Source file audio.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
open Mm_base
let list_filter_ctxt f l =
let rec aux b = function
| [] -> []
| h :: t -> if f b h t then h :: aux (b @ [h]) t else aux (b @ [h]) t
in
aux [] l
let pi = 3.14159265358979323846
let lin_of_dB x = 10. ** (x /. 20.)
let dB_of_lin x = 20. *. log x /. log 10.
(** Fractional part of a float. *)
let fracf x = if x < 1. then x else if x < 2. then x -. 1. else fst (modf x)
let samples_of_seconds sr t = int_of_float (float sr *. t)
let seconds_of_samples sr n = float n /. float sr
module Note = struct
type t = int
let a4 = 69
let c5 = 72
let c0 = 12
let create name oct = name + (12 * (oct + 1))
let freq n = 440. *. (2. ** ((float n -. 69.) /. 12.))
let of_freq f =
int_of_float (0.5 +. ((12. *. log (f /. 440.) /. log 2.) +. 69.))
let name n = n mod 12
let octave n = (n / 12) - 1
let modulo n = (name n, octave n)
let to_string n =
let n, o = modulo n in
(match n with
| 0 -> "A"
| 1 -> "A#"
| 2 -> "B"
| 3 -> "C"
| 4 -> "C#"
| 5 -> "D"
| 6 -> "D#"
| 7 -> "E"
| 8 -> "F"
| 9 -> "F#"
| 10 -> "G"
| 11 -> "G#"
| _ -> assert false)
^ " " ^ string_of_int o
let of_string s =
assert (String.length s >= 2);
let note = String.sub s 0 (String.length s - 1) in
let oct = int_of_char s.[String.length s - 1] - int_of_char '0' in
let off =
match note with
| "a" | "A" -> 0
| "b" | "B" -> 2
| "c" | "C" -> 3
| "d" | "D" -> 5
| "e" | "E" -> 7
| "f" | "F" -> 8
| "g" | "G" -> 10
| _ -> raise Not_found
in
64 + (12 * (oct - 4)) + off
end
module Sample = struct
type t = float
let clip x =
let x = max (-1.) x in
let x = min 1. x in
x
end
module Mono = struct
type t = float array
type buffer = t
let create = Array.create_float
let length = Array.length
let buffer_length = length
let clear data ofs len = Array.fill data ofs len 0.
let make n (x : float) = Array.make n x
let sub = Array.sub
let blit = Array.blit
let copy src ofs len =
let dst = create len in
blit src ofs dst 0 len;
dst
external copy_from_ba :
(float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Array1.t ->
float array ->
int ->
int ->
unit = "caml_mm_audio_copy_from_ba"
external copy_to_ba :
float array ->
int ->
int ->
(float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Array1.t ->
unit = "caml_mm_audio_copy_to_ba"
let of_ba buf =
let len = Bigarray.Array1.dim buf in
let dst = Array.create_float len in
copy_from_ba buf dst 0 len;
dst
let to_ba buf ofs len =
let ba = Bigarray.Array1.create Bigarray.float32 Bigarray.c_layout len in
copy_to_ba buf ofs len ba;
ba
let append b1 ofs1 len1 b2 ofs2 len2 =
assert (length b1 - ofs1 >= len1);
assert (length b2 - ofs2 >= len2);
let data = Array.create_float (len1 + len2) in
Array.blit b1 ofs1 data 0 len1;
Array.blit b2 ofs2 data len1 len2;
data
let add b1 ofs1 b2 ofs2 len =
assert (length b1 - ofs1 >= len);
assert (length b2 - ofs2 >= len);
for i = 0 to len - 1 do
Array.unsafe_set b1 (ofs1 + i)
(Array.unsafe_get b1 (ofs1 + i) +. Array.unsafe_get b2 (ofs2 + i))
done
let add_coeff b1 ofs1 k b2 ofs2 len =
assert (length b1 - ofs1 >= len);
assert (length b2 - ofs2 >= len);
for i = 0 to len - 1 do
Array.unsafe_set b1 (ofs1 + i)
(Array.unsafe_get b1 (ofs1 + i) +. (k *. Array.unsafe_get b2 (ofs2 + i)))
done
let add_coeff b1 ofs1 k b2 ofs2 len =
if k = 0. then ()
else if k = 1. then add b1 ofs1 b2 ofs2 len
else add_coeff b1 ofs1 k b2 ofs2 len
let mult b1 ofs1 b2 ofs2 len =
assert (length b1 - ofs1 >= len);
assert (length b2 - ofs2 >= len);
for i = 0 to len - 1 do
Array.unsafe_set b1 (ofs1 + i)
(Array.unsafe_get b1 (ofs1 + i) *. Array.unsafe_get b2 (ofs2 + i))
done
let amplify c b ofs len =
assert (length b - ofs >= len);
for i = 0 to len - 1 do
Array.unsafe_set b (ofs + i) (Array.unsafe_get b (ofs + i) *. c)
done
let clip b ofs len =
assert (length b - ofs >= len);
for i = 0 to len - 1 do
let s = Array.unsafe_get b (ofs + i) in
Array.unsafe_set b (ofs + i)
(if Float.is_nan s then 0.
else if s < -1. then -1.
else if 1. < s then 1.
else s)
done
let squares b ofs len =
assert (length b - ofs >= len);
let ret = ref 0. in
for i = 0 to len - 1 do
let s = Array.unsafe_get b (ofs + i) in
ret := !ret +. (s *. s)
done;
!ret
let noise b ofs len =
assert (length b - ofs >= len);
for i = 0 to len - 1 do
Array.unsafe_set b (ofs + i) (Random.float 2. -. 1.)
done
let resample ?(mode = `Linear) ratio inbuf ofs len =
assert (length inbuf - ofs >= len);
if ratio = 1. then copy inbuf ofs len
else if mode = `Nearest then (
let outlen = int_of_float ((float len *. ratio) +. 0.5) in
let outbuf = create outlen in
for i = 0 to outlen - 1 do
let pos = min (int_of_float ((float i /. ratio) +. 0.5)) (len - 1) in
Array.unsafe_set outbuf i (Array.unsafe_get inbuf (ofs + pos))
done;
outbuf)
else (
let outlen = int_of_float (float len *. ratio) in
let outbuf = create outlen in
for i = 0 to outlen - 1 do
let ir = float i /. ratio in
let pos = min (int_of_float ir) (len - 1) in
if pos = len - 1 then
Array.unsafe_set outbuf i (Array.unsafe_get inbuf (ofs + pos))
else (
let a = ir -. float pos in
Array.unsafe_set outbuf i
((Array.unsafe_get inbuf (ofs + pos) *. (1. -. a))
+. (Array.unsafe_get inbuf (ofs + pos + 1) *. a)))
done;
outbuf)
module B = struct
type t = buffer
let create = create
let blit = blit
end
module Ringbuffer_ext = Ringbuffer.Make_ext (B)
module Ringbuffer = Ringbuffer.Make (B)
module Buffer_ext = struct
type t = { mutable buffer : buffer }
let prepare buf len =
if length buf.buffer >= len then sub buf.buffer 0 len
else (
let newbuf = create len in
buf.buffer <- newbuf;
newbuf)
let create len = { buffer = create len }
let length buf = length buf.buffer
end
module Analyze = struct
let rms buf ofs len =
let r = ref 0. in
for i = 0 to len - 1 do
let x = buf.(i + ofs) in
r := !r +. (x *. x)
done;
sqrt (!r /. float len)
module FFT = struct
type t = {
b : int;
n : int;
circle : Complex.t array;
temp : Complex.t array;
}
let init b =
let n = 1 lsl b in
let h = n / 2 in
let fh = float h in
let circle = Array.make h Complex.zero in
for i = 0 to h - 1 do
let theta = pi *. float_of_int i /. fh in
circle.(i) <- { Complex.re = cos theta; Complex.im = sin theta }
done;
{ b; n; circle; temp = Array.make n Complex.zero }
let length f = f.n
let complex_create buf =
Array.init (buffer_length buf) (fun i ->
{ Complex.re = buf.(i); Complex.im = 0. })
let ccoef k c =
{ Complex.re = k *. c.Complex.re; Complex.im = k *. c.Complex.im }
let fft f d =
assert (Array.length d = f.n);
let ( +~ ) = Complex.add in
let ( -~ ) = Complex.sub in
let ( *~ ) = Complex.mul in
let rec fft t d s
n =
if n > 1 then (
let h = n / 2 in
for i = 0 to h - 1 do
t.(s + i) <- d.(s + (2 * i));
t.(s + h + i) <- d.(s + (2 * i) + 1)
done;
fft d t s h;
fft d t (s + h) h;
let a = f.n / n in
for i = 0 to h - 1 do
let wkt = f.circle.(i * a) *~ t.(s + h + i) in
d.(s + i) <- t.(s + i) +~ wkt;
d.(s + h + i) <- t.(s + i) -~ wkt
done)
in
fft f.temp d 0 f.n
module Window = struct
let iter f d =
let len = Array.length d in
let n = float len in
for i = 0 to len - 1 do
let k = f (float i) n in
d.(i) <- ccoef k d.(i)
done
let hann d = iter (fun i n -> 0.5 *. (1. -. cos (2. *. pi *. i /. n))) d
let hamming d =
iter (fun i n -> 0.54 *. (0.46 *. cos (2. *. pi *. i /. n))) d
let cosine d = iter (fun i n -> sin (pi *. i /. n)) d
let lanczos d =
let sinc x =
let px = pi *. x in
sin px /. px
in
iter (fun i n -> sinc (2. *. i /. n)) d
let triangular d =
iter
(fun i n ->
if i <= n /. 2. then 2. *. i /. n else ((n /. 2.) -. i) *. 2. /. n)
d
let bartlett_hann d =
let a0 = 0.62 in
let a1 = 0.48 in
let a2 = 0.38 in
iter
(fun i n ->
a0
-. (a1 *. abs_float ((i /. n) -. 0.5))
-. (a2 *. cos (2. *. pi *. i /. n)))
d
let blackman ?(alpha = 0.16) d =
let a = alpha in
let a0 = (1. -. a) /. 2. in
let a1 = 1. /. 2. in
let a2 = a /. 2. in
iter
(fun i n ->
a0
-. (a1 *. cos (2. *. pi *. i /. n))
+. (a2 *. cos (4. *. pi *. i /. n)))
d
let low_res a0 a1 a2 a3 d =
iter
(fun i n ->
a0
-. (a1 *. cos (2. *. pi *. i /. n))
+. (a2 *. cos (4. *. pi *. i /. n))
-. (a3 *. cos (6. *. pi *. i /. n)))
d
let nuttall d = low_res 0.355768 0.487396 0.144232 0.012604 d
let blackman_harris d = low_res 0.35875 0.48829 0.14128 0.01168 d
let blackman_nuttall d =
low_res 0.3635819 0.4891775 0.1365995 0.0106411 d
end
let band_freq sr f k = float k *. float sr /. float f.n
let notes sr f ?(note_min = Note.c0) ?(note_max = 128)
?(volume_min = 0.01) ?(filter_harmonics = true) buf =
let len = buffer_length buf in
assert (len = length f);
let bdur = float len /. float sr in
let fdf = float (length f) in
let c = complex_create buf in
fft f c;
let ans = ref [] in
let kstart = max 0 (int_of_float (Note.freq note_min *. bdur)) in
let kend = min (len / 2) (int_of_float (Note.freq note_max *. bdur)) in
for k = kstart + 1 to kend - 2 do
let v' = Complex.norm c.(k - 1) in
let v = Complex.norm c.(k) in
let v'' = Complex.norm c.(k - 1) in
if v' +. v'' < 2. *. v then (
let p = (v'' -. v') /. ((2. *. v') -. (2. *. v) +. v'') in
let v = v -. ((v' -. v'') *. p /. 4.) in
let v = v /. fdf in
let p = p +. float k in
if v >= volume_min then ans := (p, v) :: !ans)
done;
let ans = List.map (fun (k, v) -> (Note.of_freq (k /. bdur), v)) !ans in
let ans =
if filter_harmonics then
list_filter_ctxt
(fun b (n, _) t ->
let o = Note.octave n in
let n = Note.name n in
List.for_all
(fun (n', _) -> Note.name n' <> n || Note.octave n' >= o)
(b @ t))
ans
else ans
in
ans
let loudest_note l =
match l with
| [] -> None
| h :: t ->
Some
(List.fold_left
(fun (nmax, vmax) (n, v) ->
if v > vmax then (n, v) else (nmax, vmax))
h t)
end
end
module Effect = struct
let compand_mu_law mu buf ofs len =
for i = 0 to len - 1 do
let bufi = buf.(i + ofs) in
let sign = if bufi < 0. then -1. else 1. in
buf.(i + ofs) <-
sign *. log (1. +. (mu *. abs_float bufi)) /. log (1. +. mu)
done
class type t =
object
method process : buffer -> int -> int -> unit
end
class amplify k : t =
object
method process = amplify k
end
class clip c : t =
object
method process buf ofs len =
for i = 0 to len - 1 do
Array.unsafe_set buf (i + ofs)
(max (-.c) (min c (Array.unsafe_get buf (i + ofs))))
done
end
class biquad_filter samplerate
(kind :
[ `Low_pass
| `High_pass
| `Band_pass
| `Notch
| `All_pass
| `Peaking
| `Low_shelf
| `High_shelf ]) ?(gain = 0.) freq q =
let samplerate = float samplerate in
object (self)
val mutable p0 = 0.
val mutable p1 = 0.
val mutable p2 = 0.
val mutable q1 = 0.
val mutable q2 = 0.
method private init =
let w0 = 2. *. pi *. freq /. samplerate in
let cos_w0 = cos w0 in
let sin_w0 = sin w0 in
let alpha = sin w0 /. (2. *. q) in
let a = if gain = 0. then 1. else 10. ** (gain /. 40.) in
let b0, b1, b2, a0, a1, a2 =
match kind with
| `Low_pass ->
let b1 = 1. -. cos_w0 in
let b0 = b1 /. 2. in
(b0, b1, b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha)
| `High_pass ->
let b1 = 1. +. cos_w0 in
let b0 = b1 /. 2. in
let b1 = -.b1 in
(b0, b1, b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha)
| `Band_pass ->
let b0 = sin_w0 /. 2. in
(b0, 0., -.b0, 1. +. alpha, -2. *. cos_w0, 1. -. alpha)
| `Notch ->
let b1 = -2. *. cos_w0 in
(1., b1, 1., 1. +. alpha, b1, 1. -. alpha)
| `All_pass ->
let b0 = 1. -. alpha in
let b1 = -2. *. cos_w0 in
let b2 = 1. +. alpha in
(b0, b1, b2, b2, b1, b0)
| `Peaking ->
let ama = alpha *. a in
let ada = alpha /. a in
let b1 = -2. *. cos_w0 in
(1. +. ama, b1, 1. -. ama, 1. +. ada, b1, 1. -. ada)
| `Low_shelf ->
let s = 2. *. sqrt a *. alpha in
( a *. (a +. 1. -. ((a -. 1.) *. cos_w0) +. s),
2. *. a *. (a -. 1. -. ((a +. 1.) *. cos_w0)),
a *. (a +. 1. -. ((a -. 1.) *. cos_w0) -. s),
a +. 1. +. ((a -. 1.) *. cos_w0) +. s,
(-2. *. (a -. 1.)) +. ((a +. 1.) *. cos_w0),
a +. 1. +. ((a -. 1.) *. cos_w0) -. s )
| `High_shelf ->
let s = 2. *. sqrt a *. alpha in
( a *. (a +. 1. +. ((a -. 1.) *. cos_w0) +. s),
-2. *. a *. (a -. 1. +. ((a +. 1.) *. cos_w0)),
a *. (a +. 1. +. ((a -. 1.) *. cos_w0) -. s),
a +. 1. -. ((a -. 1.) *. cos_w0) +. s,
(2. *. (a -. 1.)) -. ((a +. 1.) *. cos_w0),
a +. 1. -. ((a -. 1.) *. cos_w0) -. s )
in
p0 <- b0 /. a0;
p1 <- b1 /. a0;
p2 <- b2 /. a0;
q1 <- a1 /. a0;
q2 <- a2 /. a0
initializer self#init
val mutable x1 = 0.
val mutable x2 = 0.
val mutable y0 = 0.
val mutable y1 = 0.
val mutable y2 = 0.
method process (buf : buffer) ofs len =
for i = 0 to len - 1 do
let x0 = buf.(i + ofs) in
let y0 =
(p0 *. x0) +. (p1 *. x1) +. (p2 *. x2) -. (q1 *. y1) -. (q2 *. y2)
in
buf.(i + ofs) <- y0;
x2 <- x1;
x1 <- x0;
y2 <- y1;
y1 <- y0
done
end
module ADSR = struct
type t = int * int * float * int
(** Convert adsr in seconds to samples. *)
let make sr (a, d, s, r) =
( samples_of_seconds sr a,
samples_of_seconds sr d,
s,
samples_of_seconds sr r )
(** State in the ADSR enveloppe (A/D/S/R/dead + position in the state). *)
type state = int * int
let init () = (0, 0)
let release (_, p) = (3, p)
let dead (s, _) = s = 4
let rec process adsr st (buf : buffer) ofs len =
let a, (d : int), s, (r : int) = adsr in
let state, state_pos = st in
match state with
| 0 ->
let fa = float a in
for i = 0 to min len (a - state_pos) - 1 do
buf.(i + ofs) <- float (state_pos + i) /. fa *. buf.(i + ofs)
done;
if len < a - state_pos then (0, state_pos + len)
else
process adsr (1, 0) buf
(ofs + a - state_pos)
(len - (a - state_pos))
| 1 ->
let fd = float d in
for i = 0 to min len (d - state_pos) - 1 do
buf.(i + ofs) <-
(1. -. (float (state_pos + i) /. fd *. (1. -. s)))
*. buf.(i + ofs)
done;
if len < d - state_pos then (1, state_pos + len)
else if
s >= 0.
then
process adsr (2, 0) buf
(ofs + d - state_pos)
(len - (d - state_pos))
else
process adsr (3, 0) buf
(ofs + d - state_pos)
(len - (d - state_pos))
| 2 ->
amplify s buf ofs len;
st
| 3 ->
let fr = float r in
for i = 0 to min len (r - state_pos) - 1 do
buf.(i + ofs) <-
s *. (1. -. (float (state_pos + i) /. fr)) *. buf.(i + ofs)
done;
if len < r - state_pos then (3, state_pos + len)
else
process adsr (4, 0) buf
(ofs + r - state_pos)
(len - (r - state_pos))
| 4 ->
clear buf ofs len;
st
| _ -> assert false
end
end
module Generator = struct
let white_noise buf = noise buf
class type t =
object
method set_volume : float -> unit
method set_frequency : float -> unit
method fill : buffer -> int -> int -> unit
method fill_add : buffer -> int -> int -> unit
method release : unit
method dead : bool
end
class virtual base sample_rate ?(volume = 1.) freq =
object (self)
val mutable vol = volume
val mutable freq : float = freq
val mutable dead = false
method dead = dead
method release =
vol <- 0.;
dead <- true
method private sample_rate : int = sample_rate
method private volume : float = vol
method set_volume v = vol <- v
method set_frequency f = freq <- f
method virtual fill : buffer -> int -> int -> unit
method fill_add (buf : buffer) ofs len =
let tmp = create len in
self#fill tmp 0 len;
add buf ofs tmp 0 len
end
class white_noise ?volume sr =
object (self)
inherit base sr ?volume 0.
method fill buf ofs len =
let volume = self#volume in
for i = 0 to len - 1 do
buf.(i + ofs) <- volume *. (Random.float 2. -. 1.)
done
end
class sine sr ?volume ?(phase = 0.) freq =
object (self)
inherit base sr ?volume freq
val mutable phase = phase
method fill buf ofs len =
let sr = float self#sample_rate in
let omega = 2. *. pi *. freq /. sr in
let volume = self#volume in
for i = 0 to len - 1 do
buf.(i + ofs) <- volume *. sin ((float i *. omega) +. phase)
done;
phase <- mod_float (phase +. (float len *. omega)) (2. *. pi)
end
class square sr ?volume ?(phase = 0.) freq =
object (self)
inherit base sr ?volume freq
val mutable phase = phase
method fill buf ofs len =
let sr = float self#sample_rate in
let volume = self#volume in
let omega = freq /. sr in
for i = 0 to len - 1 do
let t = fracf ((float i *. omega) +. phase) in
buf.(i + ofs) <- (if t < 0.5 then volume else -.volume)
done;
phase <- mod_float (phase +. (float len *. omega)) 1.
end
class saw sr ?volume ?(phase = 0.) freq =
object (self)
inherit base sr ?volume freq
val mutable phase = phase
method fill buf ofs len =
let volume = self#volume in
let sr = float self#sample_rate in
let omega = freq /. sr in
for i = 0 to len - 1 do
let t = fracf ((float i *. omega) +. phase) in
buf.(i + ofs) <- volume *. ((2. *. t) -. 1.)
done;
phase <- mod_float (phase +. (float len *. omega)) 1.
end
class triangle sr ?volume ?(phase = 0.) freq =
object (self)
inherit base sr ?volume freq
val mutable phase = phase
method fill buf ofs len =
let sr = float self#sample_rate in
let volume = self#volume in
let omega = freq /. sr in
for i = 0 to len - 1 do
let t = fracf ((float i *. omega) +. phase +. 0.25) in
buf.(i + ofs) <-
(volume
*. if t < 0.5 then (4. *. t) -. 1. else (4. *. (1. -. t)) -. 1.)
done;
phase <- mod_float (phase +. (float len *. omega)) 1.
end
class chain (g : t) (e : Effect.t) : t =
object
method fill buf ofs len =
g#fill buf ofs len;
e#process buf ofs len
val tmpbuf = Buffer_ext.create 0
method fill_add (buf : buffer) ofs len =
let tmpbuf = Buffer_ext.prepare tmpbuf len in
g#fill tmpbuf 0 len;
add buf ofs tmpbuf 0 len
method set_volume = g#set_volume
method set_frequency = g#set_frequency
method release = g#release
method dead = g#dead
end
class combine f (g1 : t) (g2 : t) : t =
object
val tmpbuf = Buffer_ext.create 0
val tmpbuf2 = Buffer_ext.create 0
method fill buf ofs len =
g1#fill buf ofs len;
let tmpbuf = Buffer_ext.prepare tmpbuf len in
g2#fill tmpbuf 0 len;
f buf ofs tmpbuf 0 len
method fill_add buf ofs len =
let tmpbuf = Buffer_ext.prepare tmpbuf len in
g1#fill tmpbuf 0 len;
let tmpbuf2 = Buffer_ext.prepare tmpbuf2 len in
g2#fill tmpbuf2 0 len;
f tmpbuf 0 tmpbuf2 0 len;
add buf ofs tmpbuf 0 len
method set_volume v =
g1#set_volume v;
g2#set_volume v
method set_frequency v =
g1#set_frequency v;
g2#set_frequency v
method release =
g1#release;
g2#release
method dead = g1#dead && g2#dead
end
class add g1 g2 =
object
inherit combine add g1 g2
end
class mult g1 g2 =
object
inherit combine mult g1 g2
end
class adsr (adsr : Effect.ADSR.t) (g : t) =
object (self)
val mutable adsr_st = Effect.ADSR.init ()
val tmpbuf = Buffer_ext.create 0
method set_volume = g#set_volume
method set_frequency = g#set_frequency
method fill buf ofs len =
g#fill buf ofs len;
adsr_st <- Effect.ADSR.process adsr adsr_st buf ofs len
method fill_add buf ofs len =
let tmpbuf = Buffer_ext.prepare tmpbuf len in
self#fill tmpbuf 0 len;
blit tmpbuf 0 buf ofs len
method release =
adsr_st <- Effect.ADSR.release adsr_st;
g#release
method dead = Effect.ADSR.dead adsr_st || g#dead
end
end
end
(** An audio buffer. *)
type t = Mono.buffer array
type buffer = t
(** Iterate a function on each channel of the buffer. *)
let iter f data offset length = Array.iter (fun b -> f b offset length) data
let create chans n = Array.init chans (fun _ -> Mono.create n)
let make chans n x = Array.init chans (fun _ -> Mono.make n x)
let channels data = Array.length data
let length = function [||] -> 0 | a -> Array.length a.(0)
let create_same buf = create (channels buf) (length buf)
let interleave data length offset =
let chans = Array.length data in
let ibuf = Mono.create (chans * length) in
for c = 0 to chans - 1 do
let bufc = data.(c) in
for i = 0 to length - 1 do
ibuf.((chans * i) + c) <- bufc.(offset + i)
done
done;
ibuf
let deinterleave chans ibuf ofs len =
let len = len / chans in
let buf = create chans len in
for c = 0 to chans - 1 do
let bufc = buf.(c) in
for i = 0 to len - 1 do
bufc.(i) <- ibuf.((chans * i) + c + ofs)
done
done;
buf
let append b1 ofs1 len1 b2 ofs2 len2 =
Array.mapi (fun i b -> Mono.append b ofs1 len2 b2.(i) ofs2 len1) b1
let clear = iter Mono.clear
let clip = iter Mono.clip
let noise = iter Mono.noise
let copy b ofs len =
Array.init (Array.length b) (fun i -> Mono.copy b.(i) ofs len)
let blit b1 ofs1 b2 ofs2 len =
Array.iteri (fun i b -> Mono.blit b ofs1 b2.(i) ofs2 len) b1
let sub b ofs len = Array.map (fun b -> Array.sub b ofs len) b
let squares data offset length =
Array.fold_left
(fun squares buf -> squares +. Mono.squares buf offset length)
0. data
let to_mono b ofs len =
let channels = channels b in
if channels = 1 then Array.sub b.(0) ofs len
else (
let chans = float channels in
let ans = Mono.create len in
Mono.clear ans 0 len;
for i = 0 to len - 1 do
for c = 0 to channels - 1 do
ans.(i) <- ans.(i) +. b.(c).(i + ofs)
done;
ans.(i) <- ans.(i) /. chans
done;
ans)
let of_mono b = [| b |]
let resample ?mode ratio data offset length =
Array.map (fun buf -> Mono.resample ?mode ratio buf offset length) data
let copy_from_ba ba buf ofs len =
Array.iteri (fun i b -> Mono.copy_from_ba ba.(i) b ofs len) buf
let copy_to_ba buf ofs len ba =
Array.iteri (fun i b -> Mono.copy_to_ba buf.(i) ofs len b) ba
let of_ba = Array.map Mono.of_ba
let to_ba buf ofs len = Array.map (fun b -> Mono.to_ba b ofs len) buf
module U8 = struct
let size channels samples = channels * samples
external of_audio : buffer -> int -> Bytes.t -> int -> int -> unit
= "caml_mm_audio_to_u8"
external to_audio : string -> int -> buffer -> int -> int -> unit
= "caml_mm_audio_of_u8"
end
external to_s16 : bool -> buffer -> int -> Bytes.t -> int -> int -> unit
= "caml_mm_audio_to_s16_byte" "caml_mm_audio_to_s16"
external convert_s16 : bool -> string -> int -> buffer -> int -> int -> unit
= "caml_mm_audio_convert_s16_byte" "caml_mm_audio_convert_s16"
module S16LE = struct
let size channels samples = channels * samples * 2
let length channels len = len / (2 * channels)
let of_audio = to_s16 true
let make buf ofs len =
let slen = size (channels buf) len in
let sbuf = Bytes.create slen in
of_audio buf ofs sbuf 0 len;
Bytes.unsafe_to_string sbuf
let to_audio = convert_s16 true
end
module S16BE = struct
let size channels samples = channels * samples * 2
let length channels len = len / (2 * channels)
let of_audio = to_s16 false
let make buf ofs len =
let slen = size (channels buf) len in
let sbuf = Bytes.create slen in
of_audio buf ofs sbuf 0 len;
Bytes.unsafe_to_string sbuf
let to_audio = convert_s16 false
end
module S24LE = struct
let size channels samples = channels * samples * 3
external of_audio : buffer -> int -> Bytes.t -> int -> int -> unit
= "caml_mm_audio_to_s24le"
external to_audio : string -> int -> buffer -> int -> int -> unit
= "caml_mm_audio_convert_s24le"
end
module S32LE = struct
let size channels samples = channels * samples * 4
external of_audio : buffer -> int -> Bytes.t -> int -> int -> unit
= "caml_mm_audio_to_s32le"
external to_audio : string -> int -> buffer -> int -> int -> unit
= "caml_mm_audio_convert_s32le"
end
let add b1 ofs1 b2 ofs2 len =
Array.iteri (fun i b -> Mono.add b ofs1 b2.(i) ofs2 len) b1
let add_coeff b1 ofs1 k b2 ofs2 len =
Array.iteri (fun i b -> Mono.add_coeff b ofs1 k b2.(i) ofs2 len) b1
let amplify k data offset length =
if k <> 1. then
Array.iter (fun data -> Mono.amplify k data offset length) data
let pan x buf offset length =
if x > 0. then (
let x = 1. -. x in
Mono.amplify x buf.(0) offset length)
else if x < 0. then (
let x = 1. +. x in
Mono.amplify x buf.(1) offset length)
module Buffer_ext = struct
type t = { mutable buffer : buffer }
let chans = channels
let prepare buf ?channels len =
match channels with
| Some channels when chans buf.buffer <> channels ->
let newbuf = create channels len in
buf.buffer <- newbuf;
newbuf
| _ ->
if length buf.buffer >= len then sub buf.buffer 0 len
else (
let oldbuf = buf.buffer in
let newbuf = create (chans oldbuf) len in
buf.buffer <- newbuf;
newbuf)
let create chans len = { buffer = create chans len }
end
module Ringbuffer = struct
type t = {
size : int;
buffer : buffer;
mutable rpos : int; (** current read position *)
mutable wpos : int; (** current write position *)
}
let create chans size =
{
size = size + 1;
buffer = create chans (size + 1);
rpos = 0;
wpos = 0;
}
let channels t = channels t.buffer
let read_space t =
if t.wpos >= t.rpos then t.wpos - t.rpos else t.size - (t.rpos - t.wpos)
let write_space t =
if t.wpos >= t.rpos then t.size - (t.wpos - t.rpos) - 1
else t.rpos - t.wpos - 1
let read_advance t n =
assert (n <= read_space t);
if t.rpos + n < t.size then t.rpos <- t.rpos + n
else t.rpos <- t.rpos + n - t.size
let write_advance t n =
assert (n <= write_space t);
if t.wpos + n < t.size then t.wpos <- t.wpos + n
else t.wpos <- t.wpos + n - t.size
let peek t buf =
let len = length buf in
assert (len <= read_space t);
let pre = t.size - t.rpos in
let = len - pre in
if extra > 0 then (
blit t.buffer t.rpos buf 0 pre;
blit t.buffer 0 buf pre extra)
else blit t.buffer t.rpos buf 0 len
let read t buf =
peek t buf;
read_advance t (length buf)
let write t buf =
let len = length buf in
assert (len <= write_space t);
let pre = t.size - t.wpos in
let = len - pre in
if extra > 0 then (
blit buf 0 t.buffer t.wpos pre;
blit buf pre t.buffer 0 extra)
else blit buf 0 t.buffer t.wpos len;
write_advance t len
let transmit t f =
if t.wpos = t.rpos then 0
else (
let len0 =
if t.wpos >= t.rpos then t.wpos - t.rpos else t.size - t.rpos
in
let len = f (sub t.buffer t.rpos len0) in
assert (len <= len0);
read_advance t len;
len)
end
module Ringbuffer_ext = struct
type t = { mutable ringbuffer : Ringbuffer.t }
let prepare buf len =
if Ringbuffer.write_space buf.ringbuffer >= len then buf.ringbuffer
else (
let rb =
Ringbuffer.create
(Ringbuffer.channels buf.ringbuffer)
(Ringbuffer.read_space buf.ringbuffer + len)
in
while Ringbuffer.read_space buf.ringbuffer <> 0 do
ignore
(Ringbuffer.transmit buf.ringbuffer (fun buf ->
Ringbuffer.write rb buf;
length buf))
done;
buf.ringbuffer <- rb;
rb)
let channels rb = Ringbuffer.channels rb.ringbuffer
let peek rb = Ringbuffer.peek rb.ringbuffer
let read rb = Ringbuffer.read rb.ringbuffer
let write rb buf =
let rb = prepare rb (length buf) in
Ringbuffer.write rb buf
let transmit rb = Ringbuffer.transmit rb.ringbuffer
let read_space rb = Ringbuffer.read_space rb.ringbuffer
let write_space rb = Ringbuffer.write_space rb.ringbuffer
let read_advance rb = Ringbuffer.read_advance rb.ringbuffer
let write_advance rb = Ringbuffer.write_advance rb.ringbuffer
let create chans len = { ringbuffer = Ringbuffer.create chans len }
end
module Analyze = struct
let rms buf ofs len =
Array.init (channels buf) (fun i -> Mono.Analyze.rms buf.(i) ofs len)
end
module Effect = struct
class type t =
object
method process : buffer -> int -> int -> unit
end
class chain (e1 : t) (e2 : t) =
object
method process buf ofs len =
e1#process buf ofs len;
e2#process buf ofs len
end
class of_mono chans (g : unit -> Mono.Effect.t) =
object
val g = Array.init chans (fun _ -> g ())
method process buf ofs len =
for c = 0 to chans - 1 do
g.(c)#process buf.(c) ofs len
done
end
class biquad_filter chans samplerate kind ?gain freq q =
of_mono
chans
(fun () ->
(new Mono.Effect.biquad_filter samplerate kind ?gain freq q
:> Mono.Effect.t))
class type delay_t =
object
inherit t
method set_delay : float -> unit
method set_feedback : float -> unit
end
class delay_only chans sample_rate delay =
let delay = int_of_float (float sample_rate *. delay) in
object
val mutable delay = delay
method set_delay d = delay <- int_of_float (float sample_rate *. d)
val rb = Ringbuffer_ext.create chans 0
initializer Ringbuffer_ext.write rb (create chans delay)
method process buf ofs len =
Ringbuffer_ext.write rb (sub buf ofs len);
Ringbuffer_ext.read rb (sub buf ofs len)
end
class delay chans sample_rate delay once feedback =
let delay = int_of_float (float sample_rate *. delay) in
object
val mutable delay = delay
method set_delay d = delay <- int_of_float (float sample_rate *. d)
val mutable feedback = feedback
method set_feedback f = feedback <- f
val rb = Ringbuffer_ext.create chans 0
val tmpbuf = Buffer_ext.create chans 0
method process buf ofs len =
if once then Ringbuffer_ext.write rb buf;
if Ringbuffer_ext.read_space rb < delay then
Ringbuffer_ext.write rb (create chans delay);
if Ringbuffer_ext.read_space rb > delay then
Ringbuffer_ext.read_advance rb (Ringbuffer_ext.read_space rb - delay);
if len > delay then add_coeff buf delay feedback buf ofs (len - delay);
let rlen = min delay len in
let tmpbuf = Buffer_ext.prepare tmpbuf rlen in
Ringbuffer_ext.read rb (sub tmpbuf 0 rlen);
add_coeff buf 0 feedback tmpbuf 0 rlen;
if not once then Ringbuffer_ext.write rb buf
end
class delay_ping_pong chans sample_rate delay once feedback =
let r1 = new delay_only 1 sample_rate delay in
let d1 = new delay 1 sample_rate (2. *. delay) once feedback in
let d1' = new chain (r1 :> t) (d1 :> t) in
let d2 = new delay 1 sample_rate (2. *. delay) once feedback in
object
initializer assert (chans = 2)
method set_delay d =
r1#set_delay d;
d1#set_delay (2. *. d);
d2#set_delay (2. *. d)
method set_feedback f =
d1#set_feedback f;
d2#set_feedback f
method process buf ofs len =
assert (channels buf = 2);
d1'#process [| buf.(0) |] ofs len;
d2#process [| buf.(1) |] ofs len
end
let delay chans sample_rate d ?(once = false) ?(ping_pong = false) feedback =
if ping_pong then new delay_ping_pong chans sample_rate d once feedback
else new delay chans sample_rate d once feedback
class compress ?(attack = 0.1) ?(release = 0.1) ?(threshold = -10.)
?(ratio = 3.) ?(knee = 1.) ?(rms_window = 0.1) ?(gain = 1.) chans samplerate
=
let rmsn = samples_of_seconds samplerate rms_window in
let samplerate = float samplerate in
object
val mutable attack = attack
method set_attack a = attack <- a
val mutable release = release
method set_release r = release <- r
val mutable threshold = threshold
method set_threshold t = threshold <- t
val mutable ratio = ratio
method set_ratio r = ratio <- r
val mutable knee = knee
method set_knee k = knee <- k
val mutable gain = gain
method set_gain g = gain <- g
val rmsv = Array.make rmsn 0.
val mutable rmsp = 0
val mutable rms = 0.
val mutable amp = 0.
val mutable env = 0.
val mutable g = 1.
method process (buf : buffer) ofs len =
let ratio = (ratio -. 1.) /. ratio in
let g_attack =
if attack = 0. then 0. else exp (-1. /. (samplerate *. attack))
in
let ef_a = g_attack *. 0.25 in
let g_release =
if release = 0. then 0. else exp (-1. /. (samplerate *. release))
in
let ef_ai = 1. -. ef_a in
let knee_min = lin_of_dB (threshold -. knee) in
let knee_max = lin_of_dB (threshold +. knee) in
for i = 0 to len - 1 do
let lev_in =
let ans = ref 0. in
for c = 0 to chans - 1 do
let x = buf.(c).(i + ofs) *. gain in
ans := !ans +. (x *. x)
done;
!ans /. float chans
in
rms <- rms -. rmsv.(rmsp) +. lev_in;
rms <- abs_float rms;
rmsv.(rmsp) <- lev_in;
rmsp <- (rmsp + 1) mod rmsn;
amp <- sqrt (rms /. float rmsn);
if amp > env then env <- (env *. g_attack) +. (amp *. (1. -. g_attack))
else env <- (env *. g_release) +. (amp *. (1. -. g_release));
let gain_t =
if env < knee_min then
1.
else if env < knee_max then (
let x = (knee +. dB_of_lin env -. threshold) /. (2. *. knee) in
lin_of_dB (0. -. (knee *. ratio *. x *. x)))
else
lin_of_dB ((threshold -. dB_of_lin env) *. ratio)
in
g <- (g *. ef_a) +. (gain_t *. ef_ai);
let g = g *. gain in
for c = 0 to chans - 1 do
buf.(c).(i + ofs) <- buf.(c).(i + ofs) *. g
done
done
method reset =
rms <- 0.;
rmsp <- 0;
for i = 0 to rmsn - 1 do
rmsv.(i) <- 0.
done;
g <- 1.;
env <- 0.;
amp <- 0.
end
class auto_gain_control channels samplerate rmst rms_len
kup
kdown
rms_threshold
vol_init vol_min
vol_max =
let rms_len = samples_of_seconds samplerate rms_len in
let rms_lenf = float rms_len in
let kup = kup ** seconds_of_samples samplerate rms_len in
let kdown = kdown ** seconds_of_samples samplerate rms_len in
object
(** Square of the currently computed rms. *)
val mutable rms = Array.make channels 0.
(** Number of samples collected so far. *)
val mutable rms_collected = 0
(** Current volume. *)
val mutable vol = vol_init
(** Previous value of volume. *)
val mutable vol_old = vol_init
(** Is it enabled? (disabled if below the threshold) *)
val mutable enabled = true
method process (buf : buffer) ofs len =
for c = 0 to channels - 1 do
let bufc = buf.(c) in
for i = 0 to len - 1 do
let bufci = bufc.(ofs + i) in
if rms_collected >= rms_len then (
let rms_cur =
let ans = ref 0. in
for c = 0 to channels - 1 do
ans := !ans +. rms.(c)
done;
sqrt (!ans /. float channels)
in
rms <- Array.make channels 0.;
rms_collected <- 0;
enabled <- rms_cur >= rms_threshold;
if enabled then (
let vol_opt = rmst /. rms_cur in
vol_old <- vol;
if rms_cur < rmst then vol <- vol +. (kup *. (vol_opt -. vol))
else vol <- vol +. (kdown *. (vol_opt -. vol));
vol <- max vol_min vol;
vol <- min vol_max vol));
rms.(c) <- rms.(c) +. (bufci *. bufci);
rms_collected <- rms_collected + 1;
bufc.(i) <-
(vol_old +. (float rms_collected /. rms_lenf *. (vol -. vol_old)))
*. bufci
done
done
end
let auto_gain_control channels samplerate ?(rms_target = 1.)
?(rms_window = 0.2) ?(kup = 0.6) ?(kdown = 0.8) ?(rms_threshold = 0.01)
?(volume_init = 1.) ?(volume_min = 0.1) ?(volume_max = 10.) () =
new auto_gain_control
channels samplerate rms_target rms_window kup kdown rms_threshold
volume_init volume_min volume_max
end
module Generator = struct
let white_noise buf ofs len =
for c = 0 to channels buf - 1 do
Mono.Generator.white_noise buf.(c) ofs len
done
class type t =
object
method set_volume : float -> unit
method set_frequency : float -> unit
method release : unit
method dead : bool
method fill : buffer -> int -> int -> unit
method fill_add : buffer -> int -> int -> unit
end
class of_mono (g : Mono.Generator.t) =
object
val tmpbuf = Mono.Buffer_ext.create 0
method set_volume = g#set_volume
method set_frequency = g#set_frequency
method fill buf ofs len =
g#fill buf.(0) ofs len;
for c = 1 to channels buf - 1 do
Mono.blit buf.(0) ofs buf.(c) ofs len
done
method fill_add (buf : buffer) ofs len =
let tmpbuf = Mono.Buffer_ext.prepare tmpbuf len in
g#fill tmpbuf 0 len;
for c = 0 to channels buf - 1 do
Mono.add buf.(c) ofs tmpbuf 0 len
done
method release = g#release
method dead = g#dead
end
class chain (g : t) (e : Effect.t) : t =
object
method fill buf ofs len =
g#fill buf ofs len;
e#process buf ofs len
val tmpbuf = Buffer_ext.create 0 0
method fill_add buf ofs len =
let tmpbuf = Buffer_ext.prepare tmpbuf ~channels:(channels buf) len in
g#fill tmpbuf 0 len;
add buf ofs tmpbuf 0 len
method set_volume = g#set_volume
method set_frequency = g#set_frequency
method release = g#release
method dead = g#dead
end
end
module IO = struct
exception Invalid_file
exception Invalid_operation
exception End_of_stream
module Reader = struct
class type t =
object
method channels : int
method sample_rate : int
method length : int
method duration : float
method seek : int -> unit
method close : unit
method read : buffer -> int -> int -> int
end
class virtual base =
object (self)
method virtual channels : int
method virtual sample_rate : int
method virtual length : int
method duration = float self#length /. float self#sample_rate
end
class virtual wav =
object (self)
inherit IO.helper
method virtual private stream_close : unit
method virtual private stream_seek : int -> unit
method virtual private stream_cur_pos : int
val mutable sample_rate = 0
val mutable channels = 0
val mutable sample_size = 0
val mutable bytes_per_sample = 0
val mutable length = 0
val mutable data_offset = 0
method sample_rate = sample_rate
method channels = channels
method length = length
initializer
if self#input 4 <> "RIFF" then
raise Invalid_file;
ignore (self#input 4);
if self#input 8 <> "WAVEfmt " then
raise Invalid_file;
ignore (self#really_input 6);
channels <- self#input_short;
sample_rate <- self#input_int;
ignore self#input_int;
ignore self#input_short;
sample_size <- self#input_short;
let section = self#really_input 4 in
if section <> "data" then (
if section = "INFO" then
raise Invalid_file;
raise Invalid_file);
let len_dat = self#input_int in
data_offset <- self#stream_cur_pos;
bytes_per_sample <- sample_size / 8 * channels;
length <- len_dat / bytes_per_sample
method read (buf : buffer) ofs len =
let sbuflen = len * channels * 2 in
let sbuf = self#input sbuflen in
let sbuflen = String.length sbuf in
let len = sbuflen / (channels * 2) in
begin
match sample_size with
| 16 -> S16LE.to_audio sbuf 0 buf ofs len
| 8 -> U8.to_audio sbuf 0 buf ofs len
| _ -> assert false
end;
len
method seek n =
let n = data_offset + (n * bytes_per_sample) in
self#stream_seek n
method close = self#stream_close
end
class of_wav_file fname =
object
inherit IO.Unix.rw ~read:true fname
inherit base
inherit wav
end
end
module Writer = struct
class type t =
object
method write : buffer -> int -> int -> unit
method close : unit
end
class virtual base chans sr =
object
method private channels : int = chans
method private sample_rate : int = sr
end
class virtual wav =
object (self)
inherit IO.helper
method virtual private stream_write : string -> int -> int -> int
method virtual private stream_seek : int -> unit
method virtual private stream_close : unit
method virtual private channels : int
method virtual private sample_rate : int
initializer
let bits_per_sample = 16 in
self#output "RIFF";
self#output_int 0;
self#output "WAVE";
self#output "fmt ";
self#output_int 16;
self#output_short 1;
self#output_short self#channels;
self#output_int self#sample_rate;
self#output_int (self#sample_rate * self#channels * bits_per_sample / 8);
self#output_short (self#channels * bits_per_sample / 8);
self#output_short bits_per_sample;
self#output "data";
self#output_short 0xffff;
self#output_short 0xffff
val mutable datalen = 0
method write buf ofs len =
let s = S16LE.make buf ofs len in
self#output s;
datalen <- datalen + String.length s
method close =
self#stream_seek 4;
self#output_int (36 + datalen);
self#stream_seek 40;
self#output_int datalen;
self#stream_close
end
class to_wav_file chans sr fname =
object
inherit base chans sr
inherit IO.Unix.rw ~write:true fname
inherit wav
end
end
module RW = struct
class type t =
object
method read : buffer -> int -> int -> unit
method write : buffer -> int -> int -> unit
method close : unit
end
class virtual bufferized channels ~min_duration ~fill_duration ~max_duration
~drop_duration =
object
method virtual io_read : buffer -> unit
method virtual io_write : buffer -> unit
initializer
assert (fill_duration <= max_duration);
assert (drop_duration <= max_duration)
val rb = Ringbuffer.create channels max_duration
method read buf =
let len = length buf in
let rs = Ringbuffer.read_space rb in
if rs < min_duration + len then (
let ps = min_duration + len - rs in
Ringbuffer.write rb (create channels ps));
Ringbuffer.read rb buf
method write buf =
let len = length buf in
let ws = Ringbuffer.write_space rb in
if ws + len > max_duration then
Ringbuffer.read_advance rb (ws - drop_duration);
Ringbuffer.write rb buf
end
end
end