapSeq f -> Iterable.flat_map_seq f c | FlatMap f -> Iterable.flat_map f c | Take n -> Iterable.take n c | TakeWhile p -> Iterable.take_while p c | Sort cmp -> Iterable.sort ~cmp c | SortBy (cmp,proj) -> Iterable.sort ~cmp:(fun a b -> cmp (proj a) (proj b)) c | Distinct cmp -> Iterable.distinct ~cmp c | Search obj -> Iterable.return (Iterable.search obj c) | GroupBy (src,f) -> Iterable.of_map (Iterable.do_group_by ~src f c) | GroupBy_reflect (src,f) -> Iterable.return (Iterable.do_group_by ~src f c) | Contains (eq, x) -> Iterable.return (Iterable.mem ~eq c x) | Count src -> Iterable.of_map (Iterable.do_count ~src c) | Count_reflect src -> Iterable.return (Iterable.do_count ~src c) | Lazy -> Iterable.map Lazy.force c let do_binary : type a b c. (a, b, c) binary -> a Iterable.t -> b Iterable.t -> c Iterable.t = fun b c1 c2 -> match b with | Join join -> Iterable.do_join ~join c1 c2 | OuterJoin ojoin -> Iterable.do_outer_join ~ojoin c1 c2 | GroupJoin gjoin -> Iterable.of_map (Iterable.do_group_join ~gjoin c1 c2) | GroupJoin_refl gjoin -> Iterable.return (Iterable.do_group_join ~gjoin c1 c2) | Product -> Iterable.product c1 c2 | Append -> Iterable.append c1 c2 | App -> Iterable.app c1 c2 | SetOp (Inter,src) -> Iterable.do_inter ~src c1 c2 | SetOp (Union,src) -> Iterable.do_union ~src c1 c2 | SetOp (Diff,src) -> Iterable.do_diff ~src c1 c2 | SetOp (Subset,src) -> Iterable.do_subset ~src c1 c2 let rec run_ : type a. a t_ -> a Iterable.t = fun q -> match q with | Empty -> Iterable.empty | Return c -> Iterable.return c | Unary (u, q') -> do_unary u (run_ q') | Binary (b, q1, q2) -> do_binary b (run_ q1) (run_ q2) | OfIterable l -> l | Bind (f, q') -> let i = run_ q' in Iterable.flat_map (fun x -> let q'' = f x in run_ q'' |> Iterable.to_iter) i | Reflect_vec q -> Iterable.return (run_ q |> Iterable.to_vec) | Reflect_list q -> Iterable.return (run_ q |> Iterable.to_list) let apply_limit ?limit q = match limit with | None -> q | Some l -> Unary (Take l, q) (* safe execution *) let run ?limit q = let q = apply_limit ?limit q in run_ q let run_head q = apply_limit ~limit:1 q |> run_ |> Iterable.head let run1_exn q = match run_head q with | None -> raise Not_found | Some x -> x (* never raises, by typing *) let run1 = run1_exn let run_list ?limit q = run ?limit q |> Iterable.to_list let run_vec ?limit q = run ?limit q |> Iterable.to_vec let run_array ?limit q = run ?limit q |> Iterable.to_vec |> Vec.to_array (** {6 Basics} *) let empty = Empty let rec map : type a b. (a -> b) -> a t_ -> b t_ = fun f q -> match q with | Binary (Append, q1, q2) -> Binary (Append, map f q1, map f q2) | Unary (Map f', q) -> map (fun x -> f (f' x)) q | Unary (Filter p, q) -> filter_map (fun x -> if p x then Some (f x) else None) q | _ -> Unary (Map f, q) and filter_map : type a b. (a -> b option) -> a t_ -> b t_ = fun f q -> match q with | Unary (Map f', q) -> filter_map (fun x -> f (f' x)) q | _ -> Unary (FilterMap f, q) let (>|=) q f = map f q let rec filter : type a. (a -> bool) -> a t_ -> a t_ = fun p q -> match q with | Binary (Append, q1, q2) -> Binary (Append, filter p q1, filter p q2) | _ -> Unary (Filter p, q) let flat_map_seq f q = Unary (FlatMapSeq f, q) let flat_map_iter f q = Unary (FlatMap f, q) let flat_map_l f q = let f' x = seq_of_list (f x) in flat_map_iter f' q let flatten_seq q = flat_map_seq id_ q let flatten_iter q = flat_map_iter id_ q let flatten_list q = flat_map_iter seq_of_list q let flatten_map q = flat_map_iter M.to_iter q let flatten_multimap q = flat_map_iter M.to_iter_multimap q let rec take : type a. int -> a t_ -> a t_ = fun n q -> if n<0 then invalid_arg "take"; match q with | Unary (Map f, q) -> map f (take n q) | _ -> Unary (Take n, q) let take1 q = take 1 q let take_while p q = Unary (TakeWhile p, q) let sort ?(cmp=Pervasives.compare) () q = Unary (Sort cmp, q) let sort_by ?(cmp=Pervasives.compare) proj q = Unary (SortBy (cmp, proj), q) let distinct ?(cmp=Pervasives.compare) () q = Unary (Distinct cmp, q) let group_by_reflect ?cmp ?eq ?hash f q = let src = M.Build.src_of_args ?cmp ?eq ?hash () in Unary (GroupBy_reflect (src, f), q) let group_by ?cmp ?eq ?hash f q = let src = M.Build.src_of_args ?cmp ?eq ?hash () in Unary (GroupBy (src, f), q) let count_reflect ?cmp ?eq ?hash () q = let src = M.Build.src_of_args ?cmp ?eq ?hash () in Unary (Count_reflect src, q) let count ?cmp ?eq ?hash () q = let src = M.Build.src_of_args ?cmp ?eq ?hash () in Unary (Count src, q) let rec fold : type a b. (a -> b -> a) -> a -> b t_ -> a t_ = fun f acc q -> match q with | Unary (Map f', q) -> fold (fun acc x -> f acc (f' x)) acc q | _ -> Unary (Fold (f, acc), q) let rec size : type a. a t_ -> int t_ = function | Unary (Choose, _) -> Return 1 | Unary (Sort _, q) -> size q | Unary (SortBy _, q) -> size q | Unary (Map _, q) -> size q | q -> Unary (Size, q) let sum q = Unary (Fold ((+), 0), q) let _lift_some f x y = match y with | None -> Some x | Some y -> Some (f x y) let max q = Unary (Fold (Pervasives.max, min_int), q) let min q = Unary (Fold (Pervasives.min, max_int), q) let average q = q |> fold (fun (sum,num) x -> x+sum, num+1) (0,0) |> map (fun (sum,num) -> sum/num) let is_empty q = Unary (Search { search_check = (fun _ -> SearchStop false); (* stop in case there is an element *) search_failure = true; }, q) let contains ?(eq=(=)) x q = Unary (Contains (eq, x), q) let for_all p q = Unary (Search { search_check = (fun x -> if p x then SearchContinue else SearchStop false); search_failure = true; }, q) let exists p q = Unary (Search { search_check = (fun x-> if p x then SearchStop true else SearchContinue); search_failure = false; }, q) let find p q = Unary (Search { search_check = (fun x -> if p x then SearchStop (Some x) else SearchContinue); search_failure = None; }, q) let find_map f q = Unary (Search { search_check = (fun x -> match f x with | Some y -> SearchStop (Some y) | None -> SearchContinue); search_failure = None; }, q) (** {6 Binary Operators} *) let join ?cmp ?eq ?hash join_key1 join_key2 ~merge q1 q2 = let join_build_src = M.Build.src_of_args ?eq ?hash ?cmp () in let j = { join_key1; join_key2; join_merge=merge; join_build_src; } in Binary (Join j, q1, q2) let outer_join ?cmp ?eq ?hash ojoin_key1 ojoin_key2 ~merge q1 q2 = let ojoin_build_src = M.Build.src_of_args ?eq ?hash ?cmp () in let j = { ojoin_key1; ojoin_key2; ojoin_merge=merge; ojoin_build_src; } in Binary (OuterJoin j, q1, q2) let group_join ?cmp ?eq ?hash gjoin_proj q1 q2 = let gjoin_build_src = M.Build.src_of_args ?eq ?hash ?cmp () in let j = { gjoin_proj; gjoin_build_src; } in Binary (GroupJoin j, q1, q2) let group_join_reflect ?cmp ?eq ?hash gjoin_proj q1 q2 = let gjoin_build_src = M.Build.src_of_args ?eq ?hash ?cmp () in let j = { gjoin_proj; gjoin_build_src; } in Binary (GroupJoin_refl j, q1, q2) let product q1 q2 = Binary (Product, q1, q2) let append q1 q2 = Binary (Append, q1, q2) let inter ?cmp ?eq ?hash q1 q2 = let build = M.Build.src_of_args ?cmp ?eq ?hash () in Binary (SetOp (Inter, build), q1, q2) let union ?cmp ?eq ?hash q1 q2 = let build = M.Build.src_of_args ?cmp ?eq ?hash () in Binary (SetOp (Union, build), q1, q2) let diff ?cmp ?eq ?hash q1 q2 = let build = M.Build.src_of_args ?cmp ?eq ?hash () in Binary (SetOp (Diff, build), q1, q2) let subset ?cmp ?eq ?hash q1 q2 = let build = M.Build.src_of_args ?cmp ?eq ?hash () in Binary (SetOp (Subset, build), q1, q2) let map_fst f q = map (fun (x,y) -> f x, y) q let map_snd f q = map (fun (x,y) -> x, f y) q let flatten_opt q = filter_map id_ q exception UnwrapNone let opt_unwrap_exn q = Unary (Map (function | Some x -> x | None -> raise UnwrapNone), q) (** {6 Applicative} *) let pure x = Return x let app f x = match f, x with | Return f, Return x -> Return (f x) | Return f, _ -> map f x | f, Return x -> map (fun f -> f x) f | _ -> Binary (App, f, x) let (<*>) = app (** {6 Monadic stuff} *) let return x = Return x let flat_map f q = Bind (f,q) let (>>=) x f = Bind (f, x) (** {6 Misc} *) let lazy_ q = Unary (Lazy, q) (** {6 Others} *) let rec choose : type a. a t_ -> a t_ = function | Unary (Map f, q) -> map f (choose q) | Unary (Lazy, q) -> Unary (Lazy, choose q) | Binary (Product, q1, q2) -> let q1 = choose q1 and q2 = choose q2 in app (map (fun x y -> x,y) q1) q2 | Binary (App, f, x) -> let q_f = choose f and q_x = choose x in app (map (fun f x -> f x) q_f) q_x | Unary (Fold _, _) as q -> q (* one solution *) | q -> Unary (Choose, q) (** {6 Infix} *) module Infix = struct let (>>=) = (>>=) let (>|=) = (>|=) let (<*>) = (<*>) let (--) = (--) end (** {6 Adapters} *) let reflect_vec q = Reflect_vec q let reflect_list q = Reflect_list q let reflect_hashtbl q = let vec_to_tbl v = let h = Hashtbl.create (Pervasives.min 16 (Vec.length v)) in Vec.to_iter v (fun (k,v) -> Hashtbl.add h k v); h in map vec_to_tbl (reflect_vec q) let reflect_queue q = let vec_to_q v = let q = Queue.create () in Vec.to_iter v (fun x -> Queue.push x q); q in map vec_to_q (reflect_vec q) let reflect_stack q = let vec_to_s v = let s = Stack.create () in Vec.to_iter v (fun x -> Stack.push x s); s in map vec_to_s (reflect_vec q) module AdaptSet(S : Set.S) = struct let of_set set = of_iter (fun k -> S.iter k set) let reflect q = let f c = Vec.fold (fun set x -> S.add x set) S.empty c in map f (reflect_vec q) let run q = run1 (reflect q) end module AdaptMap(M : Map.S) = struct let _to_iter m k = M.iter (fun x y -> k (x,y)) m let of_map map = of_iter (_to_iter map) let reflect q = let f c = Vec.fold (fun m (x,y) -> M.add x y m) M.empty c in map f (reflect_vec q) let run q = run1 (reflect q) end module IO = struct let read_all_ ~size ic = let buf = ref (Bytes.create size) in let len = ref 0 in try while true do (* resize *) if !len = Bytes.length !buf then ( buf := Bytes.extend !buf 0 !len; ); assert (Bytes.length !buf > !len); let n = input ic !buf !len (Bytes.length !buf - !len) in len := !len + n; if n = 0 then raise Exit; (* exhausted *) done; assert false (* never reached*) with Exit -> Bytes.sub_string !buf 0 !len let slurp_ with_input = let l = lazy (with_input (fun ic -> read_all_ ~size:2048 ic)) in lazy_ (return l) let read_chan ic = slurp_ (fun f -> f ic) let finally_ f x ~h = try let res = f x in h(); res with e -> h(); raise e let with_in filename f = let ic = open_in filename in finally_ f ic ~h:(fun () -> close_in ic) let with_out filename f = let oc = open_out filename in finally_ f oc ~h:(fun () -> close_out oc) let read_file filename = slurp_ (with_in filename) (* find [c] in [s], starting at offset [i] *) let rec _find s c i = if i >= String.length s then None else if s.[i] = c then Some i else _find s c (i+1) let rec _lines s i k = match _find s '\n' i with | None -> if i<String.length s then k (String.sub s i (String.length s-i)) | Some j -> let s' = String.sub s i (j-i) in k s'; _lines s (j+1) k let lines q = (* sequence of lines *) let f s = _lines s 0 in flat_map_iter f q let lines_l q = let f s = lazy (seq_to_list (_lines s 0)) in lazy_ (map f q) let concat_ ~sep ?(stop="") v = let buf = Buffer.create 128 in Vec.iteri v ~f:(fun i x -> if i>0 then Buffer.add_string buf sep; Buffer.add_string buf x); Buffer.add_string buf stop; Buffer.contents buf let unlines q = let f l = lazy (concat_ ~sep:"\n" ~stop:"\n" l) in lazy_ (map f (reflect_vec q)) let concat sep q = let f l = lazy (concat_ ~sep l) in lazy_ (map f (reflect_vec q)) let out oc q = output_string oc (run1 q) let out_lines oc q = let i = run q in Iterable.to_iter i (fun l -> output_string oc l; output_char oc '\n') let to_file_exn filename q = with_out filename (fun oc -> out oc q) let to_file filename q = try `Ok (with_out filename (fun oc -> out oc q)) with Failure s -> `Error s let to_file_lines_exn filename q = with_out filename (fun oc -> out_lines oc q) let to_file_lines filename q = try `Ok (with_out filename (fun oc -> out_lines oc q)) with Failure s -> `Error s end let print ?(sep=", ") pp out q = let rec pp_list l = match l with | x::((_::_) as l) -> Format.fprintf out "%a%s@," pp x sep; pp_list l | x::[] -> pp out x | [] -> () in let l = run_list q in pp_list l