package mopsa

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file invRelation.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
(****************************************************************************)
(*                                                                          *)
(* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *)
(*                                                                          *)
(* Copyright (C) 2018-2019 The MOPSA Project.                               *)
(*                                                                          *)
(* This program is free software: you can redistribute it and/or modify     *)
(* it under the terms of the GNU Lesser General Public License as published *)
(* by the Free Software Foundation, either version 3 of the License, or     *)
(* (at your option) any later version.                                      *)
(*                                                                          *)
(* This program is distributed in the hope that it will be useful,          *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of           *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            *)
(* GNU Lesser General Public License for more details.                      *)
(*                                                                          *)
(* You should have received a copy of the GNU Lesser General Public License *)
(* along with this program.  If not, see <http://www.gnu.org/licenses/>.    *)
(*                                                                          *)
(****************************************************************************)

(**
  InvRelation - Relations with access to inverse images.
 *)

open InvRelationSig

module Make(Dom: OrderedType)(CoDom: OrderedType) = struct

  module DomSet = SetExt.Make(Dom)
  module DomMap = MapExt.Make(Dom)
  module CoDomSet = SetExt.Make(CoDom)
  module CoDomMap = MapExt.Make(CoDom)

  type t = {
      img: CoDomSet.t DomMap.t;
      inv: DomSet.t CoDomMap.t
    }
  (** We maintain both the image of each domain element and the
      inverse image of each codomain element.
   *)

  type dom = Dom.t
  type dom_set = DomSet.t
  type codom = CoDom.t
  type codom_set = CoDomSet.t
  type binding = dom * codom

  let empty =
    { img = DomMap.empty;
      inv = CoDomMap.empty;
    }

  let image x r =
    try DomMap.find x r.img with Not_found -> CoDomSet.empty

  let inverse y r =
    try CoDomMap.find y r.inv with Not_found -> DomSet.empty

  let is_image_empty x r =
    not (DomMap.mem x r.img)

  let is_inverse_empty y r =
    not (CoDomMap.mem y r.inv)

  let is_empty r =
    DomMap.is_empty r.img


  let singleton x y =
    { img = DomMap.singleton x (CoDomSet.singleton y);
      inv = CoDomMap.singleton y (DomSet.singleton x);
    }


  (* internal function, to update fields *)
  let mk r img inv =
    if r.img == img && r.inv == inv then r
    else { img; inv; }

  (* internal function: does not update inv *)
  let set_img x ys r =
    if CoDomSet.is_empty ys then mk r (DomMap.remove x r.img) r.inv
    else mk r (DomMap.add x ys r.img) r.inv

  (* internal function: does not update img *)
  let set_inv y xs r =
    if DomSet.is_empty xs then mk r r.img (CoDomMap.remove y r.inv)
    else mk r r.img (CoDomMap.add y xs r.inv)


  let set_image x ys r =
    (* update inv *)
    CoDomSet.fold2_diff
      (fun y r -> set_inv y (DomSet.remove x (inverse y r)) r)
      (fun y r -> set_inv y (DomSet.add x (inverse y r)) r)
      (image x r) ys
      (* update img *)
      (set_img x ys r)

  let set_inverse y xs r =
    (* update img *)
    DomSet.fold2_diff
      (fun x r -> set_img x (CoDomSet.remove y (image x r)) r)
      (fun x r -> set_img x (CoDomSet.add y (image x r)) r)
      (inverse y r) xs
      (* update inv *)
      (set_inv y xs r)


  let add x y r =
    mk
      r
      (DomMap.add x (CoDomSet.add y (image x r)) r.img)
      (CoDomMap.add y (DomSet.add x (inverse y r)) r.inv)

  let remove x y r =
    set_img x (CoDomSet.remove y (image x r)) r
    |> set_inv y (DomSet.remove x (inverse y r))

  let add_image_set x ys r =
    set_image x (CoDomSet.union (image x r) ys) r

  let add_inverse_set y xs r =
    set_inverse y (DomSet.union (inverse y r) xs) r

  let remove_image_set x ys r =
    set_image x (CoDomSet.diff (image x r) ys) r

  let remove_inverse_set y xs r =
    set_inverse y (DomSet.diff (inverse y r) xs) r

  let remove_image x r =
    set_image x CoDomSet.empty r

  let remove_inverse y r =
    set_inverse y DomSet.empty r

  let mem x y r =
    CoDomSet.mem y (image x r)

  let mem_domain x r =
    DomMap.mem x r.img

  let mem_codomain x r =
    CoDomMap.mem x r.inv

  let of_list l =
    List.fold_left (fun r (x,y) -> add x y r) empty l

  let min_binding r =
    let x,ys = DomMap.min_binding r.img in
    x, CoDomSet.min_elt ys

  let max_binding r =
    let x,ys = DomMap.max_binding r.img in
    x, CoDomSet.max_elt ys

  let choose r =
    let x,ys = DomMap.choose r.img in
    x, CoDomSet.choose ys

  let cardinal r =
    DomMap.fold (fun _ i r -> r + CoDomSet.cardinal i) r.img 0



  let iter f r =
    DomMap.iter (fun x i -> CoDomSet.iter (fun y -> f x y) i) r.img

  let fold f r acc =
    DomMap.fold
      (fun x i acc -> CoDomSet.fold (fun y acc -> f x y acc) i acc)
      r.img acc

  let bindings r =
    List.rev (fold (fun x y l -> (x,y)::l) r [])

   let map f r =
    fold
      (fun x y acc -> let x',y' = f x y in add x' y' acc)
      r empty

  let domain_map f r =
    DomMap.fold
      (fun x ys r -> add_image_set (f x) ys r)
      r.img empty

  let codomain_map f r =
    CoDomMap.fold
      (fun y xs r -> add_inverse_set (f y) xs r)
      r.inv empty

  let for_all f r =
    DomMap.for_all (fun x i -> CoDomSet.for_all (fun y -> f x y) i) r.img

  let exists f r =
    DomMap.exists (fun x i -> CoDomSet.exists (fun y -> f x y) i) r.img

  let filter f r =
    DomMap.fold
      (fun x ys r ->
        CoDomSet.fold
          (fun y r -> if f x y then r else remove x y r)
          ys r
      ) r.img r


  (* binary operations *)

  let compare r1 r2 =
    DomMap.compare CoDomSet.compare r1.img r2.img

  let equal r1 r2 =
    DomMap.equal CoDomSet.equal r1.img r2.img

  let subset r1 r2 =
    DomMap.for_all2zo
      (fun _ _ -> false)
      (fun _ _ -> true)
      (fun _ s1 s2 -> CoDomSet.subset s1 s2)
      r1.img r2.img

  let union r1 r2 =
    (* apply union separately to the img relation and to the inv relation *)
    mk
      r1
      (DomMap.map2zo
         (fun _ ys -> ys) (fun _ ys -> ys) (fun _ -> CoDomSet.union)
         r1.img r2.img
      )
      (CoDomMap.map2zo
         (fun _ xs -> xs) (fun _ xs -> xs) (fun _ -> DomSet.union)
         r1.inv r2.inv
      )

  let inter r1 r2 =
    (* apply intersection separately to the img relation and to the inv relation *)
    r1
    |> DomMap.fold2zo
         (fun x _ r -> mk r (DomMap.remove x r.img) r.inv)
         (fun _ _ r -> r)
         (fun x ys1 ys2 r -> set_img x (CoDomSet.inter ys1 ys2) r)
         r1.img r2.img
    |> CoDomMap.fold2zo
         (fun y _ r -> mk r r.img (CoDomMap.remove y r.inv))
         (fun _ _ r -> r)
         (fun y xs1 xs2 r -> set_inv y (DomSet.inter xs1 xs2) r)
         r1.inv r2.inv


  let diff r1 r2 =
    (* apply difference separately to the img relation and to the inv relation *)
    r1
    |> DomMap.fold2zo
         (fun _ _ r -> r)
         (fun _ _ r -> r)
         (fun x ys1 ys2 r -> set_img x (CoDomSet.diff ys1 ys2) r)
         r1.img r2.img
    |> CoDomMap.fold2zo
         (fun _ _ r -> r)
         (fun _ _ r -> r)
         (fun y xs1 xs2 r -> set_inv y (DomSet.diff xs1 xs2) r)
         r1.inv r2.inv


  let iter2 f1 f2 f r1 r2 =
    DomMap.iter2o
    (fun x -> CoDomSet.iter (f1 x))
    (fun x -> CoDomSet.iter (f2 x))
    (fun x -> CoDomSet.iter2 (f1 x) (f2 x) (f x))
    r1.img r2.img

  let iter2_diff f1 f2 r1 r2 =
    DomMap.iter2o
    (fun x -> CoDomSet.iter (f1 x))
    (fun x -> CoDomSet.iter (f2 x))
    (fun x -> CoDomSet.iter2_diff (f1 x) (f2 x))
    r1.img r2.img


  let fold2 f1 f2 f r1 r2 acc =
    DomMap.fold2o
    (fun x -> CoDomSet.fold (f1 x))
    (fun x -> CoDomSet.fold (f2 x))
    (fun x -> CoDomSet.fold2 (f1 x) (f2 x) (f x))
    r1.img r2.img acc

  let fold2_diff f1 f2 r1 r2 =
    DomMap.fold2zo
    (fun x -> CoDomSet.fold (f1 x))
    (fun x -> CoDomSet.fold (f2 x))
    (fun x -> CoDomSet.fold2_diff (f1 x) (f2 x))
    r1.img r2.img


  let for_all2 f1 f2 f r1 r2 =
    DomMap.for_all2o
    (fun x -> CoDomSet.for_all (f1 x))
    (fun x -> CoDomSet.for_all (f2 x))
    (fun x -> CoDomSet.for_all2 (f1 x) (f2 x) (f x))
    r1.img r2.img

  let for_all2_diff f1 f2 r1 r2 =
    DomMap.for_all2o
    (fun x -> CoDomSet.for_all (f1 x))
    (fun x -> CoDomSet.for_all (f2 x))
    (fun x -> CoDomSet.for_all2_diff (f1 x) (f2 x))
    r1.img r2.img


  let exists2 f1 f2 f r1 r2 =
    DomMap.exists2o
    (fun x -> CoDomSet.exists (f1 x))
    (fun x -> CoDomSet.exists (f2 x))
    (fun x -> CoDomSet.exists2 (f1 x) (f2 x) (f x))
    r1.img r2.img

  let exists2_diff f1 f2 r1 r2 =
    DomMap.exists2o
    (fun x -> CoDomSet.exists (f1 x))
    (fun x -> CoDomSet.exists (f2 x))
    (fun x -> CoDomSet.exists2_diff (f1 x) (f2 x))
    r1.img r2.img


  (* domain operations *)

  let iter_domain f r =
    DomMap.iter f r.img

  let fold_domain f r acc =
    DomMap.fold f r.img acc

  let map_domain f r =
    DomMap.fold
      (fun x i r -> set_image x (f x i) r)
      r.img empty

  let map2_domain f r1 r2 =
    DomMap.fold2
      (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r)
      r1.img r2.img r1

  let map2o_domain f1 f2 f r1 r2 =
    DomMap.fold2o
      (fun x ys r -> set_image x (f1 x ys) r)
      (fun x ys r -> set_image x (f2 x ys) r)
      (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r)
      r1.img r2.img r1

  let map2zo_domain f1 f2 f r1 r2 =
    DomMap.fold2zo
      (fun x ys r -> set_image x (f1 x ys) r)
      (fun x ys r -> set_image x (f2 x ys) r)
      (fun x ys1 ys2 r -> set_image x (f x ys1 ys2) r)
      r1.img r2.img r1


  let for_all_domain f r =
    DomMap.for_all f r.img

  let exists_domain f r =
    DomMap.exists f r.img

  let filter_domain f r =
    DomMap.fold
      (fun x ys r -> if f x ys then r else remove_image x r)
      r.img r

  let min_domain r =
    fst (DomMap.min_binding r.img)

  let max_domain r =
    fst (DomMap.max_binding r.img)

  let choose_domain r =
    fst (DomMap.choose r.img)

  let cardinal_domain r =
    DomMap.cardinal r.img

  let elements_domain r =
    List.rev (DomMap.fold (fun x _ l -> x::l) r.img [])


  (* codomain operations *)

  let iter_codomain f r =
    CoDomMap.iter f r.inv

  let fold_codomain f r acc =
    CoDomMap.fold f r.inv acc

  let map_codomain f r =
    CoDomMap.fold
      (fun y i r -> set_inverse y (f y i) r)
      r.inv empty

  let for_all_codomain f r =
    CoDomMap.for_all f r.inv

  let exists_codomain f r =
    CoDomMap.exists f r.inv

  let filter_codomain f r =
    CoDomMap.fold
      (fun y xs r -> if f y xs then r else remove_inverse y r)
      r.inv r

  let min_codomain r =
    fst (CoDomMap.min_binding r.inv)

  let max_codomain r =
    fst (CoDomMap.max_binding r.inv)

  let choose_codomain r =
    fst (CoDomMap.choose r.inv)

  let cardinal_codomain r =
    CoDomMap.cardinal r.inv

  let elements_codomain r =
    List.rev (CoDomMap.fold (fun y _ l -> y::l) r.inv [])




  (* printing *)


  type relation_printer = {
      print_empty: string;
      print_begin: string;
      print_open: string;
      print_comma: string;
      print_close: string;
      print_sep: string;
      print_end: string;
    }

  let printer_default = {
      print_empty="{}";
      print_begin="{";
      print_open="(";
      print_comma=",";
      print_close=")";
      print_sep=";";
      print_end="}";
    }

  let print_gen o printer dom codom ch s =
    if is_empty s then o ch printer.print_empty else (
      let first = ref true in
      o ch printer.print_begin;
      iter
        (fun x y ->
          if !first then first := false else o ch printer.print_sep;
          o ch printer.print_open;
          dom ch x;
          o ch printer.print_comma;
          codom ch y;
          o ch printer.print_close;
        ) s;
      o ch printer.print_end
    )
  (* internal printing helper *)

  let print printer dom codom ch l = print_gen output_string printer dom codom ch l
  let bprint printer dom codom ch l = print_gen Buffer.add_string printer dom codom ch l
  let fprint printer dom codom ch l = print_gen Format.pp_print_string printer dom codom ch l

  let to_string printer dom codom l =
    let b = Buffer.create 10 in
    print_gen (fun () s -> Buffer.add_string b s) printer
              (fun () k -> Buffer.add_string b (dom k))
              (fun () k -> Buffer.add_string b (codom k))
              () l;
    Buffer.contents b

end
OCaml

Innovation. Community. Security.