package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.ocaml_typing/typedecl.ml.html
Source file typedecl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (**** Typing of type definitions ****) open Misc open Asttypes open Parsetree open Primitive open Types open Typetexp module String = Misc.String type native_repr_kind = Unboxed | Untagged (* Our static analyses explore the set of type expressions "reachable" from a type declaration, by expansion of definitions or by the subterm relation (a type expression is syntactically contained in another). *) type reaching_type_path = reaching_type_step list and reaching_type_step = | Expands_to of type_expr * type_expr | Contains of type_expr * type_expr type error = Repeated_parameter | Duplicate_constructor of string | Too_many_constructors | Duplicate_label of string | Recursive_abbrev of string * Env.t * reaching_type_path | Cycle_in_def of string * Env.t * reaching_type_path | Definition_mismatch of type_expr * Env.t * Includecore.type_mismatch option | Constraint_failed of Env.t * Errortrace.unification_error | Inconsistent_constraint of Env.t * Errortrace.unification_error | Type_clash of Env.t * Errortrace.unification_error | Non_regular of { definition: Path.t; used_as: type_expr; defined_as: type_expr; reaching_path: reaching_type_path; } | Null_arity_external | Missing_native_external | Unbound_type_var of type_expr * type_declaration | Cannot_extend_private_type of Path.t | Not_extensible_type of Path.t | Extension_mismatch of Path.t * Env.t * Includecore.type_mismatch | Rebind_wrong_type of Longident.t * Env.t * Errortrace.unification_error | Rebind_mismatch of Longident.t * Path.t * Path.t | Rebind_private of Longident.t | Variance of Typedecl_variance.error | Unbound_type_var_ext of type_expr * extension_constructor | Val_in_structure | Multiple_native_repr_attributes | Cannot_unbox_or_untag_type of native_repr_kind | Deep_unbox_or_untag_attribute of native_repr_kind | Immediacy of Typedecl_immediacy.error | Separability of Typedecl_separability.error | Bad_unboxed_attribute of string | Boxed_and_unboxed | Nonrec_gadt | Invalid_private_row_declaration of type_expr open Typedtree exception Error of Location.t * error let get_unboxed_from_attributes sdecl = let unboxed = Builtin_attributes.has_unboxed sdecl.ptype_attributes in let boxed = Builtin_attributes.has_boxed sdecl.ptype_attributes in match boxed, unboxed with | true, true -> raise (Error(sdecl.ptype_loc, Boxed_and_unboxed)) | true, false -> Some false | false, true -> Some true | false, false -> None (* Enter all declared types in the environment as abstract types *) let add_type ~long_path ~check ?shape id decl env = Builtin_attributes.warning_scope ~ppwarning:false decl.type_attributes (fun () -> match long_path with | true -> Env.add_type_long_path ~check ?shape id decl env | false -> Env.add_type ~check ?shape id decl env) (* Add a dummy type declaration to the environment, with the given arity. The [type_kind] is [Type_abstract], but there is a generic [type_manifest] for abbreviations, to allow polymorphic expansion, except if [abstract_abbrevs] is given along with a reason for not allowing expansion. This function is only used in [transl_type_decl]. *) let enter_type ?abstract_abbrevs rec_flag env sdecl (id, uid) = let needed = match rec_flag with | Asttypes.Nonrecursive -> begin match sdecl.ptype_kind with | Ptype_variant scds -> List.iter (fun cd -> if cd.pcd_res <> None then raise (Error(cd.pcd_loc, Nonrec_gadt))) scds | _ -> () end; Btype.is_row_name (Ident.name id) | Asttypes.Recursive -> true in let arity = List.length sdecl.ptype_params in if not needed then env else let abstract_source, type_manifest = match sdecl.ptype_manifest, abstract_abbrevs with | None, _ -> Definition, None | Some _, None -> Definition, Some (Ctype.newvar ()) | Some _, Some reason -> reason, None in let decl = { type_params = List.map (fun _ -> Btype.newgenvar ()) sdecl.ptype_params; type_arity = arity; type_kind = Type_abstract abstract_source; type_private = sdecl.ptype_private; type_manifest = type_manifest; type_variance = Variance.unknown_signature ~injective:false ~arity; type_separability = Types.Separability.default_signature ~arity; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = sdecl.ptype_loc; type_attributes = sdecl.ptype_attributes; type_immediate = Unknown; type_unboxed_default = false; type_uid = uid; } in add_type ~long_path:true ~check:true id decl env (* Determine if a type's values are represented by floats at run-time. *) let is_float env ty = match Typedecl_unboxed.get_unboxed_type_representation env ty with Some ty' -> begin match get_desc ty' with Tconstr(p, _, _) -> Path.same p Predef.path_float | _ -> false end | _ -> false (* Determine if a type definition defines a fixed type. (PW) *) let is_fixed_type sd = let rec has_row_var sty = match sty.ptyp_desc with Ptyp_alias (sty, _) -> has_row_var sty | Ptyp_class _ | Ptyp_object (_, Open) | Ptyp_variant (_, Open, _) | Ptyp_variant (_, Closed, Some _) -> true | _ -> false in match sd.ptype_manifest with None -> false | Some sty -> sd.ptype_kind = Ptype_abstract && sd.ptype_private = Private && has_row_var sty (* Set the row variable to a fixed type in a private row type declaration. (e.g. [ type t = private [< `A | `B ] ] or [type u = private < .. > ]) Require [is_fixed_type decl] as a precondition *) let set_private_row env loc p decl = let tm = match decl.type_manifest with None -> assert false | Some t -> Ctype.expand_head env t in let rv = match get_desc tm with Tvariant row -> let Row {fields; more; closed; name} = row_repr row in set_type_desc tm (Tvariant (create_row ~fields ~more ~closed ~name ~fixed:(Some Fixed_private))); if Btype.static_row row then (* the syntax hinted at the existence of a row variable, but there is in fact no row variable to make private, e.g. [ type t = private [< `A > `A] ] *) raise (Error(loc, Invalid_private_row_declaration tm)) else more | Tobject (ty, _) -> let r = snd (Ctype.flatten_fields ty) in if not (Btype.is_Tvar r) then (* a syntactically open object was closed by a constraint *) raise (Error(loc, Invalid_private_row_declaration tm)); r | _ -> assert false in set_type_desc rv (Tconstr (p, decl.type_params, ref Mnil)) (* Translate one type declaration *) let make_params env params = let make_param (sty, v) = try (transl_type_param env sty, v) with Already_bound -> raise(Error(sty.ptyp_loc, Repeated_parameter)) in List.map make_param params let transl_labels env univars closed lbls = assert (lbls <> []); let all_labels = ref String.Set.empty in List.iter (fun {pld_name = {txt=name; loc}} -> if String.Set.mem name !all_labels then raise(Error(loc, Duplicate_label name)); all_labels := String.Set.add name !all_labels) lbls; let mk {pld_name=name;pld_mutable=mut;pld_type=arg;pld_loc=loc; pld_attributes=attrs} = Builtin_attributes.warning_scope attrs (fun () -> let arg = Ast_helper.Typ.force_poly arg in let cty = transl_simple_type env ?univars ~closed arg in {ld_id = Ident.create_local name.txt; ld_name = name; ld_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); ld_mutable = mut; ld_type = cty; ld_loc = loc; ld_attributes = attrs} ) in let lbls = List.map mk lbls in let lbls' = List.map (fun ld -> let ty = ld.ld_type.ctyp_type in let ty = match get_desc ty with Tpoly(t,[]) -> t | _ -> ty in {Types.ld_id = ld.ld_id; ld_mutable = ld.ld_mutable; ld_type = ty; ld_loc = ld.ld_loc; ld_attributes = ld.ld_attributes; ld_uid = ld.ld_uid; } ) lbls in lbls, lbls' let transl_constructor_arguments env univars closed = function | Pcstr_tuple l -> let l = List.map (transl_simple_type env ?univars ~closed) l in Types.Cstr_tuple (List.map (fun t -> t.ctyp_type) l), Cstr_tuple l | Pcstr_record l -> let lbls, lbls' = transl_labels env univars closed l in Types.Cstr_record lbls', Cstr_record lbls let make_constructor env loc type_path type_params svars sargs sret_type = match sret_type with | None -> let args, targs = transl_constructor_arguments env None true sargs in targs, None, args, None | Some sret_type -> (* if it's a generalized constructor we must first narrow and then widen so as to not introduce any new constraints *) (* narrow and widen are now invoked through wrap_type_variable_scope *) TyVarEnv.with_local_scope begin fun () -> let closed = svars <> [] in let targs, tret_type, args, ret_type, univars = Ctype.with_local_level_generalize_if closed begin fun () -> TyVarEnv.reset (); let univar_list = TyVarEnv.make_poly_univars (List.map (fun v -> v.txt) svars) in let univars = if closed then Some univar_list else None in let args, targs = transl_constructor_arguments env univars closed sargs in let tret_type = transl_simple_type env ?univars ~closed sret_type in let ret_type = tret_type.ctyp_type in (* TODO add back type_path as a parameter ? *) begin match get_desc ret_type with | Tconstr (p', _, _) when Path.same type_path p' -> () | _ -> let trace = (* Expansion is not helpful here -- the restriction on GADT return types is purely syntactic. (In the worst case, expansion produces gibberish.) *) [Ctype.unexpanded_diff ~got:ret_type ~expected:(Ctype.newconstr type_path type_params)] in raise (Error(sret_type.ptyp_loc, Constraint_failed( env, Errortrace.unification_error ~trace))) end; (targs, tret_type, args, ret_type, univar_list) end in if closed then begin ignore (TyVarEnv.instance_poly_univars env loc univars); let set_level t = Ctype.enforce_current_level env t in Btype.iter_type_expr_cstr_args set_level args; set_level ret_type end; targs, Some tret_type, args, Some ret_type end let shape_map_labels = List.fold_left (fun map { ld_id; ld_uid; _} -> Shape.Map.add_label map ld_id ld_uid) Shape.Map.empty let shape_map_cstrs = List.fold_left (fun map { cd_id; cd_uid; cd_args; _ } -> let cstr_shape_map = let label_decls = match cd_args with | Cstr_tuple _ -> [] | Cstr_record ldecls -> ldecls in shape_map_labels label_decls in Shape.Map.add_constr map cd_id @@ Shape.str ~uid:cd_uid cstr_shape_map) (Shape.Map.empty) let transl_declaration env sdecl (id, uid) = (* Bind type parameters *) TyVarEnv.reset(); let tparams = make_params env sdecl.ptype_params in let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in let cstrs = List.map (fun (sty, sty', loc) -> transl_simple_type env ~closed:false sty, transl_simple_type env ~closed:false sty', loc) sdecl.ptype_cstrs in let unboxed_attr = get_unboxed_from_attributes sdecl in begin match unboxed_attr with | (None | Some false) -> () | Some true -> let bad msg = raise(Error(sdecl.ptype_loc, Bad_unboxed_attribute msg)) in match sdecl.ptype_kind with | Ptype_abstract -> bad "it is abstract" | Ptype_open -> bad "extensible variant types cannot be unboxed" | Ptype_record fields -> begin match fields with | [] -> bad "it has no fields" | _::_::_ -> bad "it has more than one field" | [{pld_mutable = Mutable}] -> bad "it is mutable" | [{pld_mutable = Immutable}] -> () end | Ptype_variant constructors -> begin match constructors with | [] -> bad "it has no constructor" | (_::_::_) -> bad "it has more than one constructor" | [c] -> begin match c.pcd_args with | Pcstr_tuple [] -> bad "its constructor has no argument" | Pcstr_tuple (_::_::_) -> bad "its constructor has more than one argument" | Pcstr_tuple [_] -> () | Pcstr_record [] -> bad "its constructor has no fields" | Pcstr_record (_::_::_) -> bad "its constructor has more than one field" | Pcstr_record [{pld_mutable = Mutable}] -> bad "it is mutable" | Pcstr_record [{pld_mutable = Immutable}] -> () end end end; let unbox, unboxed_default = match sdecl.ptype_kind with | Ptype_variant [{pcd_args = Pcstr_tuple [_]; _}] | Ptype_variant [{pcd_args = Pcstr_record [{pld_mutable=Immutable; _}]; _}] | Ptype_record [{pld_mutable=Immutable; _}] -> Option.value unboxed_attr ~default:!Clflags.unboxed_types, Option.is_none unboxed_attr | _ -> false, false (* Not unboxable, mark as boxed *) in let (tkind, kind) = match sdecl.ptype_kind with | Ptype_abstract -> Ttype_abstract, Type_abstract Definition | Ptype_variant scstrs -> if List.exists (fun cstr -> cstr.pcd_res <> None) scstrs then begin match cstrs with [] -> () | (_,_,loc)::_ -> Location.prerr_warning loc Warnings.Constraint_on_gadt end; let all_constrs = ref String.Set.empty in List.iter (fun {pcd_name = {txt = name}} -> if String.Set.mem name !all_constrs then raise(Error(sdecl.ptype_loc, Duplicate_constructor name)); all_constrs := String.Set.add name !all_constrs) scstrs; if List.length (List.filter (fun cd -> cd.pcd_args <> Pcstr_tuple []) scstrs) > (Config.max_tag + 1) then raise(Error(sdecl.ptype_loc, Too_many_constructors)); let make_cstr scstr = let name = Ident.create_local scstr.pcd_name.txt in let targs, tret_type, args, ret_type = make_constructor env scstr.pcd_loc (Path.Pident id) params scstr.pcd_vars scstr.pcd_args scstr.pcd_res in let tcstr = { cd_id = name; cd_name = scstr.pcd_name; cd_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); cd_vars = scstr.pcd_vars; cd_args = targs; cd_res = tret_type; cd_loc = scstr.pcd_loc; cd_attributes = scstr.pcd_attributes } in let cstr = { Types.cd_id = name; cd_args = args; cd_res = ret_type; cd_loc = scstr.pcd_loc; cd_attributes = scstr.pcd_attributes; cd_uid = tcstr.cd_uid; } in tcstr, cstr in let make_cstr scstr = Builtin_attributes.warning_scope scstr.pcd_attributes (fun () -> make_cstr scstr) in let rep = if unbox then Variant_unboxed else Variant_regular in let tcstrs, cstrs = List.split (List.map make_cstr scstrs) in Ttype_variant tcstrs, Type_variant (cstrs, rep) | Ptype_record lbls -> let lbls, lbls' = transl_labels env None true lbls in let rep = if unbox then Record_unboxed false else if List.for_all (fun l -> is_float env l.Types.ld_type) lbls' then Record_float else Record_regular in Ttype_record lbls, Type_record(lbls', rep) | Ptype_open -> Ttype_open, Type_open in begin let (tman, man) = match sdecl.ptype_manifest with None -> None, None | Some sty -> let no_row = not (is_fixed_type sdecl) in let cty = transl_simple_type env ~closed:no_row sty in Some cty, Some cty.ctyp_type in let arity = List.length params in let decl = { type_params = params; type_arity = arity; type_kind = kind; type_private = sdecl.ptype_private; type_manifest = man; type_variance = Variance.unknown_signature ~injective:false ~arity; type_separability = Types.Separability.default_signature ~arity; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = sdecl.ptype_loc; type_attributes = sdecl.ptype_attributes; type_immediate = Unknown; type_unboxed_default = unboxed_default; type_uid = uid; } in (* Check constraints *) List.iter (fun (cty, cty', loc) -> let ty = cty.ctyp_type in let ty' = cty'.ctyp_type in try Ctype.unify env ty ty' with Ctype.Unify err -> raise(Error(loc, Inconsistent_constraint (env, err)))) cstrs; (* Add abstract row *) if is_fixed_type sdecl then begin let p, _ = try Env.find_type_by_name (Longident.Lident(Ident.name id ^ "#row")) env with Not_found -> assert false in set_private_row env sdecl.ptype_loc p decl end; let decl = { typ_id = id; typ_name = sdecl.ptype_name; typ_params = tparams; typ_type = decl; typ_cstrs = cstrs; typ_loc = sdecl.ptype_loc; typ_manifest = tman; typ_kind = tkind; typ_private = sdecl.ptype_private; typ_attributes = sdecl.ptype_attributes; } in let typ_shape = let uid = decl.typ_type.type_uid in match decl.typ_kind with | Ttype_variant cstrs -> Shape.str ~uid (shape_map_cstrs cstrs) | Ttype_record labels -> Shape.str ~uid (shape_map_labels labels) | Ttype_abstract | Ttype_open -> Shape.leaf uid in decl, typ_shape end (* Check that all constraints are enforced *) module TypeSet = Btype.TypeSet module TypeMap = Btype.TypeMap let rec check_constraints_rec env loc visited ty = if TypeSet.mem ty !visited then () else begin visited := TypeSet.add ty !visited; match get_desc ty with | Tconstr (path, args, _) -> let decl = try Env.find_type path env with Not_found -> raise (Error(loc, Unavailable_type_constructor path)) in let ty' = Ctype.newconstr path (Ctype.instance_list decl.type_params) in begin (* We don't expand the error trace because that produces types that *already* violate the constraints -- we need to report a problem with the unexpanded types, or we get errors that talk about the same type twice. This is generally true for constraint errors. *) try Ctype.matches ~expand_error_trace:false env ty ty' with Ctype.Matches_failure (env, err) -> raise (Error(loc, Constraint_failed (env, err))) end; List.iter (check_constraints_rec env loc visited) args | Tpoly (ty, tl) -> let _, ty = Ctype.instance_poly ~fixed:false tl ty in check_constraints_rec env loc visited ty | _ -> Btype.iter_type_expr (check_constraints_rec env loc visited) ty end let check_constraints_labels env visited l pl = let rec get_loc name = function [] -> assert false | pld :: tl -> if name = pld.pld_name.txt then pld.pld_type.ptyp_loc else get_loc name tl in List.iter (fun {Types.ld_id=name; ld_type=ty} -> check_constraints_rec env (get_loc (Ident.name name) pl) visited ty) l let check_constraints env sdecl (_, decl) = let visited = ref TypeSet.empty in List.iter2 (fun (sty, _) ty -> check_constraints_rec env sty.ptyp_loc visited ty) sdecl.ptype_params decl.type_params; begin match decl.type_kind with | Type_abstract _ -> () | Type_variant (l, _rep) -> let find_pl = function Ptype_variant pl -> pl | Ptype_record _ | Ptype_abstract | Ptype_open -> assert false in let pl = find_pl sdecl.ptype_kind in let pl_index = let foldf acc x = String.Map.add x.pcd_name.txt x acc in List.fold_left foldf String.Map.empty pl in List.iter (fun {Types.cd_id=name; cd_args; cd_res} -> let {pcd_args; pcd_res; _} = try String.Map.find (Ident.name name) pl_index with Not_found -> assert false in begin match cd_args, pcd_args with | Cstr_tuple tyl, Pcstr_tuple styl -> List.iter2 (fun sty ty -> check_constraints_rec env sty.ptyp_loc visited ty) styl tyl | Cstr_record tyl, Pcstr_record styl -> check_constraints_labels env visited tyl styl | _ -> assert false end; match pcd_res, cd_res with | Some sr, Some r -> check_constraints_rec env sr.ptyp_loc visited r | _ -> () ) l | Type_record (l, _) -> let find_pl = function Ptype_record pl -> pl | Ptype_variant _ | Ptype_abstract | Ptype_open -> assert false in let pl = find_pl sdecl.ptype_kind in check_constraints_labels env visited l pl | Type_open -> () end; begin match decl.type_manifest with | None -> () | Some ty -> let sty = match sdecl.ptype_manifest with Some sty -> sty | _ -> assert false in check_constraints_rec env sty.ptyp_loc visited ty end (* If both a variant/record definition and a type equation are given, need to check that the equation refers to a type of the same kind with the same constructors and labels. *) let check_coherence env loc dpath decl = match decl with { type_kind = (Type_variant _ | Type_record _| Type_open); type_manifest = Some ty } -> begin match get_desc ty with Tconstr(path, args, _) -> begin try let decl' = Env.find_type path env in let err = if List.length args <> List.length decl.type_params then Some Includecore.Arity else begin match Ctype.equal env false args decl.type_params with | exception Ctype.Equality err -> Some (Includecore.Constraint err) | () -> let subst = Subst.Unsafe.add_type_path dpath path Subst.identity in let decl = match Subst.Unsafe.type_declaration subst decl with | Ok decl -> decl | Error (Fcm_type_substituted_away _) -> (* no module type substitution in [subst] *) assert false in Includecore.type_declarations ~loc ~equality:true env ~mark:true (Path.last path) decl' dpath decl end in if err <> None then raise(Error(loc, Definition_mismatch (ty, env, err))) with Not_found -> raise(Error(loc, Unavailable_type_constructor path)) end | _ -> raise(Error(loc, Definition_mismatch (ty, env, None))) end | _ -> () let check_abbrev env sdecl (id, decl) = check_coherence env sdecl.ptype_loc (Path.Pident id) decl (* Note: Well-foundedness for OCaml types We want to guarantee that all cycles within OCaml types are "guarded". More precisely, we consider a reachability relation "[t] is reachable [guarded|unguarded] from [u]" defined as follows: - [t1, t2...] are reachable guarded from object types [< m1 : t1; m2 : t2; ... >] or polymorphic variants [[`A of t1 | `B of t2 | ...]]. - [t1, t2...] are reachable rectypes-guarded from [t1 -> t2], [t1 * t2 * ...], and all other built-in contractive type constructors. (By rectypes-guarded we mean: guarded if -rectypes is set, unguarded if it is not set.) - If [(t1, t2...) c] is a datatype (variant or record), then [t1, t2...] are reachable rectypes-guarded from it. - If [(t1, t2...) c] is an abstract type, then [t1, t2...] are reachable unguarded from it. - If [(t1, t2...) c] is an (expandable) abbreviation, then its expansion is reachable unguarded from it. Note that we do not define [t1, t2...] as reachable. - The relation is transitive and guardedness of a composition is the disjunction of each guardedness: if t1 is reachable from t2 and t2 is reachable from t3; then t1 is reachable guarded from t3 if t1 is guarded in t2 or t2 is guarded in t3, and reachable unguarded otherwise. A type [t] is not well-founded if and only if [t] is reachable unguarded in [t]. Notice that, in the case of datatypes, the arguments of a parametrized datatype are reachable (they must not contain recursive occurrences of the type), but the definition of the datatype is not defined as reachable. (* well-founded *) type t = Foo of u and u = t (* ill-founded *) type 'a t = Foo of 'a and u = u t > Error: The type abbreviation u is cyclic Indeed, in the second example [u] is reachable unguarded in [u t] -- its own definition. *) (* Note: Forms of ill-foundedness Several OCaml language constructs could introduce ill-founded types, and there are several distinct checks that forbid different sources of ill-foundedness. 1. Type aliases. (* well-founded *) type t = < x : 'a > as 'a (* ill-founded, unless -rectypes is used *) type t = (int * 'a) as 'a > Error: This alias is bound to type int * 'a > but is used as an instance of type 'a > The type variable 'a occurs inside int * 'a Ill-foundedness coming from type aliases is detected by the "occur check" used by our type unification algorithm. See typetexp.ml. 2. Type abbreviations. (* well-founded *) type t = < x : t > (* ill-founded, unless -rectypes is used *) type t = (int * t) > Error: The type abbreviation t is cyclic Ill-foundedness coming from type abbreviations is detected by [check_well_founded] below. 3. Recursive modules. (* well-founded *) module rec M : sig type t = < x : M.t > end = M (* ill-founded, unless -rectypes is used *) module rec M : sig type t = int * M.t end = M > Error: The definition of M.t contains a cycle: > int * M.t This is also checked by [check_well_founded] below, as called from [check_recmod_typedecl]. 4. Functor application A special case of (3) is that a type can be abstract in a functor definition, and be instantiated with an abbreviation in an application of the functor. This can introduce ill-foundedness, so functor applications must be checked by re-checking the type declarations of their result. module type T = sig type t end module Fix(F:(T -> T)) = struct (* this recursive definition is well-founded as F(Fixed).t contains no reachable type expression. *) module rec Fixed : T with type t = F(Fixed).t = F(Fixed) end (* well-founded *) Module M = Fix(functor (M:T) -> struct type t = < x : M.t > end) (* ill-founded *) module M = Fix(functor (M:T) -> struct type t = int * M.t end);; > Error: In the signature of this functor application: > The definition of Fixed.t contains a cycle: > F(Fixed).t *) (* Check that a type expression is well-founded: - if -rectypes is used, we must prevent non-contractive fixpoints ('a as 'a) - if -rectypes is not used, we only allow cycles in the type graph if they go through an object or polymorphic variant type *) let check_well_founded ~abs_env env loc path to_check visited ty0 = let rec check parents trace ty = if TypeSet.mem ty parents then begin (*Format.eprintf "@[%a@]@." Printtyp.raw_type_expr ty;*) let err = let reaching_path, rec_abbrev = (* The reaching trace is accumulated in reverse order, we reverse it to get a reaching path. *) match trace with | [] -> assert false | Expands_to (ty1, _) :: trace when (match get_desc ty1 with Tconstr (p,_,_) -> Path.same p path | _ -> false) -> List.rev trace, true | trace -> List.rev trace, false in if rec_abbrev then Recursive_abbrev (Path.name path, abs_env, reaching_path) else Cycle_in_def (Path.name path, abs_env, reaching_path) in raise (Error (loc, err)) end; let (fini, parents) = try (* Map each node to the set of its already checked parents *) let prev = TypeMap.find ty !visited in if TypeSet.subset parents prev then (true, parents) else let parents = TypeSet.union parents prev in visited := TypeMap.add ty parents !visited; (false, parents) with Not_found -> visited := TypeMap.add ty parents !visited; (false, parents) in if fini then () else let rec_ok = match get_desc ty with | Tconstr(p,_,_) -> !Clflags.recursive_types && Ctype.is_contractive env p | Tobject _ | Tvariant _ -> true | _ -> !Clflags.recursive_types in if rec_ok then () else let parents = TypeSet.add ty parents in match get_desc ty with | Tconstr(p, tyl, _) -> let to_check = to_check p in if to_check then List.iter (check_subtype parents trace ty) tyl; begin match Ctype.try_expand_once_opt env ty with | ty' -> check parents (Expands_to (ty, ty') :: trace) ty' | exception Ctype.Cannot_expand -> if not to_check then List.iter (check_subtype parents trace ty) tyl end | _ -> Btype.iter_type_expr (check_subtype parents trace ty) ty and check_subtype parents trace outer_ty inner_ty = check parents (Contains (outer_ty, inner_ty) :: trace) inner_ty in let snap = Btype.snapshot () in try Ctype.wrap_trace_gadt_instances env (check TypeSet.empty []) ty0 with Ctype.Escape _ -> (* Will be detected by check_regularity *) Btype.backtrack snap let check_well_founded_manifest ~abs_env env loc path decl = if decl.type_manifest = None then () else let args = List.map (fun _ -> Ctype.newvar()) decl.type_params in let visited = ref TypeMap.empty in check_well_founded ~abs_env env loc path (Path.same path) visited (Ctype.newconstr path args) (* Given a new type declaration [type t = ...] (potentially mutually-recursive), we check that accepting the declaration does not introduce ill-founded types. Note: we check that the types at the toplevel of the declaration are not reachable unguarded from themselves, that is, we check that there is no cycle going through the "root" of the declaration. But we *also* check that all the type sub-expressions reachable from the root even those that are guarded, are themselves well-founded. (So we check the absence of cycles, even for cycles going through inner type subexpressions but not the root. We are not actually sure that this "deep check" is necessary (we don't have an example at hand where it is necessary), but we are doing it anyway out of caution. *) let check_well_founded_decl ~abs_env env loc path decl to_check = let open Btype in (* We iterate on all subexpressions of the declaration to check "in depth" that no ill-founded type exists. *) with_type_mark begin fun mark -> let super = type_iterators mark in let visited = (* [visited] remembers the inner visits performed by [check_well_founded] on each type expression reachable from this declaration. This avoids unnecessary duplication of [check_well_founded] work when invoked on two parts of the type declaration that have common subexpressions. *) ref TypeMap.empty in let it = {super with it_do_type_expr = (fun self ty -> check_well_founded ~abs_env env loc path to_check visited ty; super.it_do_type_expr self ty )} in it.it_type_declaration it (Ctype.generic_instance_declaration decl) end (* Check for non-regular abbreviations; an abbreviation [type 'a t = ...] is non-regular if the expansion of [...] contains instances [ty t] where [ty] is not equal to ['a]. Note: in the case of a constrained type definition [type 'a t = ... constraint 'a = ...], we require that all instances in [...] be equal to the constrained type. *) let check_regularity ~abs_env env loc path decl to_check = (* to_check is true for potentially mutually recursive paths. (path, decl) is the type declaration to be checked. *) if decl.type_params = [] then () else let visited = ref TypeSet.empty in let rec check_regular cpath args prev_exp trace ty = if not (TypeSet.mem ty !visited) then begin visited := TypeSet.add ty !visited; match get_desc ty with | Tconstr(path', args', _) -> if Path.same path path' then begin if not (Ctype.is_equal abs_env false args args') then raise (Error(loc, Non_regular { definition=path; used_as=ty; defined_as=Ctype.newconstr path args; reaching_path=List.rev trace; })) end (* Attempt to expand a type abbreviation if: 1- [to_check path'] holds (otherwise the expansion cannot involve [path]); 2- we haven't expanded this type constructor before (otherwise we could loop if [path'] is itself a non-regular abbreviation). *) else if to_check path' && not (List.mem path' prev_exp) then begin try (* Attempt expansion *) let (params0, body0, _) = Env.find_type_expansion path' env in let (params, body) = Ctype.instance_parameterized_type params0 body0 in begin try List.iter2 (Ctype.unify abs_env) args' params with Ctype.Unify err -> raise (Error(loc, Constraint_failed (abs_env, err))); end; check_regular path' args (path' :: prev_exp) (Expands_to (ty,body) :: trace) body with Not_found -> () end; List.iter (check_subtype cpath args prev_exp trace ty) args' | Tpoly (ty, tl) -> let (_, ty) = Ctype.instance_poly ~keep_names:true ~fixed:false tl ty in check_regular cpath args prev_exp trace ty | _ -> Btype.iter_type_expr (check_subtype cpath args prev_exp trace ty) ty end and check_subtype cpath args prev_exp trace outer_ty inner_ty = let trace = Contains (outer_ty, inner_ty) :: trace in check_regular cpath args prev_exp trace inner_ty in Option.iter (fun body -> let (args, body) = Ctype.instance_parameterized_type ~keep_names:true decl.type_params body in List.iter (check_regular path args [] []) args; check_regular path args [] [] body) decl.type_manifest let check_abbrev_regularity ~abs_env env id_loc_list to_check tdecl = let decl = tdecl.typ_type in let id = tdecl.typ_id in check_regularity ~abs_env env (List.assoc id id_loc_list) (Path.Pident id) decl to_check let check_duplicates sdecl_list = let labels = Hashtbl.create 7 and constrs = Hashtbl.create 7 in List.iter (fun sdecl -> match sdecl.ptype_kind with Ptype_variant cl -> List.iter (fun pcd -> try let name' = Hashtbl.find constrs pcd.pcd_name.txt in Location.prerr_warning pcd.pcd_loc (Warnings.Duplicate_definitions ("constructor", pcd.pcd_name.txt, name', sdecl.ptype_name.txt)) with Not_found -> Hashtbl.add constrs pcd.pcd_name.txt sdecl.ptype_name.txt) cl | Ptype_record fl -> List.iter (fun {pld_name=cname;pld_loc=loc} -> try let name' = Hashtbl.find labels cname.txt in Location.prerr_warning loc (Warnings.Duplicate_definitions ("label", cname.txt, name', sdecl.ptype_name.txt)) with Not_found -> Hashtbl.add labels cname.txt sdecl.ptype_name.txt) fl | Ptype_abstract -> () | Ptype_open -> ()) sdecl_list (* Force recursion to go through id for private types*) let name_recursion sdecl id decl = match decl with | { type_kind = Type_abstract _; type_manifest = Some ty; type_private = Private; } when is_fixed_type sdecl -> let ty' = Btype.newty2 ~level:(get_level ty) (get_desc ty) in if Ctype.deep_occur ty ty' then let td = Tconstr(Path.Pident id, decl.type_params, ref Mnil) in link_type ty (Btype.newty2 ~level:(get_level ty) td); {decl with type_manifest = Some ty'} else decl | _ -> decl let name_recursion_decls sdecls decls = List.map2 (fun sdecl (id, decl) -> (id, name_recursion sdecl id decl)) sdecls decls (* Warn on definitions of type "type foo = ()" which redefine a different unit type and are likely a mistake. *) let check_redefined_unit (td: Parsetree.type_declaration) = let open Parsetree in let is_unit_constructor cd = cd.pcd_name.txt = "()" in match td with | { ptype_name = { txt = name }; ptype_manifest = None; ptype_kind = Ptype_variant [ cd ] } when is_unit_constructor cd -> Location.prerr_warning td.ptype_loc (Warnings.Redefining_unit name) | _ -> () (* Update a temporary definition to share recursion *) let update_type temp_env env id loc = let path = Path.Pident id in let decl = Env.find_type path temp_env in match decl.type_manifest with None -> () | Some ty -> (* Since this function is called after generalizing declarations, ty is at the generic level. Since we need to keep possible sharings in recursive type definitions, unify without instantiating, but generalize again after unification. *) Ctype.with_local_level_generalize begin fun () -> let params = List.map (fun _ -> Ctype.newvar ()) decl.type_params in try Ctype.unify env (Ctype.newconstr path params) ty with Ctype.Unify err -> raise (Error(loc, Type_clash (env, err))) end let add_types_to_env decls shapes env = List.fold_right2 (fun (id, decl) shape env -> add_type ~long_path:false ~check:true ~shape id decl env) decls shapes env (* Translate a set of type declarations, mutually recursive or not *) let transl_type_decl env rec_flag sdecl_list = List.iter check_redefined_unit sdecl_list; (* Add dummy types for fixed rows *) let fixed_types = List.filter is_fixed_type sdecl_list in let sdecl_list = List.map (fun sdecl -> let ptype_name = let loc = { sdecl.ptype_name.loc with Location.loc_ghost = true } in mkloc (sdecl.ptype_name.txt ^"#row") loc in let ptype_kind = Ptype_abstract in let ptype_manifest = None in let ptype_loc = { sdecl.ptype_loc with Location.loc_ghost = true } in {sdecl with ptype_name; ptype_kind; ptype_manifest; ptype_loc }) fixed_types @ sdecl_list in (* Create identifiers. *) let scope = Ctype.create_scope () in let ids_list = List.map (fun sdecl -> Ident.create_scoped ~scope sdecl.ptype_name.txt, Uid.mk ~current_unit:(Env.get_current_unit ()) ) sdecl_list in (* Translate declarations, using a temporary environment where abbreviations expand to a generic type variable. After that, we check the coherence of the translated declarations in the resulting new environment. *) let tdecls, decls, shapes, temp_env, new_env = Ctype.with_local_level_generalize begin fun () -> (* Enter types. *) let temp_env = List.fold_left2 (enter_type rec_flag) env sdecl_list ids_list in (* Translate each declaration. *) let current_slot = ref None in let warn_unused = Warnings.is_active (Warnings.Unused_type_declaration "") in let ids_slots (id, _uid as ids) = match rec_flag with | Asttypes.Recursive when warn_unused -> (* See typecore.ml for a description of the algorithm used to detect unused declarations in a set of recursive definitions. *) let slot = ref [] in let td = Env.find_type (Path.Pident id) temp_env in Env.set_type_used_callback td (fun old_callback -> match !current_slot with | Some slot -> slot := td.type_uid :: !slot | None -> List.iter Env.mark_type_used (get_ref slot); old_callback () ); ids, Some slot | Asttypes.Recursive | Asttypes.Nonrecursive -> ids, None in let transl_declaration name_sdecl (id, slot) = current_slot := slot; Builtin_attributes.warning_scope name_sdecl.ptype_attributes (fun () -> transl_declaration temp_env name_sdecl id) in let tdecls = List.map2 transl_declaration sdecl_list (List.map ids_slots ids_list) in let decls, shapes = List.map (fun (tdecl, shape) -> (tdecl.typ_id, tdecl.typ_type), shape) tdecls |> List.split in current_slot := None; (* Check for duplicates *) check_duplicates sdecl_list; (* Build the final env. *) let new_env = add_types_to_env decls shapes env in (tdecls, decls, shapes, temp_env, new_env) end in (* Check for ill-formed abbrevs *) let id_loc_list = List.map2 (fun (id, _) sdecl -> (id, sdecl.ptype_loc)) ids_list sdecl_list in (* [check_abbrev_regularity] and error messages cannot use the new environment, as this might result in non-termination. Instead we use a completely abstract version of the temporary environment, giving a reason for why abbreviations cannot be expanded (#12334, #12368) *) let abs_env = List.fold_left2 (enter_type ~abstract_abbrevs:Rec_check_regularity rec_flag) env sdecl_list ids_list in List.iter (fun (id, decl) -> check_well_founded_manifest ~abs_env new_env (List.assoc id id_loc_list) (Path.Pident id) decl) decls; let to_check = function Path.Pident id -> List.mem_assoc id id_loc_list | _ -> false in List.iter (fun (id, decl) -> check_well_founded_decl ~abs_env new_env (List.assoc id id_loc_list) (Path.Pident id) decl to_check) decls; List.iter (fun (tdecl, _shape) -> check_abbrev_regularity ~abs_env new_env id_loc_list to_check tdecl) tdecls; (* Update temporary definitions (for well-founded recursive types) *) begin match rec_flag with | Asttypes.Nonrecursive -> () | Asttypes.Recursive -> List.iter2 (fun (id, _) sdecl -> update_type temp_env new_env id sdecl.ptype_loc) ids_list sdecl_list end; (* Check that all type variables are closed *) List.iter2 (fun sdecl (tdecl, _shape) -> let decl = tdecl.typ_type in match Ctype.closed_type_decl decl with Some ty -> if not (Msupport.erroneous_type_check ty) then raise(Error(sdecl.ptype_loc, Unbound_type_var(ty,decl))) | None -> ()) sdecl_list tdecls; (* Check that constraints are enforced *) List.iter2 (check_constraints new_env) sdecl_list decls; (* Add type properties to declarations *) let decls = try decls |> name_recursion_decls sdecl_list |> Typedecl_variance.update_decls env sdecl_list |> Typedecl_immediacy.update_decls env |> Typedecl_separability.update_decls env with | Typedecl_variance.Error (loc, err) -> raise (Error (loc, Variance err)) | Typedecl_immediacy.Error (loc, err) -> raise (Error (loc, Immediacy err)) | Typedecl_separability.Error (loc, err) -> raise (Error (loc, Separability err)) in (* Compute the final environment with variance and immediacy *) let final_env = add_types_to_env decls shapes env in (* Check re-exportation *) List.iter2 (check_abbrev final_env) sdecl_list decls; (* Keep original declaration *) let final_decls = List.map2 (fun (tdecl, _shape) (_id2, decl) -> { tdecl with typ_type = decl } ) tdecls decls in (* Done *) (final_decls, final_env, shapes) (* Translating type extensions *) let transl_extension_constructor ~scope env type_path type_params typext_params priv sext = let id = Ident.create_scoped ~scope sext.pext_name.txt in let args, ret_type, kind = match sext.pext_kind with Pext_decl(svars, sargs, sret_type) -> let targs, tret_type, args, ret_type = make_constructor env sext.pext_loc type_path typext_params svars sargs sret_type in args, ret_type, Text_decl(svars, targs, tret_type) | Pext_rebind lid -> let usage : Env.constructor_usage = if priv = Public then Env.Exported else Env.Exported_private in let cdescr = Env.lookup_constructor ~loc:lid.loc usage lid.txt env in let (args, cstr_res, _ex) = Ctype.instance_constructor Keep_existentials_flexible cdescr in let res, ret_type = if cdescr.cstr_generalized then let params = Ctype.instance_list type_params in let res = Ctype.newconstr type_path params in let ret_type = Some (Ctype.newconstr type_path params) in res, ret_type else (Ctype.newconstr type_path typext_params), None in begin try Ctype.unify env cstr_res res with Ctype.Unify err -> raise (Error(lid.loc, Rebind_wrong_type(lid.txt, env, err))) end; (* Remove "_" names from parameters used in the constructor *) if not cdescr.cstr_generalized then begin let vars = Ctype.free_variables (Btype.newgenty (Ttuple args)) in List.iter (fun ty -> if get_desc ty = Tvar (Some "_") && List.exists (eq_type ty) vars then set_type_desc ty (Tvar None)) typext_params end; (* Ensure that constructor's type matches the type being extended *) let cstr_type_path = Btype.cstr_type_path cdescr in let cstr_type_params = (Env.find_type cstr_type_path env).type_params in let cstr_types = (Btype.newgenty (Tconstr(cstr_type_path, cstr_type_params, ref Mnil))) :: cstr_type_params in let ext_types = (Btype.newgenty (Tconstr(type_path, type_params, ref Mnil))) :: type_params in if not (Ctype.is_equal env true cstr_types ext_types) then raise (Error(lid.loc, Rebind_mismatch(lid.txt, cstr_type_path, type_path))); (* Disallow rebinding private constructors to non-private *) begin match cdescr.cstr_private, priv with Private, Public -> raise (Error(lid.loc, Rebind_private lid.txt)) | _ -> () end; let path = match cdescr.cstr_tag with Cstr_extension(path, _) -> path | _ -> assert false in let args = match cdescr.cstr_inlined with | None -> Types.Cstr_tuple args | Some decl -> let tl = match List.map get_desc args with | [ Tconstr(_, tl, _) ] -> tl | _ -> assert false in let decl = Ctype.instance_declaration decl in assert (List.length decl.type_params = List.length tl); List.iter2 (Ctype.unify env) decl.type_params tl; let lbls = match decl.type_kind with | Type_record (lbls, Record_extension _) -> lbls | _ -> assert false in Types.Cstr_record lbls in args, ret_type, Text_rebind(path, lid) in let ext = { ext_type_path = type_path; ext_type_params = typext_params; ext_args = args; ext_ret_type = ret_type; ext_private = priv; Types.ext_loc = sext.pext_loc; Types.ext_attributes = sext.pext_attributes; ext_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } in let ext_cstrs = { ext_id = id; ext_name = sext.pext_name; ext_type = ext; ext_kind = kind; Typedtree.ext_loc = sext.pext_loc; Typedtree.ext_attributes = sext.pext_attributes; } in let shape = let map = match ext_cstrs.ext_kind with | Text_decl (_, Cstr_record lbls, _) -> shape_map_labels lbls | _ -> Shape.Map.empty in Shape.str ~uid:ext_cstrs.ext_type.ext_uid map in ext_cstrs, shape let transl_extension_constructor ~scope env type_path type_params typext_params priv sext = Builtin_attributes.warning_scope sext.pext_attributes (fun () -> transl_extension_constructor ~scope env type_path type_params typext_params priv sext) let is_rebind ext = match ext.ext_kind with | Text_rebind _ -> true | Text_decl _ -> false let transl_type_extension extend env loc styext = let type_path, type_decl = let lid = styext.ptyext_path in Env.lookup_type ~loc:lid.loc lid.txt env in begin match type_decl.type_kind with | Type_open -> begin match type_decl.type_private with | Private when extend -> begin match List.find (function {pext_kind = Pext_decl _} -> true | {pext_kind = Pext_rebind _} -> false) styext.ptyext_constructors with | {pext_loc} -> raise (Error(pext_loc, Cannot_extend_private_type type_path)) | exception Not_found -> () end | _ -> () end | _ -> raise (Error(loc, Not_extensible_type type_path)) end; let type_variance = List.map (fun v -> let (co, cn) = Variance.get_upper v in (not cn, not co, false)) type_decl.type_variance in let err = if type_decl.type_arity <> List.length styext.ptyext_params then Some Includecore.Arity else if List.for_all2 (fun (c1, n1, _) (c2, n2, _) -> (not c2 || c1) && (not n2 || n1)) type_variance (Typedecl_variance.variance_of_params styext.ptyext_params) then None else Some Includecore.Variance in begin match err with | None -> () | Some err -> raise (Error(loc, Extension_mismatch (type_path, env, err))) end; let ttype_params, _type_params, constructors = (* Note: it would be incorrect to call [create_scope] *after* [TyVarEnv.reset] or after [with_local_level] (see #10010). *) let scope = Ctype.create_scope () in Ctype.with_local_level_generalize begin fun () -> TyVarEnv.reset(); let ttype_params = make_params env styext.ptyext_params in let type_params = List.map (fun (cty, _) -> cty.ctyp_type) ttype_params in List.iter2 (Ctype.unify_var env) (Ctype.instance_list type_decl.type_params) type_params; let constructors = List.map (transl_extension_constructor ~scope env type_path type_decl.type_params type_params styext.ptyext_private) styext.ptyext_constructors in (ttype_params, type_params, constructors) end in (* Check that all type variables are closed *) List.iter (fun (ext, _shape) -> match Ctype.closed_extension_constructor ext.ext_type with Some ty -> raise(Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type))) | None -> ()) constructors; (* Check variances are correct *) List.iter (fun (ext, _shape) -> (* Note that [loc] here is distinct from [type_decl.type_loc], which makes the [loc] parameter to this function useful. [loc] is the location of the extension, while [type_decl] points to the original type declaration being extended. *) try Typedecl_variance.check_variance_extension env type_decl ext (type_variance, loc) with Typedecl_variance.Error (loc, err) -> raise (Error (loc, Variance err))) constructors; (* Add extension constructors to the environment *) let newenv = List.fold_left (fun env (ext, shape) -> let rebind = is_rebind ext in Env.add_extension ~check:true ~shape ~rebind ext.ext_id ext.ext_type env) env constructors in let constructors, shapes = List.split constructors in let tyext = { tyext_path = type_path; tyext_txt = styext.ptyext_path; tyext_params = ttype_params; tyext_constructors = constructors; tyext_private = styext.ptyext_private; tyext_loc = styext.ptyext_loc; tyext_attributes = styext.ptyext_attributes; } in (tyext, newenv, shapes) let transl_type_extension extend env loc styext = Builtin_attributes.warning_scope styext.ptyext_attributes (fun () -> transl_type_extension extend env loc styext) let transl_exception env sext = let ext, shape = let scope = Ctype.create_scope () in Ctype.with_local_level_generalize (fun () -> TyVarEnv.reset(); transl_extension_constructor ~scope env Predef.path_exn [] [] Asttypes.Public sext) in (* Check that all type variables are closed *) begin match Ctype.closed_extension_constructor ext.ext_type with Some ty -> raise (Error(ext.ext_loc, Unbound_type_var_ext(ty, ext.ext_type))) | None -> () end; let rebind = is_rebind ext in let newenv = Env.add_extension ~check:true ~shape ~rebind ext.ext_id ext.ext_type env in ext, newenv, shape let transl_type_exception env t = let contructor, newenv, shape = Builtin_attributes.warning_scope t.ptyexn_attributes (fun () -> transl_exception env t.ptyexn_constructor ) in {tyexn_constructor = contructor; tyexn_loc = t.ptyexn_loc; tyexn_attributes = t.ptyexn_attributes}, newenv, shape type native_repr_attribute = | Native_repr_attr_absent | Native_repr_attr_present of native_repr_kind let get_native_repr_attribute attrs ~global_repr = match Attr_helper.get_no_payload_attribute "unboxed" attrs, Attr_helper.get_no_payload_attribute "untagged" attrs, global_repr with | None, None, None -> Native_repr_attr_absent | None, None, Some repr -> Native_repr_attr_present repr | Some _, None, None -> Native_repr_attr_present Unboxed | None, Some _, None -> Native_repr_attr_present Untagged | Some { Location.loc }, _, _ | _, Some { Location.loc }, _ -> raise (Error (loc, Multiple_native_repr_attributes)) let native_repr_of_type env kind ty = match kind, get_desc (Ctype.expand_head_opt env ty) with | Untagged, Tconstr (_, _, _) when Typeopt.maybe_pointer_type env ty = Lambda.Immediate -> Some Untagged_immediate | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_float -> Some Unboxed_float | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_int32 -> Some (Unboxed_integer Pint32) | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_int64 -> Some (Unboxed_integer Pint64) | Unboxed, Tconstr (path, _, _) when Path.same path Predef.path_nativeint -> Some (Unboxed_integer Pnativeint) | _ -> None (* Raises an error when [core_type] contains an [@unboxed] or [@untagged] attribute in a strict sub-term. *) let error_if_has_deep_native_repr_attributes core_type = let open Ast_iterator in let this_iterator = { default_iterator with typ = fun iterator core_type -> begin match get_native_repr_attribute core_type.ptyp_attributes ~global_repr:None with | Native_repr_attr_present kind -> raise (Error (core_type.ptyp_loc, Deep_unbox_or_untag_attribute kind)) | Native_repr_attr_absent -> () end; default_iterator.typ iterator core_type } in default_iterator.typ this_iterator core_type let make_native_repr env core_type ty ~global_repr = error_if_has_deep_native_repr_attributes core_type; match get_native_repr_attribute core_type.ptyp_attributes ~global_repr with | Native_repr_attr_absent -> Same_as_ocaml_repr | Native_repr_attr_present kind -> begin match native_repr_of_type env kind ty with | None -> raise (Error (core_type.ptyp_loc, Cannot_unbox_or_untag_type kind)) | Some repr -> repr end let rec parse_native_repr_attributes env core_type ty ~global_repr = match core_type.ptyp_desc, get_desc ty, get_native_repr_attribute core_type.ptyp_attributes ~global_repr:None with | Ptyp_arrow _, Tarrow _, Native_repr_attr_present kind -> raise (Error (core_type.ptyp_loc, Cannot_unbox_or_untag_type kind)) | Ptyp_arrow (_, ct1, ct2), Tarrow (_, t1, t2, _), _ -> let repr_arg = make_native_repr env ct1 t1 ~global_repr in let repr_args, repr_res = parse_native_repr_attributes env ct2 t2 ~global_repr in (repr_arg :: repr_args, repr_res) | (Ptyp_poly (_, t) | Ptyp_alias (t, _)), _, _ -> parse_native_repr_attributes env t ty ~global_repr | Ptyp_arrow _, _, _ | _, Tarrow _, _ -> assert false | _ -> ([], make_native_repr env core_type ty ~global_repr) let check_unboxable env loc ty = let check_type acc ty : Path.Set.t = let ty = Ctype.expand_head_opt env ty in try match get_desc ty with | Tconstr (p, _, _) -> let tydecl = Env.find_type p env in if tydecl.type_unboxed_default then Path.Set.add p acc else acc | _ -> acc with Not_found -> acc in let all_unboxable_types = Btype.fold_type_expr check_type Path.Set.empty ty in Path.Set.fold (fun p () -> let p = Out_type.shorten_type_path env p in Location.prerr_warning loc (Warnings.Unboxable_type_in_prim_decl (Path.name p)) ) all_unboxable_types () (* Translate a value declaration *) let transl_value_decl env loc valdecl = let cty = Typetexp.transl_type_scheme env valdecl.pval_type in let ty = cty.ctyp_type in let v = match valdecl.pval_prim with [] when Env.is_in_signature env -> { val_type = ty; val_kind = Val_reg; Types.val_loc = loc; val_attributes = valdecl.pval_attributes; val_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } | [] -> raise (Error(valdecl.pval_loc, Val_in_structure)) | _ -> let global_repr = match get_native_repr_attribute valdecl.pval_attributes ~global_repr:None with | Native_repr_attr_present repr -> Some repr | Native_repr_attr_absent -> None in let native_repr_args, native_repr_res = parse_native_repr_attributes env valdecl.pval_type ty ~global_repr in let prim = Primitive.parse_declaration valdecl ~native_repr_args ~native_repr_res in (* if prim.prim_arity = 0 && (prim.prim_name = "" || prim.prim_name.[0] <> '%') then raise(Error(valdecl.pval_type.ptyp_loc, Null_arity_external)); *) if !Clflags.native_code && prim.prim_arity > 5 && prim.prim_native_name = "" then raise(Error(valdecl.pval_type.ptyp_loc, Missing_native_external)); check_unboxable env loc ty; { val_type = ty; val_kind = Val_prim prim; Types.val_loc = loc; val_attributes = valdecl.pval_attributes; val_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } in let (id, newenv) = Env.enter_value valdecl.pval_name.txt v env ~check:(fun s -> Warnings.Unused_value_declaration s) in let desc = { val_id = id; val_name = valdecl.pval_name; val_desc = cty; val_val = v; val_prim = valdecl.pval_prim; val_loc = valdecl.pval_loc; val_attributes = valdecl.pval_attributes; } in desc, newenv let transl_value_decl env loc valdecl = Builtin_attributes.warning_scope valdecl.pval_attributes (fun () -> transl_value_decl env loc valdecl) (* Translate a "with" constraint -- much simplified version of transl_type_decl. For a constraint [Sig with t = sdecl], there are two declarations of interest in two environments: - [sig_decl] is the declaration of [t] in [Sig], in the environment [sig_env] (containing the declarations of [Sig] before [t]) - [sdecl] is the new syntactic declaration, to be type-checked in the current, outer environment [with_env]. In particular, note that [sig_env] is an extension of [outer_env]. *) let transl_with_constraint id ?fixed_row_path ~sig_env ~sig_decl ~outer_env sdecl = Env.mark_type_used sig_decl.type_uid; Ctype.with_local_level_generalize begin fun () -> TyVarEnv.reset(); (* In the first part of this function, we typecheck the syntactic declaration [sdecl] in the outer environment [outer_env]. *) let env = outer_env in let loc = sdecl.ptype_loc in let tparams = make_params env sdecl.ptype_params in let params = List.map (fun (cty, _) -> cty.ctyp_type) tparams in let arity = List.length params in let constraints = List.map (fun (ty, ty', loc) -> let cty = transl_simple_type env ~closed:false ty in let cty' = transl_simple_type env ~closed:false ty' in (* Note: We delay the unification of those constraints after the unification of parameters, so that clashing constraints report an error on the constraint location rather than the parameter location. *) (cty, cty', loc) ) sdecl.ptype_cstrs in let no_row = not (is_fixed_type sdecl) in let (tman, man) = match sdecl.ptype_manifest with None -> Misc.fatal_error "Typedecl.transl_with_constraint: no manifest" | Some sty -> let cty = transl_simple_type env ~closed:no_row sty in cty, cty.ctyp_type in (* In the second part, we check the consistency between the two declarations and compute a "merged" declaration; we now need to work in the larger signature environment [sig_env], because [sig_decl.type_params] and [sig_decl.type_kind] are only valid there. *) let env = sig_env in let sig_decl = Ctype.instance_declaration sig_decl in let arity_ok = arity = sig_decl.type_arity in if arity_ok then List.iter2 (fun (cty, _) tparam -> try Ctype.unify_var env cty.ctyp_type tparam with Ctype.Unify err -> raise(Error(cty.ctyp_loc, Inconsistent_constraint (env, err))) ) tparams sig_decl.type_params; List.iter (fun (cty, cty', loc) -> (* Note: constraints must also be enforced in [sig_env] because they may contain parameter variables from [tparams] that have now be unified in [sig_env]. *) try Ctype.unify env cty.ctyp_type cty'.ctyp_type with Ctype.Unify err -> raise(Error(loc, Inconsistent_constraint (env, err))) ) constraints; let sig_decl_abstract = Btype.type_kind_is_abstract sig_decl in let priv = if sdecl.ptype_private = Private then Private else if arity_ok && not sig_decl_abstract then sig_decl.type_private else sdecl.ptype_private in if arity_ok && not sig_decl_abstract && sdecl.ptype_private = Private then Location.deprecated loc "spurious use of private"; let type_kind, type_unboxed_default = if arity_ok then sig_decl.type_kind, sig_decl.type_unboxed_default else Type_abstract Definition, false in let new_sig_decl = { type_params = params; type_arity = arity; type_kind; type_private = priv; type_manifest = Some man; type_variance = []; type_separability = Types.Separability.default_signature ~arity; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = loc; type_attributes = sdecl.ptype_attributes; type_immediate = Unknown; type_unboxed_default; type_uid = Uid.mk ~current_unit:(Env.get_current_unit ()); } in Option.iter (fun p -> set_private_row env sdecl.ptype_loc p new_sig_decl) fixed_row_path; begin match Ctype.closed_type_decl new_sig_decl with None -> () | Some ty -> raise(Error(loc, Unbound_type_var(ty, new_sig_decl))) end; let new_sig_decl = name_recursion sdecl id new_sig_decl in let new_type_variance = let required = Typedecl_variance.variance_of_sdecl sdecl in try Typedecl_variance.compute_decl env ~check:(Some id) new_sig_decl required with Typedecl_variance.Error (loc, err) -> raise (Error (loc, Variance err)) in let new_type_immediate = (* Typedecl_immediacy.compute_decl never raises *) Typedecl_immediacy.compute_decl env new_sig_decl in let new_type_separability = try Typedecl_separability.compute_decl env new_sig_decl with Typedecl_separability.Error (loc, err) -> raise (Error (loc, Separability err)) in let new_sig_decl = (* we intentionally write this without a fragile { decl with ... } to ensure that people adding new fields to type declarations consider whether they need to recompute it here; for an example of bug caused by the previous approach, see #9607 *) { type_params = new_sig_decl.type_params; type_arity = new_sig_decl.type_arity; type_kind = new_sig_decl.type_kind; type_private = new_sig_decl.type_private; type_manifest = new_sig_decl.type_manifest; type_unboxed_default = new_sig_decl.type_unboxed_default; type_is_newtype = new_sig_decl.type_is_newtype; type_expansion_scope = new_sig_decl.type_expansion_scope; type_loc = new_sig_decl.type_loc; type_attributes = new_sig_decl.type_attributes; type_uid = new_sig_decl.type_uid; type_variance = new_type_variance; type_immediate = new_type_immediate; type_separability = new_type_separability; } in { typ_id = id; typ_name = sdecl.ptype_name; typ_params = tparams; typ_type = new_sig_decl; typ_cstrs = constraints; typ_loc = loc; typ_manifest = Some tman; typ_kind = Ttype_abstract; typ_private = sdecl.ptype_private; typ_attributes = sdecl.ptype_attributes; } end (* A simplified version of [transl_with_constraint], for the case of packages. Package constraints are much simpler than normal with type constraints (e.g., they can not have parameters and can only update abstract types.) *) let transl_package_constraint ~loc env ty = let new_sig_decl = { type_params = []; type_arity = 0; type_kind = Type_abstract Definition; type_private = Public; type_manifest = Some ty; type_variance = []; type_separability = []; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = loc; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.mk ~current_unit:(Env.get_current_unit ()) } in let new_type_immediate = (* Typedecl_immediacy.compute_decl never raises *) Typedecl_immediacy.compute_decl env new_sig_decl in { new_sig_decl with type_immediate = new_type_immediate } (* Approximate a type declaration: just make all types abstract *) let abstract_type_decl ~injective arity = let rec make_params n = if n <= 0 then [] else Ctype.newvar() :: make_params (n-1) in Ctype.with_local_level_generalize begin fun () -> { type_params = make_params arity; type_arity = arity; type_kind = Type_abstract Definition; type_private = Public; type_manifest = None; type_variance = Variance.unknown_signature ~injective ~arity; type_separability = Types.Separability.default_signature ~arity; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = Location.none; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.internal_not_actually_unique; } end let approx_type_decl sdecl_list = let scope = Ctype.create_scope () in List.map (fun sdecl -> let injective = sdecl.ptype_kind <> Ptype_abstract in (Ident.create_scoped ~scope sdecl.ptype_name.txt, abstract_type_decl ~injective (List.length sdecl.ptype_params))) sdecl_list (* Check the well-formedness conditions on type abbreviations defined within recursive modules. *) let check_recmod_typedecl env loc recmod_ids path decl = (* recmod_ids is the list of recursively-defined module idents. (path, decl) is the type declaration to be checked. *) let to_check path = Path.exists_free recmod_ids path in check_well_founded_decl ~abs_env:env env loc path decl to_check; check_regularity ~abs_env:env env loc path decl to_check; (* additional coherence check, as one might build an incoherent signature, and use it to build an incoherent module, cf. #7851 *) check_coherence env loc path decl (**** Error report ****) open Format_doc module Style = Misc.Style let explain_unbound_gen ppf tv tl typ kwd pr = try let ti = List.find (fun ti -> Ctype.deep_occur tv (typ ti)) tl in let ty0 = (* Hack to force aliasing when needed *) Btype.newgenty (Tobject(tv, ref None)) in Out_type.prepare_for_printing [typ ti; ty0]; fprintf ppf ".@ @[<hov2>In %s@ %a@;<1 -2>the variable %a is unbound@]" kwd (Style.as_inline_code pr) ti (Style.as_inline_code Out_type.prepared_type_expr) tv with Not_found -> () let explain_unbound ppf tv tl typ kwd lab = explain_unbound_gen ppf tv tl typ kwd (fun ppf ti -> fprintf ppf "%s%a" (lab ti) Out_type.prepared_type_expr (typ ti) ) let explain_unbound_single ppf tv ty = let trivial ty = explain_unbound ppf tv [ty] (fun t -> t) "type" (fun _ -> "") in match get_desc ty with Tobject(fi,_) -> let (tl, rv) = Ctype.flatten_fields fi in if eq_type rv tv then trivial ty else explain_unbound ppf tv tl (fun (_,_,t) -> t) "method" (fun (lab,_,_) -> lab ^ ": ") | Tvariant row -> if eq_type (row_more row) tv then trivial ty else explain_unbound ppf tv (row_fields row) (fun (_l,f) -> match row_field_repr f with Rpresent (Some t) -> t | Reither (_,[t],_) -> t | Reither (_,tl,_) -> Btype.newgenty (Ttuple tl) | _ -> Btype.newgenty (Ttuple[])) "case" (fun (lab,_) -> "`" ^ lab ^ " of ") | _ -> trivial ty let tys_of_constr_args = function | Types.Cstr_tuple tl -> tl | Types.Cstr_record lbls -> List.map (fun l -> l.Types.ld_type) lbls module Reaching_path = struct type t = reaching_type_path (* Simplify a reaching path before showing it in error messages. *) let simplify path = let rec simplify : t -> t = function | Contains (ty1, _ty2) :: Contains (_ty2', ty3) :: rest -> (* If t1 contains t2 and t2 contains t3, then t1 contains t3 and we don't need to show t2. *) simplify (Contains (ty1, ty3) :: rest) | hd :: rest -> hd :: simplify rest | [] -> [] in simplify path (* See Out_type.add_type_to_preparation. Note: it is better to call this after [simplify], otherwise some type variable names may be used for types that are removed by simplification and never actually shown to the user. *) let add_to_preparation path = List.iter (function | Contains (ty1, ty2) | Expands_to (ty1, ty2) -> List.iter Out_type.add_type_to_preparation [ty1; ty2] ) path module Fmt = Format_doc let pp ppf reaching_path = let pp_step ppf = function | Expands_to (ty, body) -> Fmt.fprintf ppf "%a = %a" (Style.as_inline_code Out_type.prepared_type_expr) ty (Style.as_inline_code Out_type.prepared_type_expr) body | Contains (outer, inner) -> Fmt.fprintf ppf "%a contains %a" (Style.as_inline_code Out_type.prepared_type_expr) outer (Style.as_inline_code Out_type.prepared_type_expr) inner in Fmt.(pp_print_list ~pp_sep:comma) pp_step ppf reaching_path let pp_colon ppf path = Fmt.fprintf ppf ":@;<1 2>@[<v>%a@]" pp path end let quoted_out_type ppf ty = Style.as_inline_code !Oprint.out_type ppf ty let quoted_type ppf ty = Style.as_inline_code Printtyp.Doc.type_expr ppf ty let quoted_constr = Style.as_inline_code Pprintast.Doc.constr let report_error_doc ppf = function | Repeated_parameter -> fprintf ppf "A type parameter occurs several times" | Duplicate_constructor s -> fprintf ppf "Two constructors are named %a" Style.inline_code s | Too_many_constructors -> fprintf ppf "@[Too many non-constant constructors@ -- maximum is %i %s@]" (Config.max_tag + 1) "non-constant constructors" | Duplicate_label s -> fprintf ppf "Two labels are named %a" Style.inline_code s | Recursive_abbrev (s, env, reaching_path) -> let reaching_path = Reaching_path.simplify reaching_path in Printtyp.wrap_printing_env ~error:true env @@ fun () -> Out_type.reset (); Reaching_path.add_to_preparation reaching_path; fprintf ppf "@[<v>The type abbreviation %a is cyclic%a@]" Style.inline_code s Reaching_path.pp_colon reaching_path | Cycle_in_def (s, env, reaching_path) -> let reaching_path = Reaching_path.simplify reaching_path in Printtyp.wrap_printing_env ~error:true env @@ fun () -> Out_type.reset (); Reaching_path.add_to_preparation reaching_path; fprintf ppf "@[<v>The definition of %a contains a cycle%a@]" Style.inline_code s Reaching_path.pp_colon reaching_path | Definition_mismatch (ty, _env, None) -> fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]@]" "This variant or record definition" "does not match that of type" quoted_type ty | Definition_mismatch (ty, env, Some err) -> fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]" "This variant or record definition" "does not match that of type" quoted_type ty (Includecore.report_type_mismatch "the original" "this" "definition" env) err | Constraint_failed (env, err) -> let msg = Format_doc.Doc.msg in fprintf ppf "@[<v>Constraints are not satisfied in this type.@ "; Errortrace_report.unification ppf env err (msg "Type") (msg "should be an instance of"); fprintf ppf "@]" | Non_regular { definition; used_as; defined_as; reaching_path } -> let reaching_path = Reaching_path.simplify reaching_path in Out_type.prepare_for_printing [used_as; defined_as]; Reaching_path.add_to_preparation reaching_path; fprintf ppf "@[<hv>This recursive type is not regular.@ \ The type constructor %a is defined as@;<1 2>type %a@ \ but it is used as@;<1 2>%a%t\ All uses need to match the definition for the recursive type \ to be regular.@]" Style.inline_code (Path.name definition) quoted_out_type (Out_type.tree_of_typexp Type defined_as) quoted_out_type (Out_type.tree_of_typexp Type used_as) (fun pp -> let is_expansion = function Expands_to _ -> true | _ -> false in if List.exists is_expansion reaching_path then fprintf pp "@ after the following expansion(s)%a@ " Reaching_path.pp_colon reaching_path else fprintf pp ".@ ") | Inconsistent_constraint (env, err) -> let msg = Format_doc.Doc.msg in fprintf ppf "@[<v>The type constraints are not consistent.@ "; Errortrace_report.unification ppf env err (msg "Type") (msg "is not compatible with type"); fprintf ppf "@]" | Type_clash (env, err) -> let msg = Format_doc.Doc.msg in Errortrace_report.unification ppf env err (msg "This type constructor expands to type") (msg "but is used here with type") | Null_arity_external -> fprintf ppf "External identifiers must be functions" | Missing_native_external -> fprintf ppf "@[<hv>An external function with more than 5 arguments \ requires a second stub function@ \ for native-code compilation@]" | Unbound_type_var (ty, decl) -> fprintf ppf "@[A type variable is unbound in this type declaration"; begin match decl.type_kind, decl.type_manifest with | Type_variant (tl, _rep), _ -> explain_unbound_gen ppf ty tl (fun c -> let tl = tys_of_constr_args c.Types.cd_args in Btype.newgenty (Ttuple tl) ) "case" (fun ppf c -> fprintf ppf "%a of %a" Printtyp.Doc.ident c.Types.cd_id Printtyp.Doc.constructor_arguments c.Types.cd_args) | Type_record (tl, _), _ -> explain_unbound ppf ty tl (fun l -> l.Types.ld_type) "field" (fun l -> Ident.name l.Types.ld_id ^ ": ") | Type_abstract _, Some ty' -> explain_unbound_single ppf ty ty' | _ -> () end; fprintf ppf "@]" | Unbound_type_var_ext (ty, ext) -> fprintf ppf "@[A type variable is unbound in this extension constructor"; let args = tys_of_constr_args ext.ext_args in explain_unbound ppf ty args (fun c -> c) "type" (fun _ -> ""); fprintf ppf "@]" | Cannot_extend_private_type path -> fprintf ppf "@[%s@ %a@]" "Cannot extend private type definition" Printtyp.Doc.path path | Not_extensible_type path -> fprintf ppf "@[%s@ %a@ %s@]" "Type definition" (Style.as_inline_code Printtyp.Doc.path) path "is not extensible" | Extension_mismatch (path, env, err) -> fprintf ppf "@[<v>@[<hov>%s@ %s@;<1 2>%a@]%a@]" "This extension" "does not match the definition of type" Style.inline_code (Path.name path) (Includecore.report_type_mismatch "the type" "this extension" "definition" env) err | Rebind_wrong_type (lid, env, err) -> let msg = Format_doc.doc_printf in Errortrace_report.unification ppf env err (msg "The constructor %a@ has type" quoted_constr lid) (msg "but was expected to be of type") | Rebind_mismatch (lid, p, p') -> fprintf ppf "@[%s@ %a@ %s@ %a@ %s@ %s@ %a@]" "The constructor" quoted_constr lid "extends type" Style.inline_code (Path.name p) "whose declaration does not match" "the declaration of type" Style.inline_code (Path.name p') | Rebind_private lid -> fprintf ppf "@[%s@ %a@ %s@]" "The constructor" quoted_constr lid "is private" | Variance (Typedecl_variance.Bad_variance (n, v1, v2)) -> let variance (p,n,i) = let inj = if i then "injective " else "" in match p, n with true, true -> inj ^ "invariant" | true, false -> inj ^ "covariant" | false, true -> inj ^ "contravariant" | false, false -> if inj = "" then "unrestricted" else inj in (match n with | Variance_variable_error { error; variable; context } -> Out_type.prepare_for_printing [ variable ]; begin match context with | Type_declaration (id, decl) -> Out_type.add_type_declaration_to_preparation id decl; fprintf ppf "@[<v>%s@;<1 2>%a@;" "In the definition" (Style.as_inline_code @@ Out_type.prepared_type_declaration id) decl | Gadt_constructor c -> Out_type.add_constructor_to_preparation c; fprintf ppf "@[<v>%s@;<1 2>%a@;" "In the GADT constructor" (Style.as_inline_code Out_type.prepared_constructor) c | Extension_constructor (id, e) -> Out_type.add_extension_constructor_to_preparation e; fprintf ppf "@[<v>%s@;<1 2>%a@;" "In the extension constructor" (Out_type.prepared_extension_constructor id) e end; begin match error with | Variance_not_reflected -> fprintf ppf "@[%s@ %a@ %s@ %s@ It" "the type variable" (Style.as_inline_code Out_type.prepared_type_expr) variable "has a variance that" "is not reflected by its occurrence in type parameters." | No_variable -> fprintf ppf "@[%s@ %a@ %s@ %s@]@]" "the type variable" (Style.as_inline_code Out_type.prepared_type_expr) variable "cannot be deduced" "from the type parameters." | Variance_not_deducible -> fprintf ppf "@[%s@ %a@ %s@ %s@ It" "the type variable" (Style.as_inline_code Out_type.prepared_type_expr) variable "has a variance that" "cannot be deduced from the type parameters." end | Variance_not_satisfied n -> fprintf ppf "@[@[%s@ %s@ The %d%s type parameter" "In this definition, expected parameter" "variances are not satisfied." n (Misc.ordinal_suffix n)); (match n with | Variance_variable_error { error = No_variable; _ } -> () | _ -> fprintf ppf " was expected to be %s,@ but it is %s.@]@]" (variance v2) (variance v1)) | Unavailable_type_constructor p -> fprintf ppf "The definition of type %a@ is unavailable" (Style.as_inline_code Printtyp.Doc.path) p | Variance Typedecl_variance.Varying_anonymous -> fprintf ppf "@[%s@ %s@ %s@]" "In this GADT definition," "the variance of some parameter" "cannot be checked" | Val_in_structure -> fprintf ppf "Value declarations are only allowed in signatures" | Multiple_native_repr_attributes -> fprintf ppf "Too many %a/%a attributes" Style.inline_code "[@@unboxed]" Style.inline_code "[@@untagged]" | Cannot_unbox_or_untag_type Unboxed -> fprintf ppf "@[Don't know how to unbox this type.@ \ Only %a, %a, %a, and %a can be unboxed.@]" Style.inline_code "float" Style.inline_code "int32" Style.inline_code "int64" Style.inline_code "nativeint" | Cannot_unbox_or_untag_type Untagged -> fprintf ppf "@[Don't know how to untag this type. Only %a@ \ and other immediate types can be untagged.@]" Style.inline_code "int" | Deep_unbox_or_untag_attribute kind -> fprintf ppf "@[The attribute %a should be attached to@ \ a direct argument or result of the primitive,@ \ it should not occur deeply into its type.@]" Style.inline_code (match kind with Unboxed -> "@unboxed" | Untagged -> "@untagged") | Immediacy (Typedecl_immediacy.Bad_immediacy_attribute violation) -> (match violation with | Type_immediacy.Violation.Not_always_immediate -> fprintf ppf "@[Types@ marked@ with@ the@ immediate@ attribute@ must@ be@ \ non-pointer@ types@ like@ %a@ or@ %a.@]" Style.inline_code "int" Style.inline_code "bool" | Type_immediacy.Violation.Not_always_immediate_on_64bits -> fprintf ppf "@[Types@ marked@ with@ the@ %a@ attribute@ must@ be@ \ produced@ using@ the@ %a@ functor.@]" Style.inline_code "immediate64" Style.inline_code "Stdlib.Sys.Immediate64.Make" ) | Bad_unboxed_attribute msg -> fprintf ppf "@[This type cannot be unboxed because@ %s.@]" msg | Separability (Typedecl_separability.Non_separable_evar evar) -> let pp_evar ppf = function | None -> fprintf ppf "an unnamed existential variable" | Some str -> fprintf ppf "the existential variable %a" (Style.as_inline_code Pprintast.Doc.tyvar) str in fprintf ppf "@[This type cannot be unboxed because@ \ it might contain both float and non-float values,@ \ depending on the instantiation of %a.@ \ You should annotate it with %a.@]" pp_evar evar Style.inline_code "[@@ocaml.boxed]" | Boxed_and_unboxed -> fprintf ppf "@[A type cannot be boxed and unboxed at the same time.@]" | Nonrec_gadt -> fprintf ppf "@[GADT case syntax cannot be used in a %a block.@]" Style.inline_code "nonrec" | Invalid_private_row_declaration ty -> let pp_private ppf ty = fprintf ppf "private %a" Printtyp.Doc.type_expr ty in fprintf ppf "@[<hv>This private row type declaration is invalid.@ \ The type expression on the right-hand side reduces to@;<1 2>%a@ \ which does not have a free row type variable.@]@,\ @[<hv>@[@{<hint>Hint@}: If you intended to define a private \ type abbreviation,@ \ write explicitly@]@;<1 2>%a@]" (Style.as_inline_code Printtyp.Doc.type_expr) ty (Style.as_inline_code pp_private) ty let () = Location.register_error_of_exn (function | Error (loc, err) -> Some (Location.error_of_printer ~loc report_error_doc err) | _ -> None ) let report_error = Format_doc.compat report_error_doc
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>