Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
dfa.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
type state = State of int list | ProductState of state * state type dfa = state Adt.automata type product_op = Union | Intersection | SymmetricDifference let get_states = Adt.get_states let get_alphabet = Adt.get_alphabet let get_transitions = Adt.get_transitions let get_start = Adt.get_start let get_accepting = Adt.get_accepting (* |is_accepting| -- returns true if state s is accepting *) let is_accepting = Adt.is_accepting (* |succ| -- the resulting state of dfa m after reading symbol *) let succ m s a = List.hd (Adt.get_next_states m s a) (* |pred| -- returns the state preceeding state in dfa m before reading symbol *) let pred = Adt.get_prev_states let rec stringify_state = function | State n -> "[ " ^ List.fold_left (fun acc s -> acc ^ string_of_int s ^ " ") "" n ^ "]" | ProductState (l, r) -> "(" ^ stringify_state l ^ " , " ^ stringify_state r ^ ")" (* |print| -- prints out dfa representation *) let print m = print_string "states: "; Adt.iter_states (fun s -> print_string (stringify_state s)) m; print_newline (); print_string "alphabet: "; Adt.iter_alphabet (fun a -> print_string a; print_char ' ') m; print_newline (); print_string "start: "; print_string (stringify_state (get_start m)); print_newline (); print_string "accepting: "; Adt.iter_accepting (fun s -> print_string (stringify_state s)) m; print_newline (); print_string "transitions: "; print_newline (); Adt.iter_transitions (fun (s, a, t) -> print_string " "; print_string (stringify_state s); print_string ("\t--" ^ a ^ "-->\t"); print_string (stringify_state t); print_newline ()) m (* |export_graphviz| -- exports the dfa in the DOT language for Graphviz *) let export_graphviz d = Printf.sprintf "digraph G {\n\ \ n0 [label=\"\", shape=none, height=0, width=0, ]\n\ %s\n\ n0 -> \"%s\";\n\ %s\n\ }" (List.fold_left (fun a s -> let shape = "ellipse, " ^ if Adt.is_accepting d s then "peripheries=2, " else "" in Printf.sprintf "%s\"%s\" [shape=%s];\n" a (stringify_state s) shape) "" (get_states d)) (stringify_state (get_start d)) (List.fold_left (fun acc (s, a, t) -> Printf.sprintf "%s\"%s\" -> \"%s\" [label=\"%s\", ];\n" acc (stringify_state s) (stringify_state t) a) "" (get_transitions d)) (* |complement| -- returns the complement of input dfa *) let complement m = let m' = Adt.copy m in Adt.map_accepting_inplace (fun s -> not (is_accepting m s)) m'; m' (* |reachable_states| -- returns the set of reachable states in dfa m *) let reachable_states = Adt.get_reachable_states (* |prune| -- reduces input dfa by pruning unreachable states *) let prune m = let marked = reachable_states m in Adt.filter_states_inplace m (fun s -> List.mem s marked) (* |is_empty| -- returns true iff dfa has no reachable accepting states *) let is_empty m = let marked = reachable_states m in not (List.exists (is_accepting m) marked) (* |is_accepted| -- returns true iff string s is accepted by the dfa m *) let is_accepted m s = let rec does_accept state = function | "" -> is_accepting m state | str -> does_accept (succ m state (String.make 1 str.[0])) (String.sub str 1 (String.length str - 1)) in does_accept (get_start m) s (* |get_accepted| -- returns the shortest word accepted by dfa m *) let get_accepted m = let queue = ref [ (get_start m, "") ] and seen = ref [] and shortest = ref None in while Option.is_none !shortest && List.length !queue > 0 do let currentState, currentWord = List.hd !queue in if is_accepting m currentState then shortest := Some currentWord else ( seen := currentState :: !seen; let newt = List.filter_map (fun a -> let t = succ m currentState a in if not (List.mem t !seen) then Some (t, currentWord ^ a) else None) (get_alphabet m) in queue := List.tl !queue @ newt) done; !shortest let product_construction op m1 m2 = let cross_product a b = List.concat (List.rev_map (fun e1 -> List.rev_map (fun e2 -> ProductState (e1, e2)) b) a) in (* |find_product_trans| -- returns { ((l,r),a,(l',r')) : (l,a,l') ∧ (r,a,r') } *) let find_product_trans m1 m2 cartStates alphabet = List.fold_left (fun acc s -> match s with | ProductState (l, r) -> List.fold_left (fun acc' a -> let lRes = succ m1 l a and rRes = succ m2 r a in (ProductState (l, r), a, ProductState (lRes, rRes)) :: acc') acc alphabet | _ -> acc) [] cartStates in let cartesianStates = cross_product (get_states m1) (get_states m2) in let unionAlphabet = Utils.list_union (get_alphabet m1) (get_alphabet m2) in let cartTrans = find_product_trans m1 m2 cartesianStates unionAlphabet and cartAccepting = List.filter (function | ProductState (l, r) -> ( match op with | Union -> is_accepting m1 l || is_accepting m2 r | Intersection -> is_accepting m1 l && is_accepting m2 r | SymmetricDifference -> (is_accepting m1 l && not (is_accepting m2 r)) || ((not (is_accepting m1 l)) && is_accepting m2 r)) | _ -> false) cartesianStates in Adt.create_automata cartesianStates unionAlphabet cartTrans (ProductState (get_start m1, get_start m2)) cartAccepting (* |product_intersection| -- returns the intersection of two input dfas, using the product construction *) let product_intersection = product_construction Intersection (* |product_union| -- returns the union of two input dfas, using the product construction *) let product_union = product_construction Union (* |product_difference| -- returns the symmetric difference of two input dfas, using the product construction *) let product_difference = product_construction SymmetricDifference (* |disjoin_dfas| -- returns a tuple of disjoint DFAs, over the same alphabet *) let disjoin_dfas m1 m2 = (* need to merge alphabets and disjoin our DFAs by renaming states in m2, by negative numbers *) let rec negate_state = function | State xs -> State (List.rev_map (fun x -> -x - 1) xs) | ProductState (s1, s2) -> ProductState (negate_state s1, negate_state s2) in let merged_alphabet = Utils.list_union (get_alphabet m1) (get_alphabet m2) in let missingalph1 = List.filter (fun a -> not (List.mem a (get_alphabet m1))) merged_alphabet and missingalph2 = List.filter (fun a -> not (List.mem a (get_alphabet m2))) merged_alphabet in (* find a sink states, and add missing transitions *) let missingtran1 = ref [] and hassink1 = ref false in (if List.length merged_alphabet > List.length (get_alphabet m1) then let sink = match List.find_opt (fun s -> (not (is_accepting m1 s)) && Adt.for_all_alphabet (fun a -> succ m1 s a = s) m1) (get_states m1) with | Some t -> hassink1 := true; t | None -> State [] in missingtran1 := List.concat_map (fun a -> Adt.map_states (fun s -> (s, a, sink)) m1) missingalph1); let missingtran2 = ref [] and hassink2 = ref false in (if List.length merged_alphabet > List.length (get_alphabet m2) then let sink = match List.find_opt (fun s -> (not (is_accepting m2 s)) && Adt.for_all_alphabet (fun a -> succ m2 s a = s) m2) (get_states m2) with | Some t -> hassink2 := true; t | None -> State [] in missingtran2 := List.concat_map (fun a -> List.map (fun s -> (s, a, sink)) (Utils.add_unique sink (get_states m2))) missingalph2); let newstate1 = if !hassink1 then get_states m1 else State [] :: get_states m1 and newtrans1 = get_transitions m1 @ !missingtran1 in let newstate2 = if !hassink2 then get_states m2 else State [] :: get_states m2 and newtrans2 = get_transitions m2 @ !missingtran2 in ( Adt.create_automata newstate1 merged_alphabet newtrans1 (get_start m1) (get_accepting m1), Adt.create_automata (List.rev_map (fun s -> negate_state s) newstate2) merged_alphabet (List.rev_map (fun (s, a, t) -> (negate_state s, a, negate_state t)) newtrans2) (negate_state (get_start m2)) (Adt.map_accepting (fun s -> negate_state s) m2) ) (* |hopcroft_equiv| -- returns true iff DFAs are equivalent, by Hopcroft's algorithm *) let hopcroft_equiv m1 m2 = let m1', m2' = disjoin_dfas m1 m2 in let merged_states = ref (List.rev_map (fun s -> [ s ]) (get_states m1' @ get_states m2')) and stack = ref [] in merged_states := List.filter_map (fun s -> if List.mem (get_start m2') s then Some (get_start m1' :: s) else if List.mem (get_start m1') s then None else Some s) !merged_states; stack := [ (get_start m1', get_start m2') ]; while List.length !stack > 0 do let q1, q2 = List.hd !stack in stack := List.tl !stack; Adt.iter_alphabet (fun a -> let succ1 = succ m1' q1 a and succ2 = succ m2' q2 a in let r1 = List.find (List.mem succ1) !merged_states and r2 = List.find (List.mem succ2) !merged_states in if r1 <> r2 then ( stack := (succ1, succ2) :: !stack; merged_states := List.filter_map (fun s -> if s = r1 then None else if s = r2 then Some (r1 @ s) else Some s) !merged_states)) m1' done; List.for_all (fun ss -> List.for_all (fun s -> is_accepting m1' s || is_accepting m2' s) ss || List.for_all (fun s -> not (is_accepting m1' s || is_accepting m2' s)) ss) !merged_states (* |symmetric_equiv| -- returns true iff DFAs are equivalent, by Symmetric Difference *) let symmetric_equiv m1 m2 = is_empty (product_difference m1 m2) (* |is_equiv| -- synonym for hopcroft_equiv *) let is_equiv = hopcroft_equiv (* |myhill_min| -- returns minimised DFA by myhill nerode *) let myhill_min m = prune m; let allpairs = let rec find_pairs xss yss = match (xss, yss) with | [], _ -> [] | _, [] -> [] | x :: xs, ys -> List.rev_append (List.rev_map (fun y -> (x, y)) ys) (find_pairs xs (List.tl ys)) in find_pairs (get_states m) (get_states m) in let marked = ref (List.filter (fun (p, q) -> let pa = is_accepting m p and qa = is_accepting m q in (pa && not qa) || ((not pa) && qa)) allpairs) in let unmarked = ref (List.filter (fun ss -> not (List.mem ss !marked)) allpairs) and stop = ref false in while not !stop do stop := true; let newunmarked = ref [] in List.iter (fun (p, q) -> if Adt.exists_alphabet (fun a -> let succp = succ m p a and succq = succ m q a in List.mem (succp, succq) !marked || List.mem (succq, succp) !marked) m then ( marked := (p, q) :: !marked; stop := false) else newunmarked := (p, q) :: !newunmarked) !unmarked; unmarked := !newunmarked done; (* unmarked gives us all pairs of indistinguishable states *) (* merge these states! *) List.iter (fun (p, q) -> if p <> q then Adt.merge_states_inplace m p q) !unmarked (* |brzozowski_min| -- minimise input DFA by Brzozowski's algorithm *) let brzozowski_min m = let reverse_and_determinise d = let get_state s = Option.get (Utils.index s (get_states d)) in let newstart = List.sort compare (Adt.map_accepting get_state d) in let newstates = ref [ State newstart ] and newtrans = ref [] and stack = ref [ newstart ] and donestates = ref [ newstart ] in while List.length !stack > 0 do let currentstate = List.hd !stack in stack := List.tl !stack; Adt.iter_alphabet (fun a -> let nextstate = ref [] in List.iter (fun t -> let preds = pred d (List.nth (get_states d) t) a in nextstate := Utils.list_union !nextstate (List.map get_state preds)) currentstate; nextstate := List.sort compare !nextstate; if not (List.mem !nextstate !donestates) then ( stack := !nextstate :: !stack; donestates := !nextstate :: !donestates; newstates := Utils.add_unique (State !nextstate) !newstates); newtrans := (State currentstate, a, State !nextstate) :: !newtrans) d done; let newaccepting = List.filter_map (function | State s -> if List.mem (get_state (get_start d)) s then Some (State s) else None | _ -> None) !newstates in Adt.create_automata !newstates (get_alphabet d) !newtrans (State newstart) newaccepting in (* reverse DFA *) let drd = reverse_and_determinise m in (* reverse Drd *) reverse_and_determinise drd (* |hopcroft_min| -- minimise input DFA by Hopcroft's algorithm *) let hopcroft_min m = prune m; let p = ref [] in (* let __s = Adt.filter_states (fun s -> print_string (stringify_state s)) m in *) let qnotf = Adt.filter_states (fun s -> not (is_accepting m s)) m in if List.length qnotf > 0 then p := [ qnotf ]; if List.length (get_accepting m) > 0 then p := get_accepting m :: !p; let w = ref !p in while List.length !w > 0 do let s = List.hd !w in w := List.tl !w; Adt.iter_alphabet (fun a -> let l_a = List.fold_left (fun acc t -> Utils.list_union acc (pred m t a)) [] s in let newp = ref [] in List.iter (fun r -> let r_1 = List.filter (fun s -> List.mem s l_a) r and r_2 = List.filter (fun s -> not (List.mem s l_a)) r in if List.length r_1 > 0 && List.length r_2 > 0 then ( newp := r_1 :: r_2 :: !newp; if List.mem r !w then w := r_1 :: r_2 :: List.filter (( <> ) r) !w else if List.length r_1 <= List.length r_2 then w := r_1 :: !w else w := r_2 :: !w) else newp := r :: !newp) !p; p := !newp) m done; List.iter (fun ss -> if List.length ss > 1 then let rec merge_list p = function | q :: xs -> Adt.merge_states_inplace m p q; merge_list p xs | [] -> () in merge_list (List.hd ss) (List.tl ss)) !p (* |minimise| -- synonym for hopcroft_min *) let minimise = hopcroft_min (* |nfa_to_dfa| -- converts nfa to dfa by the subset construction *) let nfa_to_dfa (n : Nfa.nfa) = let newstart = Nfa.eps_reachable_set n [ get_start n ] in let newtrans = ref [] and newstates = ref [ State newstart ] and stack = ref [ newstart ] and donestates = ref [ newstart ] in while List.length !stack > 0 do let currentstate = List.hd !stack in stack := List.tl !stack; Adt.iter_alphabet (fun a -> let nextstate = List.concat_map (fun s -> Adt.get_next_states n s a) currentstate in let epsnext = Nfa.eps_reachable_set n nextstate in if not (List.mem epsnext !donestates) then ( stack := epsnext :: !stack; donestates := epsnext :: !donestates; newstates := State epsnext :: !newstates); newtrans := (State currentstate, a, State epsnext) :: !newtrans) n done; let newaccepting = List.filter (function State s -> List.exists (Nfa.is_accepting n) s | _ -> false) !newstates in Adt.create_automata !newstates (get_alphabet n) !newtrans (State newstart) newaccepting (* |re_to_dfa| -- Converts re to (almost) minimal dfa by Brzozowski derivatives *) let re_to_dfa (r : Tree.re) = let r' = Re.simplify r in let alphabet = Re.get_alphabet r' in let w = ref [ (r', State [ 0 ]) ] in let states = ref [ (r', State [ 0 ]) ] in let trans = ref [] in let count = ref 0 in while List.length !w > 0 do let re, s = List.hd !w in w := List.tl !w; List.iter (fun c -> let deriv = Re.simplify (Re.derivative re c) in let t = match List.assoc_opt deriv !states with | Some tt -> tt | None -> incr count; w := (deriv, State [ !count ]) :: !w; states := (deriv, State [ !count ]) :: !states; State [ !count ] in trans := (s, c, t) :: !trans) alphabet done; let _, newstates = List.split !states in let accepting = List.filter_map (fun (re, s) -> if Re.is_nullable re then Some s else None) !states in Adt.create_automata newstates alphabet !trans (State [ 0 ]) accepting (* |copy| -- Creates a deep copy of DFA *) let copy = Adt.copy (* |create| -- Creates DFA, Renames states as their index in qs *) let create qs alph tran init fin = (* Check parameters for correctness *) if not (List.mem init qs) then raise (Invalid_argument "DFA Initial State not in States"); List.iter (fun f -> if not (List.mem f qs) then raise (Invalid_argument "DFA Accepting State not in States")) fin; let checkseentran = ref [] in List.iter (fun (s, a, t) -> if a = "ε" then raise (Invalid_argument "DFA cannot contain ε-transitions"); if List.mem (s, a) !checkseentran then raise (Invalid_argument "DFA Transition function not valid") else checkseentran := (s, a) :: !checkseentran; if not (List.mem a alph && List.mem s qs && List.mem t qs) then raise (Invalid_argument "DFA Transition function not valid")) tran; let newstates = List.init (List.length qs) (fun i -> State [ i ]) in let newinit = State [ Option.get (Utils.index init qs) ] and newtran = List.rev_map (fun (s, a, t) -> ( State [ Option.get (Utils.index s qs) ], a, State [ Option.get (Utils.index t qs) ] )) tran and newfin = List.rev_map (fun s -> State [ Option.get (Utils.index s qs) ]) fin in (* missing transitions for total transition function *) (* find a sink states, and add missing transitions *) let missingtran = ref [] and hassink1 = ref false and sink = ref (State []) in if List.length newtran < List.length newstates * List.length alph then ( (sink := match List.find_opt (fun s -> (not (List.mem s newfin)) && List.for_all (fun (s', _, t') -> s' <> s || t' = s) newtran) newstates with | Some t -> hassink1 := true; t | None -> State [ List.length qs ]); missingtran := List.concat_map (fun a -> List.filter_map (fun s -> if not (List.exists (fun (s', a', _) -> s = s' && a = a') newtran) then Some (s, a, !sink) else None) (Utils.add_unique !sink newstates)) alph); let newstates = if List.length !missingtran > 0 then newstates @ [ !sink ] else newstates in let newtrans = if List.length !missingtran > 0 then !missingtran @ newtran else !missingtran @ newtran in Adt.create_automata newstates alph newtrans newinit newfin