package obatcher

  1. Overview
  2. Docs

Source file batched_skiplist.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
open Picos

module Make (V : Map.OrderedType) = struct
  module Sequential = struct
    type t = { hdr : node; level : int ref; maxlevel : int; nil : node }
    and node = Hd of node array | Node of data | Null
    and data = { mutable value : V.t; forward : node array }

    let show to_string = function
      | Hd _ -> "Hd"
      | Node { value; _ } -> Printf.sprintf "Node(%s)" (to_string value)
      | Null -> "Null"

    let[@warning "-32"] to_string to_string = function
      | Hd forward ->
          "Hd -> [|"
          ^ Array.fold_right
              (fun node acc -> acc ^ "; " ^ show to_string node)
              forward ""
          ^ "|]"
      | Node { forward; _ } as n ->
          show to_string n ^ "-> [|"
          ^ Array.fold_right
              (fun node acc -> acc ^ "; " ^ show to_string node)
              forward ""
          ^ "|]"
      | Null -> "Null"

    let ( !> ) = function
      | Null -> failwith "[!>] Tried to dereference Null"
      | Hd forward | Node { forward; _ } -> forward

    let ( !^ ) = function
      | Null -> failwith "[!^] Tried to dereference Null"
      | Hd _ -> failwith "[!^] Tried to dereference Hdr"
      | Node r -> r

    let ( *= ) v1 v2 = V.compare v1 v2 = 0
    let ( *< ) v1 v2 = V.compare v1 v2 = -1

    let compare n1 n2 =
      match (n1, n2) with
      | Null, Null ->
          assert (n1 == n2);
          0
      | _, Null -> -1
      | Null, _ -> 1
      | Hd r1, Hd r2 ->
          assert (r1 == r2);
          0
      | Hd _, _ -> -1
      | _, Hd _ -> 1
      | Node d1, Node d2 -> V.compare d1.value d2.value

    let rec log2 n = if n <= 1 then 0 else 1 + log2 (n asr 1)

    let init ~size () =
      let maxlevel = log2 size in
      let nil = Null in
      { hdr = Hd (Array.make (maxlevel + 1) nil); level = ref 0; maxlevel; nil }

    let random_level t =
      let lvl = ref 0 in
      while Random.float 1. < 0.5 && !lvl < t.maxlevel do
        incr lvl
      done;
      !lvl

    let make_node t lvl value =
      Node { value; forward = Array.make (lvl + 1) t.nil }

    let mem t elt =
      let x = ref t.hdr in
      for i = !(t.level) downto 0 do
        while
          match !>(!x).(i) with
          | Null | Hd _ -> false
          | Node { value; _ } -> value *< elt
        do
          x := !>(!x).(i)
        done
      done;
      x := !>(!x).(0);
      match !x with Null | Hd _ -> false | Node { value; _ } -> value *= elt

    let insert t elt =
      (* Search for Node *)
      let update = Array.make (t.maxlevel + 1) t.nil in
      let x = ref t.hdr in
      for i = !(t.level) downto 0 do
        while
          match !>(!x).(i) with
          | Null | Hd _ -> false
          | Node { value; _ } -> value *< elt
        do
          x := !>(!x).(i)
        done;
        update.(i) <- !x
      done;
      let x = !>(!x).(0) in
      (* Check if we are at the correct point *)
      if match x with Null | Hd _ -> false | Node { value; _ } -> value *= elt
      then !^x.value <- elt
      else
        let lvl = random_level t in
        if lvl > !(t.level) then (
          for i = !(t.level) + 1 to lvl do
            update.(i) <- t.hdr
          done;
          t.level := lvl);
        let x = make_node t lvl elt in
        for i = 0 to lvl do
          !>x.(i) <- !>(update.(i)).(i);
          !>(update.(i)).(i) <- x
        done

    let size t =
      let rec aux acc = function
        | Null -> acc
        | Hd forward -> aux acc forward.(0)
        | Node { forward; _ } -> aux (acc + 1) forward.(0)
      in
      aux 0 t.hdr

    (* Does not work on empty lists *)
    let validate ?(to_string = fun _ -> "<opaque>") t =
      let rec walk prev = function
        | Null -> ()
        | Hd forward -> walk prev forward.(0)
        | Node { value; forward; _ } ->
            let vals = value |> to_string in
            let prevs = prev |> to_string in
            if value < prev then
              Printf.printf "Ordering error %s -> %s\n" vals prevs
            else if value = prev then
              Printf.printf "Duplicate error %s -> %s\n" vals prevs;
            walk value forward.(0)
      in
      let starting_point = !>(t.hdr).(0) in
      let first_val = !^starting_point.value in
      walk first_val !>starting_point.(0)

    let print_slist t to_string =
      let print_level t lvl =
        let rec aux = function
          | Null -> print_endline "Null"
          | Hd forward ->
              Printf.printf "Level %d : Hd -> " lvl;
              aux forward.(lvl)
          | Node { value; forward; _ } ->
              let val_str = to_string value in
              Printf.printf "(%s) -> " val_str;
              aux forward.(lvl)
        in
        aux t.hdr
      in
      for lvl = !(t.level) downto 0 do
        print_level t lvl;
        Printf.printf "\n"
      done
  end

  module Batched = struct
    type t = Sequential.t
    type cfg = { size : int }

    type 'a op =
      | Insert : V.t -> unit op
      | Member : V.t -> bool op
      | Size : int op

    type wrapped_op = Mk : 'a op * 'a Picos.Computation.t -> wrapped_op

    let init ?(cfg = { size = Int.shift_left 1 30 - 1 }) () =
      Sequential.init ~size:cfg.size ()

    type intermediate = {
      batch_size : int;
      maxinsertlevel : int ref;
      level_arr : int array;
      new_node_arr : Sequential.node array;
      new_node_back_arr : Sequential.node array;
      prev_node_idx : int array;
    }

    let build_node t idx elem
        { maxinsertlevel; new_node_arr; new_node_back_arr; level_arr; _ } =
      let rdm_level = Sequential.random_level t in
      level_arr.(idx) <- rdm_level;
      if rdm_level > !maxinsertlevel then maxinsertlevel := rdm_level;
      let new_node = Sequential.make_node t rdm_level elem in
      let new_node_back = Sequential.make_node t rdm_level elem in
      new_node_arr.(idx) <- new_node;
      new_node_back_arr.(idx) <- new_node_back

    let relate_nodes t idx
        {
          batch_size;
          maxinsertlevel;
          level_arr;
          new_node_arr;
          new_node_back_arr;
          prev_node_idx;
          _;
        } =
      let exception Break in
      let node = new_node_arr.(idx) in
      let next = ref (idx + 1) in
      for lvl = 0 to level_arr.(idx) do
        Sequential.(!>node.(lvl) <- t.nil);
        try
          for id = !next to batch_size - 1 do
            if lvl <= level_arr.(id) then (
              (* Set forward pointer *)
              Sequential.(!>node.(lvl) <- new_node_arr.(id));
              (* Set back_pointer *)
              Sequential.(!>(new_node_back_arr.(id)).(lvl) <- node);
              (* Set the previous pointer *)
              prev_node_idx.(((!maxinsertlevel + 1) * id) + lvl) <- idx;
              (* Update next id to start from *)
              next := id;
              raise Break)
          done
        with Break -> ()
      done

    let merge_list t idx
        {
          maxinsertlevel;
          new_node_arr;
          level_arr;
          new_node_back_arr;
          prev_node_idx;
          _;
        } =
      let open Sequential in
      let exception Return in
      let node = new_node_arr.(idx) in
      let node_back = new_node_back_arr.(idx) in
      let update = Array.make (t.Sequential.maxlevel + 1) t.nil in
      let x = ref t.hdr in
      try
        for i = !(t.level) downto 0 do
          while
            match Sequential.(!>(!x)).(i) with
            | Null | Hd _ -> false
            | Node { value; _ } -> Sequential.(value *< !^node.value)
          do
            x := Sequential.(!>(!x).(i))
          done;
          (* No duplicates *)
          (match !x with
          | Null -> ()
          | Hd forward | Node { forward; _ } ->
              if forward.(i) != t.nil && (!^(forward.(i)).value *= !^node.value)
              then raise Return);

          update.(i) <- !x
        done;

        for i = 0 to level_arr.(idx) do
          if !>node.(i) == t.nil || compare !>(update.(i)).(i) !>node.(i) <= 0
          then
            if !>(update.(i)).(i) != t.nil then !>node.(i) <- !>(update.(i)).(i);

          let prev_node_id =
            prev_node_idx.(((!maxinsertlevel + 1) * idx) + i)
          in
          if
            prev_node_id = -1
            || compare new_node_arr.(prev_node_id) update.(i) <= 0
          then (
            !>node_back.(i) <- update.(i);
            prev_node_idx.(((!maxinsertlevel + 1) * idx) + i) <- -2)
        done
      with Return -> ()

    let remove_duplicates arr num_elements =
      if num_elements <= 1 then num_elements
      else
        let j = ref 0 in
        for i = 0 to num_elements - 2 do
          if arr.(i) <> arr.(i + 1) then (
            arr.(!j) <- arr.(i);
            incr j)
        done;
        arr.(!j) <- arr.(num_elements - 1);
        incr j;
        !j

    let par_insert t (elems : V.t array) =
      let open Sequential in
      (* Sort in acscending order *)
      Array.sort V.compare elems;
      (* Utils.Par_sort.sort pool ~compare:V.compare elems; *)
      let num_elems = remove_duplicates elems (Array.length elems) in

      let intermediary =
        {
          batch_size = num_elems;
          maxinsertlevel = t.level;
          level_arr = Array.make num_elems 0;
          new_node_arr = Array.make num_elems t.nil;
          new_node_back_arr = Array.make num_elems t.nil;
          prev_node_idx = Array.make ((t.maxlevel + 1) * num_elems) (-1);
        }
      in

      for idx = 0 to num_elems - 1 do
        build_node t idx elems.(idx) intermediary
      done;

      for idx = 0 to num_elems - 1 do
        relate_nodes t idx intermediary
      done;

      Utils.parallel_for ~start:0 ~finish:(num_elems - 1) (fun idx ->
          merge_list t idx intermediary);

      for i = 0 to num_elems - 1 do
        for j = 0 to intermediary.level_arr.(i) do
          if
            intermediary.prev_node_idx.((!(intermediary.maxinsertlevel) + 1)
                                        * i
                                        + j)
            = -2
          then
            let back_node = !>(intermediary.new_node_back_arr.(i)).(j) in
            !>back_node.(j) <- intermediary.new_node_arr.(i)
        done
      done

    let par_search t (elems : V.t array) : bool array =
      let result_arr = Array.make (Array.length elems) false in
      Utils.parallel_for ~start:0
        ~finish:(Array.length elems - 1)
        (fun i -> result_arr.(i) <- Sequential.mem t elems.(i));
      result_arr

    let par_size t (elems : int array) : int array =
      let size = Sequential.size t in
      Utils.parallel_for ~start:0
        ~finish:(Array.length elems - 1)
        (fun i -> elems.(i) <- size);
      elems

    let run t (ops : wrapped_op array) : unit =
      let inserts : V.t list ref = ref [] in
      let searches : (V.t * (bool -> unit)) list ref = ref [] in
      let size = lazy (Sequential.size t) in
      Array.iter
        (function
          | Mk (Size, comp) -> Computation.return comp (Lazy.force size)
          | Mk (Member vl, comp) ->
              searches := (vl, Computation.return comp) :: !searches
          | Mk (Insert vl, comp) ->
              Computation.return comp ();
              inserts := vl :: !inserts)
        ops;
      (* now, do all searches in parallel *)
      let searches = Array.of_list !searches in
      Utils.parallel_for ~start:0
        ~finish:(Array.length searches - 1)
        (fun i ->
          let key, kont = searches.(i) in
          let result = Sequential.mem t key in
          kont result);
      (* now, all inserts *)
      let inserts = Array.of_list !inserts in
      par_insert t inserts
  end

  include Obatcher.Make (Batched)

  let insert t v = exec t (Batched.Insert v)
  let mem t v = exec t (Batched.Member v)
  let sz t = exec t Batched.Size
end
OCaml

Innovation. Community. Security.