Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
re.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
open Tree exception Syntax_error of string (* |print| -- prints string representation of re *) let print re = let rec stringify_ast = function | Literal a -> a | Epsilon -> "ε" | Union (r1, r2) -> "(" ^ stringify_ast r1 ^ " + " ^ stringify_ast r2 ^ ")" | Concat (r1, r2) -> "(" ^ stringify_ast r1 ^ " . " ^ stringify_ast r2 ^ ")" | Star r1 -> stringify_ast r1 ^ "*" | Empty -> "∅" in print_string (stringify_ast re); print_newline () (* |export_graphviz| -- exports the AST in the DOT language for Graphviz *) let export_graphviz re = let count = ref 0 in let rec graphvizify parent = function | Literal a -> incr count; (string_of_int !count) ^ " [label=\""^a^"\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int !count) ^ "[label=\"\", ];\n" | Epsilon -> incr count; (string_of_int !count) ^ " [label=\"ε\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int !count) ^ "[label=\"\", ];\n" | Union (r1, r2) -> incr count; let c = !count in (graphvizify c r1) ^ (graphvizify c r2) ^ (string_of_int c) ^ " [label=\"Union\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int c) ^ "[label=\"\", ];\n" | Concat (r1, r2) -> incr count; let c = !count in (graphvizify c r1) ^ (graphvizify c r2) ^ (string_of_int c) ^ " [label=\"Concat\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int c) ^ "[label=\"\", ];\n" | Star r1 -> incr count; let c = !count in (graphvizify c r1) ^ (string_of_int c) ^ " [label=\"Star\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int c) ^ "[label=\"\", ];\n" | Empty -> incr count; (string_of_int !count) ^ " [label=\"∅\", shape=ellipse, ];\n"^ (string_of_int parent) ^ " -> " ^ (string_of_int !count) ^ "[label=\"\", ];\n" in "digraph G {\n0 [label=\"\", shape=none, height=0, width=0, ]\n" ^ graphvizify 0 re ^ "}" (* |is_subset_of| -- is L(r1) a subset of L(r2)? *) (* let _is_subset_of r1 r2 = let n1 = Nfa.re_to_nfa r1 and n2 = Nfa.re_to_nfa r2 in let (n1', n2') = Nfa.merge_alphabets n1 n2 in let d1 = Dfa.nfa_to_dfa n1' and d2 = Dfa.nfa_to_dfa n2' in let notd2 = Dfa.complement d2 in Dfa.is_empty (Dfa.product_intersection d1 notd2) *) (* |get_alphabet| -- returns the alphabet of the RE *) let rec get_alphabet = function | Literal a -> [a] | Epsilon | Empty -> [] | Union (r1, r2) | Concat (r1, r2) -> Utils.list_union (get_alphabet r1) (get_alphabet r2) | Star r1 -> get_alphabet r1 let is_literal = function | Literal _ | Epsilon | Empty -> true | _ -> false (* Recurses through tree of unions to find any repeated a (or starred) *) let rec contains a re = if re = a then true else match re with | Union (r1, r2) -> contains a r1 || contains a r2 | Star r1 -> if (a = Epsilon) then true else r1 = a | _ -> false let rec containsNonLit = function | Union (r1, r2) -> containsNonLit r1 || containsNonLit r2 | Epsilon | Empty | Concat (_, _) | Star _ -> true | _ -> false (* checks if re is just w^n (n>0) *) let rec repeated w re = if re = w then true else match re with | Concat (r1, r2) -> repeated w r1 && repeated w r2 | _ -> false (* |simplify_re| -- recursively simplifies the regex *) let rec simplify_re = function (* Reduce by Kozen Axioms *) | Union (Union (r1, r2), r3) -> simplify_re (Union (r1, Union (r2, r3))) (* (a + b) + c = a + (b + c) *) | Union (r1, Empty) -> simplify_re r1 (* a + ∅ = a *) | Union (Empty, r1) -> simplify_re r1 (* ∅ + a = a *) | Concat(Concat(r1, r2), r3) -> simplify_re (Concat (r1, Concat (r2, r3))) (* (a.b).c = a.(b.c) *) | Concat (Epsilon, r1) -> simplify_re r1 (* ε.a = a *) | Concat (r1, Epsilon) -> simplify_re r1 (* a.ε = a *) | Union (Concat (r1, r2), Concat (r3, r4)) when r1 = r3 -> simplify_re (Concat(r1, Union(r2, r4))) (* ab + ac = a(b+c) *) | Union (Concat (r1, r2), Concat (r3, r4)) when r2 = r4 -> simplify_re (Concat(Union(r1, r3), r2)) (* ac + bc = (a+b)c *) | Concat (Empty, _) -> Empty (* ∅.a = ∅ *) | Concat (_, Empty) -> Empty (* a.∅ = ∅ *) | Union (Epsilon, (Concat (r1, Star(r2)))) when r1 = r2 -> simplify_re (Star r1) (* ε + aa* = a* *) (* Order Unions lexicographically (for literals) *) | Union (a, Epsilon) when a <> Epsilon -> simplify_re (Union (Epsilon, a)) | Union (r1, Union (Epsilon, r2)) when r1 <> Epsilon -> simplify_re (Union (Epsilon, Union (r1, r2))) | Union (Literal r1, Union (Literal r2, r3)) when r2 < r1 -> simplify_re (Union (Literal r2, Union (Literal r1, r3))) | Union (Literal r1, Literal r2) when r2 < r1 -> simplify_re (Union (Literal r2, Literal r1)) | Union (r1, Union (Literal r2, r3)) when not (is_literal r1) -> simplify_re (Union (Literal r2, Union (r1, r3))) | Union (r1, Literal r2) when not (is_literal r1) -> simplify_re (Union (Literal r2, r1)) (* other reductions *) | Concat (Union(Epsilon, r1), Star r2) when r1 = r2 -> simplify_re (Star r1) (* (ε + a)a* = a* *) | Concat (Star r1, Union(Epsilon, r2)) when r1 = r2 -> simplify_re (Star r1) (* a*(ε + a) = a* *) | Concat (r1, Concat (Union(Epsilon, r2), Star r3)) when r2 = r3 -> simplify_re (Concat (r1, Star r2)) (* a.((ε+b).b* ) = ab* *) | Star (Concat (Star r1, Star r2)) -> simplify_re (Star (Union (r1, r2))) (* ( a*b* )* = (a + b)* *) | Concat (Star r1, r2) when r1 = r2 -> simplify_re (Concat (r1, Star(r1))) (* a*a = aa* *) | Concat (Star r1, Concat (r2, r3)) when r1 = r2 -> simplify_re (Concat (r1, Concat (Star r2, r3))) (* a*(ab) = a(a*b) *) | Star (Star r1) -> simplify_re (Star r1) (* ( a* )* = a* *) | Star Empty -> Epsilon (* ∅* = ε *) | Star Epsilon -> Epsilon (* ε* = ε *) | Union (r1, r2) when contains r1 r2 -> simplify_re r2 (* a + ... + (a + b) = ... + a + b OR a + ... + a* = ... + a* *) | Union (r1, r2) when contains r2 r1 -> simplify_re r1 | Union (r1, Star r2) when repeated r2 r1 -> simplify_re (Star r2) (* aa...a + a* = a* *) | Union (Star r1, r2) when repeated r1 r2 -> simplify_re (Star r1) (* a* + aa...a = a* *) | Concat (Star r1, Star r2) when contains r1 r2 -> simplify_re (Star r2) (* a*b* = b* if a <= b *) | Concat (Star r1, Star r2) when contains r2 r1 -> simplify_re (Star r1) (* a*b* = a* if b <= a *) | Concat (Star r1, Concat(Star r2, r3)) when contains r1 r2 -> simplify_re (Concat (Star r2, r3)) (* a*(b*c) = b*c if a <= b *) | Concat (Star r1, Concat(Star r2, r3)) when contains r2 r1 -> simplify_re (Concat (Star r1, r3)) (* a*(b*c) = a*c if b <= a *) | Star r1 when let alph = get_alphabet r1 in (List.length alph > 0) && containsNonLit r1 && List.for_all (fun a -> contains (Literal a) r1) alph -> let alph = get_alphabet r1 in simplify_re (Star (List.fold_right (fun a acc -> Union(Literal a, acc)) (List.tl alph) (Literal (List.hd alph)))) (* REMOVED since they use DFA conversion for language checking... (* More complex reductions, language based *) | Union (r1, r2) when is_subset_of r1 r2 -> simplify_re r2 (* a + b = b if a <= b *) | Union (r1, r2) when is_subset_of r2 r1 -> simplify_re r1 (* a + b = a if b <= a *) | Concat (Star r1, Star r2) when is_subset_of r1 r2 -> simplify_re (Star r2) (* a*b* = b* if a <= b *) | Concat (Star r1, Star r2) when is_subset_of r2 r1 -> simplify_re (Star r1) (* a*b* = a* if b <= a *) | Concat (Concat (r1, Star r2), Star r3) when is_subset_of r2 r3 -> simplify_re (Concat (r1, Star r3)) (* ( ab* ) c* = ac* if b <= c *) | Concat (Concat (r1, Star r2), Star r3) when is_subset_of r3 r2 -> simplify_re (Concat (r1, Star r2)) (* ( ab* ) c* = ab* if c <= b *) | Star (Union (r1, r2)) when is_subset_of r2 (Star r1) -> simplify_re (Star r1) (* (a+b)* = a* if b <= a* *) | Star (Union (r1, r2)) when is_subset_of r1 (Star r2) -> simplify_re (Star r2) (* (a+b)* = b* if a <= b* *) *) (* otherwise, simplify children *) | Literal a -> Literal a | Epsilon -> Epsilon | Union (r1, r2) -> Union (simplify_re r1, simplify_re r2) | Concat (r1, r2) -> Concat (simplify_re r1, simplify_re r2) | Star r1 -> Star (simplify_re r1) | Empty -> Empty (* |simplify| -- simplifies input regex. Repeats until no more changes *) let simplify re = let r = ref re and newr = ref (simplify_re re) in while (!r <> !newr) do r := !newr; newr := simplify_re !r done; !r (* |is_nullable| -- returns true if RE contains ε *) let rec is_nullable = function | Epsilon | Star _ -> true | Literal _ | Empty -> false | Union (r1, r2) -> is_nullable r1 || is_nullable r2 | Concat (r1, r2) -> is_nullable r1 && is_nullable r2 (* |derivative| -- returns the Brzozowski derivative w.r.t w *) let rec derivative re w = match re with | Literal a when w = a -> Epsilon | Literal _ | Epsilon | Empty -> Empty | Star r -> Concat (derivative r w, Star r) | Union (r1, r2) -> Union (derivative r1 w, derivative r2 w) | Concat (r1, r2) when is_nullable r1 -> Union (Concat (derivative r1 w, r2), derivative r2 w) | Concat (r1, r2) -> Concat (derivative r1 w, r2) (* |parse| -- converts string into AST representation *) let parse s = let lexbuf = Lexing.from_string s in try Parser.regex Lexer.token lexbuf with Parsing.Parse_error -> let tok = Lexing.lexeme lexbuf in raise (Syntax_error ("Syntax Error at token "^tok))