Source file Spec.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
open Code
(** When the combinator [nondet] is used, the reference implementation has
access to a result of type ['c] produced by the candidate implementation.
It must either accept the candidate's result and produce its own result of
type ['r], or reject the candidate's result and produce a piece of OCaml
code that explains why this result is unacceptable. This code is
represented by a function of type [document -> document]. It receives the
name of a variable, such as [observed], which stands for the candidate's
result. This code could be an OCaml assertion that the observed result
does not satisfy, or it could be just a comment. *)
type 'r diagnostic =
| Valid of 'r
| Invalid of (PPrint.document -> PPrint.document)
(** In the common case where ['r] and ['c] are the same type, the following
type abbreviation is useful. The reference implementation must produce
a result of type ['r nondet] instead of just ['r]. *)
type 'r nondet =
'r -> 'r diagnostic
type (_, _) spec =
| SpecConstructible :
{ generate : unit -> 't code } ->
('t, 't) spec
| SpecBaseAbstract:
('r * 'c) Tag.tag * ('r, 'c) abstract -> ('r, 'c) spec
| SpecUnit:
(unit, unit) spec
| SpecPair :
('r1, 'c1) spec * ('r2, 'c2) spec -> ('r1 * 'r2, 'c1 * 'c2) spec
| SpecOption :
('r, 'c) spec -> ('r option, 'c option) spec
| SpecResult :
('r1, 'c1) spec * ('r2, 'c2) spec ->
(('r1, 'r2) result, ('c1, 'c2) result) spec
| SpecEither :
('r1, 'c1) spec * ('r2, 'c2) spec ->
(('r1, 'r2) Either.t, ('c1, 'c2) Either.t) spec
| SpecList:
int Gen.gen * ('r, 'c) spec ->
('r list, 'c list) spec
| SpecSubset :
('r, 'c) spec * ('r -> bool) -> ('r, 'c) spec
| SpecNondet :
('r, 'c) spec ->
('c -> 'r diagnostic, 'c) spec
| SpecDeconstructible :
{ equal : ('t -> 't -> bool) code; print : 't -> PPrint.document } ->
('t, 't) spec
| SpecTop :
('r, 'c) spec
| SpecArrow :
('r1, 'c1) spec * ('r2, 'c2) spec -> ('r1 -> 'r2, 'c1 -> 'c2) spec
| SpecDependentArrow :
('r1, 'c1) spec * ('r1 -> ('r2, 'c2) spec) -> ('r1 -> 'r2, 'c1 -> 'c2) spec
| SpecMapInto :
('r1 -> 'r2) *
('c1 -> 'c2) code *
('r2, 'c2) spec ->
('r1, 'c1) spec
| SpecMapOutof :
('r1 -> 'r2) *
('c1 -> 'c2) code *
('r1, 'c1) spec ->
('r2, 'c2) spec
| SpecIfPol :
('r, 'c) spec * ('r, 'c) spec ->
('r, 'c) spec
| SpecDeferred :
('r, 'c) spec Lazy.t ->
('r, 'c) spec
and ('r, 'c) abstract = {
aty_var : string;
aty_check : 'r -> ('c -> unit) code;
}
let unit =
SpecUnit
let ( *** ) first second =
SpecPair (first, second)
let pair =
( *** )
let option spec =
SpecOption spec
let result spec1 spec2 =
SpecResult (spec1, spec2)
let either spec1 spec2 =
SpecEither (spec1, spec2)
let list ?length:(length=Gen.lt 16) spec =
SpecList (length, spec)
let ignored =
SpecTop
let (^>) domain codomain =
SpecArrow (domain, codomain)
let (^>>) domain codomain =
SpecDependentArrow (domain, codomain)
let (%) p spec =
SpecSubset (spec, p)
let nondet spec =
SpecNondet spec
let map_into rwrap cwrap spec =
SpecMapInto (rwrap, cwrap, spec)
let map_outof rwrap cwrap spec =
SpecMapOutof (rwrap, cwrap, spec)
let ifpol neg pos =
SpecIfPol (neg, pos)
let fix f =
let rec spec = SpecDeferred (lazy (f spec)) in
spec
let constructible (generate : unit -> 't code) =
SpecConstructible { generate }
let easily_constructible (generate : unit -> 't) (print : 't -> PPrint.document) =
let generate () =
let value = generate() in
value, Code.document (print value)
in
constructible generate
let deconstructible ?equal:(equal=((=), Code.infix "=")) print =
SpecDeconstructible { equal; print }
type value =
| Value : ('r, 'c) spec * 'r * 'c -> value
let default_check : type r c . r -> (c -> unit) code =
fun _ ->
(fun _ -> ()), Code.constant "(fun _ -> ())"
let default_var =
"x"
let declare_abstract_type
?check:(check=default_check)
?var:(var=default_var)
()
=
let tag = Tag.new_tag () in
SpecBaseAbstract (tag, { aty_var = var; aty_check = check })
exception IllFormedSpec of string * string
let ill_formed op format =
Printf.ksprintf (fun s -> raise (IllFormedSpec (op, s))) format
let rec normalize
: type r c . string -> bool -> bool -> (r, c) spec -> (r, c) spec
= fun op polarity order_zero spec ->
match spec with
| SpecConstructible _ ->
if polarity then
ill_formed op
"A constructible type cannot be used in a positive position.";
spec
| SpecDeconstructible _ ->
if not polarity then
ill_formed op
"A deconstructible type cannot be used in a negative position.";
spec
| SpecBaseAbstract _ ->
spec
| SpecUnit ->
spec
| SpecPair (first, second) ->
let order_zero = true in
let first = normalize op polarity order_zero first
and second = normalize op polarity order_zero second in
SpecPair (first, second)
| SpecOption spec ->
let order_zero = true in
let spec = normalize op polarity order_zero spec in
SpecOption spec
| SpecResult (spec1, spec2) ->
let order_zero = true in
let spec1 = normalize op polarity order_zero spec1
and spec2 = normalize op polarity order_zero spec2 in
SpecResult (spec1, spec2)
| SpecEither (spec1, spec2) ->
let order_zero = true in
let spec1 = normalize op polarity order_zero spec1
and spec2 = normalize op polarity order_zero spec2 in
SpecEither (spec1, spec2)
| SpecList (n, spec) ->
let order_zero = true in
let spec = normalize op polarity order_zero spec in
SpecList (n, spec)
| SpecTop ->
if not polarity then
ill_formed op
"The combinator `ignored` cannot be used in a negative position.";
SpecTop
| SpecArrow (domain, codomain) ->
if order_zero then
ill_formed op
"The combinator `^>` cannot be used in the left-hand side\n\
of a function or under a pair.";
let domain = normalize op (not polarity) true domain
and codomain = normalize op polarity order_zero codomain in
SpecArrow (domain, codomain)
| SpecDependentArrow (domain, codomain) ->
if order_zero then
ill_formed op
"The combinator `^>>` cannot be used in the left-hand side\n\
of a function or under a pair.";
let domain = normalize op (not polarity) true domain
and codomain rv = normalize op polarity order_zero (codomain rv) in
SpecDependentArrow (domain, codomain)
| SpecSubset (spec, p) ->
if polarity then
ill_formed op
"The combinator `%%` cannot be used in a positive position.";
let spec = normalize op polarity order_zero spec in
SpecSubset (spec, p)
| SpecNondet spec ->
if not polarity then
ill_formed op
"The combinator `nondet` cannot be used in a negative position.";
let spec = normalize op polarity order_zero spec in
SpecNondet spec
| SpecMapInto (rwrap, cwrap, spec) ->
if not polarity then
ill_formed op
"The combinator `map_into` (%s) \
cannot be used in a negative position."
(Code.string cwrap);
let spec = normalize op polarity order_zero spec in
SpecMapInto (rwrap, cwrap, spec)
| SpecMapOutof (rwrap, cwrap, spec) ->
if polarity then
ill_formed op
"The combinator `map_outof` (%s) \
cannot be used in a positive position."
(Code.string cwrap);
let spec = normalize op polarity order_zero spec in
SpecMapOutof (rwrap, cwrap, spec)
| SpecIfPol (neg, pos) ->
normalize op polarity order_zero (if polarity then pos else neg)
| SpecDeferred spec ->
SpecDeferred (lazy (normalize op polarity order_zero (Lazy.force spec)))
let normalize op spec =
let polarity = true
and order_zero = false in
normalize op polarity order_zero spec
let normalize_op (op, Value (spec, rv, cv)) =
(op, Value (normalize op spec, rv, cv))