package merlin-lib
Merlin's libraries
Install
Dune Dependency
Authors
Maintainers
Sources
merlin-5.5-503.tbz
sha256=67da3b34f2fea07678267309f61da4a2c6f08298de0dc59655b8d30fd8269af1
sha512=1fb3b5180d36aa82b82a319e15b743b802b6888f0dc67645baafdb4e18dfc23a7b90064ec9bc42f7424061cf8cde7f8839178d8a8537bf4596759f3ff4891873
doc/src/merlin-lib.ocaml_typing/out_type.ml.html
Source file out_type.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy and Jerome Vouillon, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Compute a spanning tree representation of types *) open Misc open Ctype open Longident open Path open Asttypes open Types open Btype open Outcometree module Sig_component_kind = Shape.Sig_component_kind module Style = Misc.Style (* Print a long identifier *) module Fmt = Format_doc open Format_doc (* Print an identifier avoiding name collisions *) module Out_name = struct let create x = { printed_name = x } let print x = x.printed_name end (** Some identifiers may require hiding when printing *) type bound_ident = { hide:bool; ident:Ident.t } (* printing environment for path shortening and naming *) let printing_env = ref Env.empty (* When printing, it is important to only observe the current printing environment, without reading any new cmi present on the file system *) let in_printing_env f = Env.without_cmis f !printing_env type namespace = Sig_component_kind.t = | Value | Type | Constructor | Label | Module | Module_type | Extension_constructor | Class | Class_type module Namespace = struct let id = function | Type -> 0 | Module -> 1 | Module_type -> 2 | Class -> 3 | Class_type -> 4 | Extension_constructor | Value | Constructor | Label -> 5 (* we do not handle those component *) let size = 1 + id Value let pp ppf x = Fmt.pp_print_string ppf (Shape.Sig_component_kind.to_string x) (** The two functions below should never access the filesystem, and thus use {!in_printing_env} rather than directly accessing the printing environment *) let lookup = let to_lookup f lid = fst @@ in_printing_env (f (Lident lid)) in function | Some Type -> to_lookup Env.find_type_by_name | Some Module -> to_lookup Env.find_module_by_name | Some Module_type -> to_lookup Env.find_modtype_by_name | Some Class -> to_lookup Env.find_class_by_name | Some Class_type -> to_lookup Env.find_cltype_by_name | None | Some(Value|Extension_constructor|Constructor|Label) -> fun _ -> raise Not_found let location namespace id = let path = Path.Pident id in try Some ( match namespace with | Some Type -> (in_printing_env @@ Env.find_type path).type_loc | Some Module -> (in_printing_env @@ Env.find_module path).md_loc | Some Module_type -> (in_printing_env @@ Env.find_modtype path).mtd_loc | Some Class -> (in_printing_env @@ Env.find_class path).cty_loc | Some Class_type -> (in_printing_env @@ Env.find_cltype path).clty_loc | Some (Extension_constructor|Value|Constructor|Label) | None -> Location.none ) with Not_found -> None let best_class_namespace = function | Papply _ | Pdot _ -> Some Module | Pextra_ty _ -> assert false (* Only in type path *) | Pident c -> match location (Some Class) c with | Some _ -> Some Class | None -> Some Class_type end (** {2 Ident conflicts printing} Ident conflicts arise when multiple {!Ident.t}s are attributed the same name. The following module stores the global conflict references and provides the printing functions for explaining the source of the conflicts. *) module Ident_conflicts = struct module M = String.Map type explanation = { kind: namespace; name:string; root_name:string; location:Location.t} let explanations = ref M.empty let add namespace name id = match Namespace.location (Some namespace) id with | None -> () | Some location -> let explanation = { kind = namespace; location; name; root_name=Ident.name id} in explanations := M.add name explanation !explanations let collect_explanation namespace id ~name = let root_name = Ident.name id in (* if [name] is of the form "root_name/%d", we register both [id] and the identifier in scope for [root_name]. *) if root_name <> name && not (M.mem name !explanations) then begin add namespace name id; if not (M.mem root_name !explanations) then (* lookup the identifier in scope with name [root_name] and add it too *) match Namespace.lookup (Some namespace) root_name with | Pident root_id -> add namespace root_name root_id | exception Not_found | _ -> () end let pp_explanation ppf r= Fmt.fprintf ppf "@[<v 2>%a:@,Definition of %s %a@]" Location.Doc.loc r.location (Sig_component_kind.to_string r.kind) Style.inline_code r.name let print_located_explanations ppf l = Fmt.fprintf ppf "@[<v>%a@]" (Fmt.pp_print_list pp_explanation) l let reset () = explanations := M.empty let list_explanations () = let c = !explanations in reset (); c |> M.bindings |> List.map snd |> List.sort Stdlib.compare let print_toplevel_hint ppf l = let conj ppf () = Fmt.fprintf ppf " and@ " in let pp_namespace_plural ppf n = Fmt.fprintf ppf "%as" Namespace.pp n in let root_names = List.map (fun r -> r.kind, r.root_name) l in let unique_root_names = List.sort_uniq Stdlib.compare root_names in let submsgs = Array.make Namespace.size [] in let () = List.iter (fun (n,_ as x) -> submsgs.(Namespace.id n) <- x :: submsgs.(Namespace.id n) ) unique_root_names in let pp_submsg ppf names = match names with | [] -> () | [namespace, a] -> Fmt.fprintf ppf "@,\ @[<2>@{<hint>Hint@}: The %a %a has been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ this@ %a.\ @ Did you try to redefine them?@]" Namespace.pp namespace Style.inline_code a Namespace.pp namespace | (namespace, _) :: _ :: _ -> Fmt.fprintf ppf "@,\ @[<2>@{<hint>Hint@}: The %a %a have been defined multiple times@ \ in@ this@ toplevel@ session.@ \ Some toplevel values still refer to@ old@ versions@ of@ those@ %a.\ @ Did you try to redefine them?@]" pp_namespace_plural namespace Fmt.(pp_print_list ~pp_sep:conj Style.inline_code) (List.map snd names) pp_namespace_plural namespace in Array.iter (pp_submsg ppf) submsgs let err_msg () = let ltop, l = (* isolate toplevel locations, since they are too imprecise *) let from_toplevel a = a.location.Location.loc_start.Lexing.pos_fname = "//toplevel//" in List.partition from_toplevel (list_explanations ()) in match l, ltop with | [], [] -> None | _ -> Some (Fmt.doc_printf "%a%a" print_located_explanations l print_toplevel_hint ltop ) let err_print ppf = Option.iter Fmt.(fprintf ppf "@,%a" pp_doc) (err_msg ()) let exists () = M.cardinal !explanations >0 end module Ident_names = struct module M = String.Map module S = String.Set let enabled = ref true let enable b = enabled := b (* Names bound in recursive definitions should be considered as bound in the environment when printing identifiers but not when trying to find shortest path. For instance, if we define [{ module Avoid__me = struct type t = A end type t = X type u = [` A of t * t ] module M = struct type t = A of [ u | `B ] type r = Avoid__me.t end }] It is is important that in the definition of [t] that the outer type [t] is printed as [t/2] reserving the name [t] to the type being defined in the current recursive definition. Contrarily, in the definition of [r], one should not shorten the path [Avoid__me.t] to [r] until the end of the definition of [r]. The [bound_in_recursion] bridges the gap between those two slightly different notions of printing environment. *) let bound_in_recursion = ref M.empty (* When dealing with functor arguments, identity becomes fuzzy because the same syntactic argument may be represented by different identifiers during the error processing, we are thus disabling disambiguation on the argument name *) let fuzzy = ref S.empty let with_fuzzy id f = protect_refs [ R(fuzzy, S.add (Ident.name id) !fuzzy) ] f let fuzzy_id namespace id = namespace = Module && S.mem (Ident.name id) !fuzzy let ids f = let update m id = M.add (Ident.name id.ident) id.ident m in let updated = List.fold_left update !bound_in_recursion ids in protect_refs [ R(bound_in_recursion, updated )] f let human_id id index = (* The identifier with index [k] is the (k+1)-th most recent identifier in the printing environment. We print them as [name/(k+1)] except for [k=0] which is printed as [name] rather than [name/1]. *) if index = 0 then Ident.name id else let ordinal = index + 1 in String.concat "/" [Ident.name id; string_of_int ordinal] let indexed_name namespace id = let find namespace id env = match namespace with | Type -> Env.find_type_index id env | Module -> Env.find_module_index id env | Module_type -> Env.find_modtype_index id env | Class -> Env.find_class_index id env | Class_type-> Env.find_cltype_index id env | Value | Extension_constructor | Constructor | Label -> None in let index = match M.find_opt (Ident.name id) !bound_in_recursion with | Some rec_bound_id -> (* the identifier name appears in the current group of recursive definition *) if Ident.same rec_bound_id id then Some 0 else (* the current recursive definition shadows one more time the previously existing identifier with the same name *) Option.map succ (in_printing_env (find namespace id)) | None -> in_printing_env (find namespace id) in let index = (* If [index] is [None] at this point, it might indicate that the identifier id is not defined in the environment, while there are other identifiers in scope that share the same name. Currently, this kind of partially incoherent environment happens within functor error messages where the left and right hand side have a different views of the environment at the source level. Printing the source-level by using a default index of `0` seems like a reasonable compromise in this situation however.*) Option.value index ~default:0 in human_id id index let ident_name namespace id = match namespace, !enabled with | None, _ | _, false -> Out_name.create (Ident.name id) | Some namespace, true -> if fuzzy_id namespace id then Out_name.create (Ident.name id) else let name = indexed_name namespace id in Ident_conflicts.collect_explanation namespace id ~name; Out_name.create name end let ident_name = Ident_names.ident_name (* Print a path *) let ident_stdlib = Ident.create_persistent "Stdlib" let non_shadowed_stdlib namespace = function | Pdot(Pident id, s) as path -> Ident.same id ident_stdlib && (match Namespace.lookup namespace s with | path' -> Path.same path path' | exception Not_found -> true) | _ -> false let find_double_underscore s = let len = String.length s in let rec loop i = if i + 1 >= len then None else if s.[i] = '_' && s.[i + 1] = '_' then Some i else loop (i + 1) in loop 0 let rec module_path_is_an_alias_of env path ~alias_of = match Env.find_module path env with | { md_type = Mty_alias path'; _ } -> Path.same path' alias_of || module_path_is_an_alias_of env path' ~alias_of | _ -> false | exception Not_found -> false (* Simple heuristic to print Foo__bar.* as Foo.Bar.* when Foo.Bar is an alias for Foo__bar. This pattern is used by the stdlib. *) let rec rewrite_double_underscore_paths env p = match p with | Pdot (p, s) -> Pdot (rewrite_double_underscore_paths env p, s) | Papply (a, b) -> Papply (rewrite_double_underscore_paths env a, rewrite_double_underscore_paths env b) | Pextra_ty (p, extra) -> Pextra_ty (rewrite_double_underscore_paths env p, extra) | Pident id -> let name = Ident.name id in match find_double_underscore name with | None -> p | Some i -> let better_lid = Ldot (Lident (String.sub name 0 i), Unit_info.modulize (String.sub name (i + 2) (String.length name - i - 2))) in match Env.find_module_by_name better_lid env with | exception Not_found -> p | p', _ -> if module_path_is_an_alias_of env p' ~alias_of:p then p' else p let rewrite_double_underscore_paths env p = if env == Env.empty then p else rewrite_double_underscore_paths env p let rec tree_of_path ?(disambiguation=true) namespace p = let tree_of_path namespace p = tree_of_path ~disambiguation namespace p in let namespace = if disambiguation then namespace else None in match p with | Pident id -> Oide_ident (ident_name namespace id) | Pdot(_, s) as path when non_shadowed_stdlib namespace path -> Oide_ident (Out_name.create s) | Pdot(p, s) -> Oide_dot (tree_of_path (Some Module) p, s) | Papply(p1, p2) -> let t1 = tree_of_path (Some Module) p1 in let t2 = tree_of_path (Some Module) p2 in Oide_apply (t1, t2) | Pextra_ty (p, extra) -> begin (* inline record types are syntactically prevented from escaping their binding scope, and are never shown to users. *) match extra with Pcstr_ty s -> Oide_dot (tree_of_path (Some Type) p, s) | Pext_ty -> tree_of_path None p end let tree_of_path ?disambiguation namespace p = tree_of_path ?disambiguation namespace (rewrite_double_underscore_paths !printing_env p) (* Print a recursive annotation *) let tree_of_rec = function | Trec_not -> Orec_not | Trec_first -> Orec_first | Trec_next -> Orec_next (* Normalize paths *) type param_subst = Id | Nth of int | Map of int list let _is_nth = function Nth _ -> true | _ -> false let compose l1 = function | Id -> Map l1 | Map l2 -> Map (List.map (List.nth l1) l2) | Nth n -> Nth (List.nth l1 n) let _apply_subst s1 tyl = if tyl = [] then [] (* cf. PR#7543: Typemod.type_package doesn't respect type constructor arity *) else match s1 with Nth n1 -> [List.nth tyl n1] | Map l1 -> List.map (List.nth tyl) l1 | Id -> tyl type best_path = Paths of Path.t list | Best of Path.t (** Short-paths cache: the five mutable variables below implement a one-slot cache for short-paths *) let printing_old = ref Env.empty let printing_pers = ref String.Set.empty (** {!printing_old} and {!printing_pers} are the keys of the one-slot cache *) let printing_depth = ref 0 let printing_cont = ref ([] : Env.iter_cont list) let printing_map = ref Path.Map.empty (** - {!printing_map} is the main value stored in the cache. Note that it is evaluated lazily and its value is updated during printing. - {!printing_dep} is the current exploration depth of the environment, it is used to determine whenever the {!printing_map} should be evaluated further before completing a request. - {!printing_cont} is the list of continuations needed to evaluate the {!printing_map} one level further (see also {!Env.run_iter_cont}) *) let rec index l x = match l with [] -> raise Not_found | a :: l -> if eq_type x a then 0 else 1 + index l x let rec uniq = function [] -> true | a :: l -> not (List.memq (a : int) l) && uniq l let rec normalize_type_path ?(cache=false) env p = try let (params, ty, _) = Env.find_type_expansion p env in match get_desc ty with Tconstr (p1, tyl, _) -> if List.length params = List.length tyl && List.for_all2 eq_type params tyl then normalize_type_path ~cache env p1 else if cache || List.length params <= List.length tyl || not (uniq (List.map get_id tyl)) then (p, Id) else let l1 = List.map (index params) tyl in let (p2, s2) = normalize_type_path ~cache env p1 in (p2, compose l1 s2) | _ -> (p, Nth (index params ty)) with Not_found -> (Env.normalize_type_path None env p, Id) let penalty s = if s <> "" && s.[0] = '_' then 10 else match find_double_underscore s with | None -> 1 | Some _ -> 10 let rec path_size = function Pident id -> penalty (Ident.name id), -Ident.scope id | Pdot (p, _) | Pextra_ty (p, Pcstr_ty _) -> let (l, b) = path_size p in (1+l, b) | Papply (p1, p2) -> let (l, b) = path_size p1 in (l + fst (path_size p2), b) | Pextra_ty (p, _) -> path_size p let same_printing_env env = let used_pers = Env.used_persistent () in Env.same_types !printing_old env && String.Set.equal !printing_pers used_pers let set_printing_env env = printing_env := env; if !Clflags.real_paths || !printing_env == Env.empty || same_printing_env env then () else begin (* printf "Reset printing_map@."; *) printing_old := env; printing_pers := Env.used_persistent (); printing_map := Path.Map.empty; printing_depth := 0; (* printf "Recompute printing_map.@."; *) let cont = Env.iter_types (fun p (p', _decl) -> let (p1, s1) = normalize_type_path env p' ~cache:true in (* Format.eprintf "%a -> %a = %a@." path p path p' path p1 *) if s1 = Id then try let r = Path.Map.find p1 !printing_map in match !r with Paths l -> r := Paths (p :: l) | Best p' -> r := Paths [p; p'] (* assert false *) with Not_found -> printing_map := Path.Map.add p1 (ref (Paths [p])) !printing_map) env in printing_cont := [cont]; end let wrap_printing_env env f = set_printing_env (Env.update_short_paths env); try_finally f ~always:(fun () -> set_printing_env Env.empty) let wrap_printing_env ~error env f = if error then Env.without_cmis (wrap_printing_env env) f else wrap_printing_env env f let rec lid_of_path = function Path.Pident id -> Longident.Lident (Ident.name id) | Path.Pdot (p1, s) | Path.Pextra_ty (p1, Pcstr_ty s) -> Longident.Ldot (lid_of_path p1, s) | Path.Papply (p1, p2) -> Longident.Lapply (lid_of_path p1, lid_of_path p2) | Path.Pextra_ty (p, Pext_ty) -> lid_of_path p let is_unambiguous path env = let l = Env.find_shadowed_types path env in List.exists (Path.same path) l || (* concrete paths are ok *) match l with [] -> true | p :: rem -> (* allow also coherent paths: *) let normalize p = fst (normalize_type_path ~cache:true env p) in let p' = normalize p in List.for_all (fun p -> Path.same (normalize p) p') rem || (* also allow repeatedly defining and opening (for toplevel) *) let id = lid_of_path p in List.for_all (fun p -> lid_of_path p = id) rem && Path.same p (fst (Env.find_type_by_name id env)) let rec get_best_path r = match !r with Best p' -> p' | Paths [] -> raise Not_found | Paths l -> r := Paths []; List.iter (fun p -> (* Format.eprintf "evaluating %a@." path p; *) match !r with Best p' when path_size p >= path_size p' -> () | _ -> if is_unambiguous p !printing_env then r := Best p) (* else Format.eprintf "%a ignored as ambiguous@." path p *) l; get_best_path r let best_type_path_original p = if !printing_env == Env.empty then (p, Id) else if !Clflags.real_paths then (p, Id) else let (p', s) = normalize_type_path !printing_env p in let get_path () = get_best_path (Path.Map.find p' !printing_map) in while !printing_cont <> [] && try fst (path_size (get_path ())) > !printing_depth with Not_found -> true do printing_cont := List.map snd (Env.run_iter_cont !printing_cont); incr printing_depth; done; let p'' = try get_path () with Not_found -> p' in (* Format.eprintf "%a = %a -> %a@." path p path p' path p''; *) (p'', s) type type_result = Short_paths.type_result = | Nth of int | Path of int list option * Path.t type type_resolution = Short_paths.type_resolution = | Nth of int | Subst of int list | Id let apply_subst ns args = List.map (List.nth args) ns let apply_subst_opt nso args = match nso with | None -> args | Some ns -> apply_subst ns args let apply_nth n args = List.nth args n let best_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then Path(None, p) else Short_paths.find_type (Env.short_paths !printing_env) p let best_type_path_resolution p = if !Clflags.real_paths || !printing_env == Env.empty then Id else Short_paths.find_type_resolution (Env.short_paths !printing_env) p let best_type_path_simple p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_type_simple (Env.short_paths !printing_env) p let best_module_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_module_type (Env.short_paths !printing_env) p let best_module_path p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_module (Env.short_paths !printing_env) p let best_class_type_path p = if !Clflags.real_paths || !printing_env == Env.empty then None, p else Short_paths.find_class_type (Env.short_paths !printing_env) p let best_class_type_path_simple p = if !Clflags.real_paths || !printing_env == Env.empty then p else Short_paths.find_class_type_simple (Env.short_paths !printing_env) p (* When building a tree for a best type path, we should not disambiguate identifiers whenever the short-path algorithm detected a better path than the original one.*) let tree_of_best_type_path p p' = if Path.same p p' then tree_of_path (Some Type) p' else tree_of_path ~disambiguation:false None p' (* Print a type expression *) let proxy ty = Transient_expr.repr (proxy ty) (* When printing a type scheme, we print weak names. When printing a plain type, we do not. This type controls that behavior *) type type_or_scheme = Type | Type_scheme let is_non_gen mode ty = match mode with | Type_scheme -> is_Tvar ty && get_level ty <> generic_level | Type -> false let nameable_row row = row_name row <> None && List.for_all (fun (_, f) -> match row_field_repr f with | Reither(c, l, _) -> row_closed row && if c then l = [] else List.length l = 1 | _ -> true) (row_fields row) (* This specialized version of [Btype.iter_type_expr] normalizes and short-circuits the traversal of the [type_expr], so that it covers only the subterms that would be printed by the type printer. *) let printer_iter_type_expr f ty = match get_desc ty with | Tconstr(p, tyl, _) -> begin match best_type_path_resolution p with | Nth n -> f (apply_nth n tyl) | Subst ns -> List.iter f (apply_subst ns tyl) | Id -> List.iter f tyl end | Tvariant row -> begin match row_name row with | Some(_p, tyl) when nameable_row row -> List.iter f tyl | _ -> iter_row f row end | Tobject (fi, nm) -> begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpublic then f ty) fields | Some (_, l) -> List.iter f (List.tl l) end | Tfield(_, kind, ty1, ty2) -> if field_kind_repr kind = Fpublic then f ty1; f ty2 | _ -> Btype.iter_type_expr f ty let quoted_ident ppf x = Style.as_inline_code !Oprint.out_ident ppf x module Internal_names : sig val reset : unit -> unit val add : Path.t -> unit val print_explanations : Env.t -> Fmt.formatter -> unit end = struct let names = ref Ident.Set.empty let reset () = names := Ident.Set.empty let add p = match p with | Pident id -> let name = Ident.name id in if String.length name > 0 && name.[0] = '$' then begin names := Ident.Set.add id !names end | Pdot _ | Papply _ | Pextra_ty _ -> () let print_explanations env ppf = let constrs = Ident.Set.fold (fun id acc -> let p = Pident id in match Env.find_type p env with | exception Not_found -> acc | decl -> match type_origin decl with | Existential constr -> let prev = String.Map.find_opt constr acc in let prev = Option.value ~default:[] prev in String.Map.add constr (tree_of_path None p :: prev) acc | Definition | Rec_check_regularity -> acc) !names String.Map.empty in String.Map.iter (fun constr out_idents -> match out_idents with | [] -> () | [out_ident] -> fprintf ppf "@ @[<2>@{<hint>Hint@}:@ %a@ is an existential type@ \ bound by the constructor@ %a.@]" quoted_ident out_ident Style.inline_code constr | out_ident :: out_idents -> fprintf ppf "@ @[<2>@{<hint>Hint@}:@ %a@ and %a@ are existential types@ \ bound by the constructor@ %a.@]" (Fmt.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf ",@ ") quoted_ident) (List.rev out_idents) quoted_ident out_ident Style.inline_code constr) constrs end module Variable_names : sig val reset_names : unit -> unit val add_subst : (type_expr * type_expr) list -> unit val new_name : unit -> string val new_var_name : non_gen:bool -> type_expr -> unit -> string val name_of_type : (unit -> string) -> transient_expr -> string val check_name_of_type : non_gen:bool -> transient_expr -> unit val reserve: type_expr -> unit val remove_names : transient_expr list -> unit val with_local_names : (unit -> 'a) -> 'a (* Refresh the weak variable map in the toplevel; for [print_items], which is itself for the toplevel *) val refresh_weak : unit -> unit end = struct (* We map from types to names, but not directly; we also store a substitution, which maps from types to types. The lookup process is "type -> apply substitution -> find name". The substitution is presumed to be one-shot. *) let names = ref ([] : (transient_expr * string) list) let name_subst = ref ([] : (transient_expr * transient_expr) list) let name_counter = ref 0 let named_vars = ref ([] : string list) let visited_for_named_vars = ref ([] : transient_expr list) let weak_counter = ref 1 let weak_var_map = ref TypeMap.empty let named_weak_vars = ref String.Set.empty let reset_names () = names := []; name_subst := []; name_counter := 0; named_vars := []; visited_for_named_vars := [] let add_named_var tty = match tty.desc with Tvar (Some name) | Tunivar (Some name) -> if List.mem name !named_vars then () else named_vars := name :: !named_vars | _ -> () let rec add_named_vars ty = let tty = Transient_expr.repr ty in let px = proxy ty in if not (List.memq px !visited_for_named_vars) then begin visited_for_named_vars := px :: !visited_for_named_vars; match tty.desc with | Tvar _ | Tunivar _ -> add_named_var tty | _ -> printer_iter_type_expr add_named_vars ty end let substitute ty = match List.assq ty !name_subst with | ty' -> ty' | exception Not_found -> ty let add_subst subst = name_subst := List.map (fun (t1,t2) -> Transient_expr.repr t1, Transient_expr.repr t2) subst @ !name_subst let name_is_already_used name = List.mem name !named_vars || List.exists (fun (_, name') -> name = name') !names || String.Set.mem name !named_weak_vars let rec new_name () = let name = Misc.letter_of_int !name_counter in incr name_counter; if name_is_already_used name then new_name () else name let rec new_weak_name ty () = let name = "weak" ^ Int.to_string !weak_counter in incr weak_counter; if name_is_already_used name then new_weak_name ty () else begin named_weak_vars := String.Set.add name !named_weak_vars; weak_var_map := TypeMap.add ty name !weak_var_map; name end let new_var_name ~non_gen ty () = if non_gen then new_weak_name ty () else new_name () let name_of_type name_generator t = (* We've already been through repr at this stage, so t is our representative of the union-find class. *) let t = substitute t in try List.assq t !names with Not_found -> try TransientTypeMap.find t !weak_var_map with Not_found -> let name = match t.desc with Tvar (Some name) | Tunivar (Some name) -> (* Some part of the type we've already printed has assigned another * unification variable to that name. We want to keep the name, so * try adding a number until we find a name that's not taken. *) let available name = List.for_all (fun (_, name') -> name <> name') !names in if available name then name else let suffixed i = name ^ Int.to_string i in let i = Misc.find_first_mono (fun i -> available (suffixed i)) in suffixed i | _ -> (* No name available, create a new one *) name_generator () in (* Exception for type declarations *) if name <> "_" then names := (t, name) :: !names; name let check_name_of_type ~non_gen px = let name_gen = new_var_name ~non_gen (Transient_expr.type_expr px) in ignore(name_of_type name_gen px) let remove_names tyl = let tyl = List.map substitute tyl in names := List.filter (fun (ty,_) -> not (List.memq ty tyl)) !names let with_local_names f = let old_names = !names in let old_subst = !name_subst in names := []; name_subst := []; try_finally ~always:(fun () -> names := old_names; name_subst := old_subst) f let refresh_weak () = let refresh t name (m,s) = if is_non_gen Type_scheme t then begin TypeMap.add t name m, String.Set.add name s end else m, s in let m, s = TypeMap.fold refresh !weak_var_map (TypeMap.empty ,String.Set.empty) in named_weak_vars := s; weak_var_map := m let reserve ty = normalize_type ty; add_named_vars ty end module Aliases = struct let visited_objects = ref ([] : transient_expr list) let aliased = ref ([] : transient_expr list) let delayed = ref ([] : transient_expr list) let printed_aliases = ref ([] : transient_expr list) (* [printed_aliases] is a subset of [aliased] that records only those aliased types that have actually been printed; this allows us to avoid naming loops that the user will never see. *) let is_delayed t = List.memq t !delayed let remove_delay t = if is_delayed t then delayed := List.filter ((!=) t) !delayed let add_delayed t = if not (is_delayed t) then delayed := t :: !delayed let is_aliased_proxy px = List.memq px !aliased let is_printed_proxy px = List.memq px !printed_aliases let add_proxy px = if not (is_aliased_proxy px) then aliased := px :: !aliased let add ty = add_proxy (proxy ty) let add_printed_proxy ~non_gen px = Variable_names.check_name_of_type ~non_gen px; printed_aliases := px :: !printed_aliases let mark_as_printed px = if is_aliased_proxy px then (add_printed_proxy ~non_gen:false) px let add_printed ty = add_printed_proxy (proxy ty) let aliasable ty = match get_desc ty with Tvar _ | Tunivar _ | Tpoly _ -> false | Tconstr (p, _, _) -> begin match best_type_path_resolution p with | Nth _ -> false | Subst _ | Id -> true end | _ -> true (* let should_visit_object ty = match get_desc ty with | Tvariant row -> not (static_row row) | Tobject _ -> opened_object ty | _ -> false let rec mark_loops_rec visited ty = let px = proxy ty in if List.memq px visited && aliasable ty then add_proxy px else let tty = Transient_expr.repr ty in let visited = px :: visited in match tty.desc with | Tvariant _ | Tobject _ -> if List.memq px !visited_objects then add_proxy px else begin if should_visit_object ty then visited_objects := px :: !visited_objects; printer_iter_type_expr (mark_loops_rec visited) ty end | Tpoly(ty, tyl) -> List.iter add tyl; mark_loops_rec visited ty | _ -> printer_iter_type_expr (mark_loops_rec visited) ty *) let rec mark_loops_rec visited ty = let px = proxy ty in if List.memq px visited && aliasable ty then add_proxy px else let visited = px :: visited in match Types.get_desc ty with | Tvar _ -> Variable_names.reserve ty | Tarrow(_, ty1, ty2, _) -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Ttuple tyl -> List.iter (mark_loops_rec visited) tyl | Tconstr(p, tyl, _) -> begin match best_type_path_resolution p with | Nth n -> mark_loops_rec visited (apply_nth n tyl) | Subst ns -> List.iter (mark_loops_rec visited) (apply_subst ns tyl) | Id -> List.iter (mark_loops_rec visited) tyl end | Tpackage (_, fl) -> List.iter (fun (_n, ty) -> mark_loops_rec visited ty) fl | Tvariant row -> if List.memq px !visited_objects then add_proxy px else begin if not (static_row row) then visited_objects := px :: !visited_objects; match row_name row with | Some(_p, tyl) when nameable_row row -> List.iter (mark_loops_rec visited) tyl | _ -> iter_row (mark_loops_rec visited) row end | Tobject (fi, nm) -> if List.memq px !visited_objects then add_proxy px else begin if opened_object ty then visited_objects := px :: !visited_objects; begin match !nm with | None -> let fields, _ = flatten_fields fi in List.iter (fun (_, kind, ty) -> if field_kind_repr kind = Fpublic then mark_loops_rec visited ty) fields | Some (_, l) -> List.iter (mark_loops_rec visited) (List.tl l) end end | Tfield(_, kind, ty1, ty2) when field_kind_repr kind = Fpublic -> mark_loops_rec visited ty1; mark_loops_rec visited ty2 | Tfield(_, _, _, ty2) -> mark_loops_rec visited ty2 | Tnil -> () | Tsubst _ -> () (* we do not print arguments *) | Tlink _ -> fatal_error "Printtyp.mark_loops_rec (2)" | Tpoly (ty, tyl) -> List.iter (fun t -> add t) tyl; mark_loops_rec visited ty | Tunivar _ -> Variable_names.reserve ty let mark_loops ty = mark_loops_rec [] ty let reset () = visited_objects := []; aliased := []; delayed := []; printed_aliases := [] end let prepare_type ty = Variable_names.reserve ty; Aliases.mark_loops ty let reset_except_conflicts () = Variable_names.reset_names (); Aliases.reset (); Internal_names.reset () let reset () = Ident_conflicts.reset (); reset_except_conflicts () let prepare_for_printing tyl = reset_except_conflicts (); List.iter prepare_type tyl let add_type_to_preparation = prepare_type (* Disabled in classic mode when printing an unification error *) let print_labels = ref true let with_labels b f = Misc.protect_refs [R (print_labels,b)] f let alias_nongen_row mode px ty = match get_desc ty with | Tvariant _ | Tobject _ -> if is_non_gen mode (Transient_expr.type_expr px) then Aliases.add_proxy px | _ -> () let rec tree_of_typexp mode ty = let px = proxy ty in if Aliases.is_printed_proxy px && not (Aliases.is_delayed px) then let non_gen = is_non_gen mode (Transient_expr.type_expr px) in let name = Variable_names.(name_of_type (new_var_name ~non_gen ty)) px in Otyp_var (non_gen, name) else let pr_typ () = let tty = Transient_expr.repr ty in match tty.desc with | Tvar _ -> let non_gen = is_non_gen mode ty in let name_gen = Variable_names.new_var_name ~non_gen ty in Otyp_var (non_gen, Variable_names.name_of_type name_gen tty) | Tarrow(l, ty1, ty2, _) -> let lab = if !print_labels || is_optional l then l else Nolabel in let t1 = if is_optional l then match get_desc ty1 with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "<hidden>" else tree_of_typexp mode ty1 in Otyp_arrow (lab, t1, tree_of_typexp mode ty2) | Ttuple tyl -> Otyp_tuple (tree_of_typlist mode tyl) | Tconstr(p, tyl, _abbrev) -> begin match best_type_path p with | Nth n -> tree_of_typexp mode (apply_nth n tyl) | Path(nso, p') -> Internal_names.add p'; let tyl' = apply_subst_opt nso tyl in Otyp_constr (tree_of_path (Some Type) p', tree_of_typlist mode tyl') end | Tvariant row -> let Row {fields; name; closed; _} = row_repr row in let fields = if closed then List.filter (fun (_, f) -> row_field_repr f <> Rabsent) fields else fields in let present = List.filter (fun (_, f) -> match row_field_repr f with | Rpresent _ -> true | _ -> false) fields in let all_present = List.length present = List.length fields in begin match name with | Some(p, tyl) when nameable_row row -> let out_variant = match best_type_path p with | Nth n -> tree_of_typexp mode (apply_nth n tyl) | Path(s, p) -> let id = tree_of_path (Some Type) p in let args = tree_of_typlist mode (apply_subst_opt s tyl) in Otyp_constr (id, args) in if closed && all_present then out_variant else let = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_typ out_variant, closed, tags) | _ -> let fields = List.map (tree_of_row_field mode) fields in let = if all_present then None else Some (List.map fst present) in Otyp_variant (Ovar_fields fields, closed, tags) end | Tobject (fi, nm) -> tree_of_typobject mode fi !nm | Tnil | Tfield _ -> tree_of_typobject mode ty None | Tsubst _ -> (* This case should only happen when debugging the compiler *) Otyp_stuff "<Tsubst>" | Tlink _ -> fatal_error "Out_type.tree_of_typexp" | Tpoly (ty, []) -> tree_of_typexp mode ty | Tpoly (ty, tyl) -> (*let print_names () = List.iter (fun (_, name) -> prerr_string (name ^ " ")) !names; prerr_string "; " in *) if tyl = [] then tree_of_typexp mode ty else begin let tyl = List.map Transient_expr.repr tyl in let old_delayed = !Aliases.delayed in (* Make the names delayed, so that the real type is printed once when used as proxy *) List.iter Aliases.add_delayed tyl; let tl = List.map Variable_names.(name_of_type new_name) tyl in let tr = Otyp_poly (tl, tree_of_typexp mode ty) in (* Forget names when we leave scope *) Variable_names.remove_names tyl; Aliases.delayed := old_delayed; tr end | Tunivar _ -> Otyp_var (false, Variable_names.(name_of_type new_name) tty) | Tpackage (p, fl) -> let p = best_module_type_path p in let fl = List.map (fun (li, ty) -> ( String.concat "." (Longident.flatten li), tree_of_typexp mode ty )) fl in Otyp_module (tree_of_path (Some Module_type) p, fl) in Aliases.remove_delay px; alias_nongen_row mode px ty; if Aliases.(is_aliased_proxy px && aliasable ty) then begin let non_gen = is_non_gen mode (Transient_expr.type_expr px) in Aliases.add_printed_proxy ~non_gen px; (* add_printed_alias chose a name, thus the name generator doesn't matter.*) let alias = Variable_names.(name_of_type (new_var_name ~non_gen ty)) px in Otyp_alias {non_gen; aliased = pr_typ (); alias } end else pr_typ () and tree_of_row_field mode (l, f) = match row_field_repr f with | Rpresent None | Reither(true, [], _) -> (l, false, []) | Rpresent(Some ty) -> (l, false, [tree_of_typexp mode ty]) | Reither(c, tyl, _) -> if c (* contradiction: constant constructor with an argument *) then (l, true, tree_of_typlist mode tyl) else (l, false, tree_of_typlist mode tyl) | Rabsent -> (l, false, [] (* actually, an error *)) and tree_of_typlist mode tyl = List.map (tree_of_typexp mode) tyl and tree_of_typobject mode fi nm = begin match nm with | None -> let pr_fields fi = let (fields, rest) = flatten_fields fi in let present_fields = List.fold_right (fun (n, k, t) l -> match field_kind_repr k with | Fpublic -> (n, t) :: l | _ -> l) fields [] in let sorted_fields = List.sort (fun (n, _) (n', _) -> String.compare n n') present_fields in tree_of_typfields mode rest sorted_fields in let (fields, open_row) = pr_fields fi in Otyp_object {fields; open_row} | Some (p, _ty :: tyl) -> let args = tree_of_typlist mode tyl in let p' = best_type_path_simple p in Otyp_class (tree_of_best_type_path p p', args) | _ -> fatal_error "Out_type.tree_of_typobject" end and tree_of_typfields mode rest = function | [] -> let open_row = match get_desc rest with | Tvar _ | Tunivar _ | Tconstr _-> true | Tnil -> false | _ -> fatal_error "typfields (1)" in ([], open_row) | (s, t) :: l -> let field = (s, tree_of_typexp mode t) in let (fields, rest) = tree_of_typfields mode rest l in (field :: fields, rest) let typexp mode ppf ty = !Oprint.out_type ppf (tree_of_typexp mode ty) let prepared_type_expr ppf ty = typexp Type ppf ty (* "Half-prepared" type expression: [ty] should have had its names reserved, but should not have had its loops marked. *) let type_expr_with_reserved_names ppf ty = Aliases.reset (); Aliases.mark_loops ty; prepared_type_expr ppf ty let prepared_type_scheme ppf ty = typexp Type_scheme ppf ty (* Print one type declaration *) let tree_of_constraints params = List.fold_right (fun ty list -> let ty' = unalias ty in if proxy ty != proxy ty' then let tr = tree_of_typexp Type_scheme ty in (tr, tree_of_typexp Type_scheme ty') :: list else list) params [] let filter_params tyl = let params = List.fold_left (fun tyl ty -> if List.exists (eq_type ty) tyl then newty2 ~level:generic_level (Ttuple [ty]) :: tyl else ty :: tyl) (* Two parameters might be identical due to a constraint but we need to print them differently in order to make the output syntactically valid. We use [Ttuple [ty]] because it is printed as [ty]. *) (* Replacing fold_left by fold_right does not work! *) [] tyl in List.rev params let prepare_type_constructor_arguments = function | Cstr_tuple l -> List.iter prepare_type l | Cstr_record l -> List.iter (fun l -> prepare_type l.ld_type) l let tree_of_label l = { olab_name = Ident.name l.ld_id; olab_mut = l.ld_mutable; olab_type = tree_of_typexp Type l.ld_type; } let tree_of_constructor_arguments = function | Cstr_tuple l -> tree_of_typlist Type l | Cstr_record l -> [ Otyp_record (List.map tree_of_label l) ] let tree_of_single_constructor cd = let name = Ident.name cd.cd_id in let ret = Option.map (tree_of_typexp Type) cd.cd_res in let args = tree_of_constructor_arguments cd.cd_args in { ocstr_name = name; ocstr_args = args; ocstr_return_type = ret; } (* When printing GADT constructor, we need to forget the naming decision we took for the type parameters and constraints. Indeed, in {[ type 'a t = X: 'a -> 'b t ]} It is fine to print both the type parameter ['a] and the existentially quantified ['a] in the definition of the constructor X as ['a] *) let tree_of_constructor_in_decl cd = match cd.cd_res with | None -> tree_of_single_constructor cd | Some _ -> Variable_names.with_local_names (fun () -> tree_of_single_constructor cd) let prepare_decl id decl = let params = filter_params decl.type_params in begin match decl.type_manifest with | Some ty -> let vars = free_variables ty in List.iter (fun ty -> if get_desc ty = Tvar (Some "_") && List.exists (eq_type ty) vars then set_type_desc ty (Tvar None)) params | None -> () end; List.iter Aliases.add params; List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; let ty_manifest = match decl.type_manifest with | None -> None | Some ty -> let ty = (* Special hack to hide variant name *) match get_desc ty with Tvariant row -> begin match row_name row with Some (Pident id', _) when Ident.same id id' -> newgenty (Tvariant (set_row_name row None)) | _ -> ty end | _ -> ty in prepare_type ty; Some ty in begin match decl.type_kind with | Type_abstract _ -> () | Type_variant (cstrs, _rep) -> List.iter (fun c -> prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res) cstrs | Type_record(l, _rep) -> List.iter (fun l -> prepare_type l.ld_type) l | Type_open -> () end; ty_manifest, params let tree_of_type_decl id decl = let ty_manifest, params = prepare_decl id decl in let type_param ot_variance = function | Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} in let type_defined decl = let abstr = match decl.type_kind with Type_abstract _ -> decl.type_manifest = None || decl.type_private = Private | Type_record _ -> decl.type_private = Private | Type_variant (tll, _rep) -> decl.type_private = Private || List.exists (fun cd -> cd.cd_res <> None) tll | Type_open -> decl.type_manifest = None in let vari = List.map2 (fun ty v -> let is_var = is_Tvar ty in if abstr || not is_var then let inj = type_kind_is_abstract decl && Variance.mem Inj v && match decl.type_manifest with | None -> true | Some ty -> (* only abstract or private row types *) decl.type_private = Private && Btype.is_constr_row ~allow_ident:true (Btype.row_of_type ty) and (co, cn) = Variance.get_upper v in (if not cn then Covariant else if not co then Contravariant else NoVariance), (if inj then Injective else NoInjectivity) else (NoVariance, NoInjectivity)) decl.type_params decl.type_variance in (Ident.name id, List.map2 (fun ty cocn -> type_param cocn (tree_of_typexp Type ty)) params vari) in let tree_of_manifest ty1 = match ty_manifest with | None -> ty1 | Some ty -> Otyp_manifest (tree_of_typexp Type ty, ty1) in let (name, args) = type_defined decl in let constraints = tree_of_constraints params in let ty, priv, unboxed = match decl.type_kind with | Type_abstract _ -> begin match ty_manifest with | None -> (Otyp_abstract, Public, false) | Some ty -> tree_of_typexp Type ty, decl.type_private, false end | Type_variant (cstrs, rep) -> tree_of_manifest (Otyp_sum (List.map tree_of_constructor_in_decl cstrs)), decl.type_private, (rep = Variant_unboxed) | Type_record(lbls, rep) -> tree_of_manifest (Otyp_record (List.map tree_of_label lbls)), decl.type_private, (match rep with Record_unboxed _ -> true | _ -> false) | Type_open -> tree_of_manifest Otyp_open, decl.type_private, false in { otype_name = name; otype_params = args; otype_type = ty; otype_private = priv; otype_immediate = Type_immediacy.of_attributes decl.type_attributes; otype_unboxed = unboxed; otype_cstrs = constraints } let add_type_decl_to_preparation id decl = ignore @@ prepare_decl id decl let tree_of_prepared_type_decl id decl = tree_of_type_decl id decl let tree_of_type_decl id decl = reset_except_conflicts(); tree_of_type_decl id decl let add_constructor_to_preparation c = prepare_type_constructor_arguments c.cd_args; Option.iter prepare_type c.cd_res let prepared_constructor ppf c = !Oprint.out_constr ppf (tree_of_single_constructor c) let tree_of_type_declaration id decl rs = Osig_type (tree_of_type_decl id decl, tree_of_rec rs) let tree_of_prepared_type_declaration id decl rs = Osig_type (tree_of_prepared_type_decl id decl, tree_of_rec rs) let add_type_declaration_to_preparation id decl = add_type_decl_to_preparation id decl let prepared_type_declaration id ppf decl = !Oprint.out_sig_item ppf (tree_of_prepared_type_declaration id decl Trec_first) (* When printing extension constructor, it is important to ensure that after printing the constructor, we are still in the scope of the constructor. For GADT constructor, this can be done by printing the type parameters inside their own isolated scope. This ensures that in {[ type 'b t += A: 'b -> 'b any t ]} the type parameter `'b` is not bound when printing the type variable `'b` from the constructor definition from the type parameter. Contrarily, for non-gadt constructor, we must keep the same scope for the type parameters and the constructor because a type constraint may have changed the name of the type parameter: {[ type -'a t = .. constraint <x:'a. 'a t -> 'a> = 'a (* the universal 'a is here to steal the name 'a from the type parameter *) type 'a t = X of 'a ]} *) let add_extension_constructor_to_preparation ext = let ty_params = filter_params ext.ext_type_params in List.iter Aliases.add ty_params; List.iter prepare_type ty_params; prepare_type_constructor_arguments ext.ext_args; Option.iter prepare_type ext.ext_ret_type let extension_constructor_args_and_ret_type_subtree ext_args ext_ret_type = let ret = Option.map (tree_of_typexp Type) ext_ret_type in let args = tree_of_constructor_arguments ext_args in (args, ret) let prepared_tree_of_extension_constructor id ext es = let type_path = best_type_path_simple ext.ext_type_path in let ty_name = Path.name type_path in let ty_params = filter_params ext.ext_type_params in let type_param = function | Otyp_var (_, id) -> id | _ -> "?" in let param_scope f = match ext.ext_ret_type with | None -> (* normal constructor: same scope for parameters and the constructor *) f () | Some _ -> (* gadt constructor: isolated scope for the type parameters *) Variable_names.with_local_names f in let ty_params = param_scope (fun () -> List.iter (Aliases.add_printed ~non_gen:false) ty_params; List.map (fun ty -> type_param (tree_of_typexp Type ty)) ty_params ) in let name = Ident.name id in let args, ret = extension_constructor_args_and_ret_type_subtree ext.ext_args ext.ext_ret_type in let ext = { oext_name = name; oext_type_name = ty_name; oext_type_params = ty_params; oext_args = args; oext_ret_type = ret; oext_private = ext.ext_private } in let es = match es with Text_first -> Oext_first | Text_next -> Oext_next | Text_exception -> Oext_exception in Osig_typext (ext, es) let tree_of_extension_constructor id ext es = reset_except_conflicts (); add_extension_constructor_to_preparation ext; prepared_tree_of_extension_constructor id ext es let prepared_extension_constructor id ppf ext = !Oprint.out_sig_item ppf (prepared_tree_of_extension_constructor id ext Text_first) (* Print a value declaration *) let tree_of_value_description id decl = (* Format.eprintf "@[%a@]@." raw_type_expr decl.val_type; *) let id = Ident.name id in let () = prepare_for_printing [decl.val_type] in let ty = tree_of_typexp Type_scheme decl.val_type in let vd = { oval_name = id; oval_type = ty; oval_prims = []; oval_attributes = [] } in let vd = match decl.val_kind with | Val_prim p -> Primitive.print p vd | _ -> vd in Osig_value vd (* Print a class type *) let method_type priv ty = match priv, get_desc ty with | Mpublic, Tpoly(ty, tyl) -> (ty, tyl) | _ , _ -> (ty, []) let prepare_method _lab (priv, _virt, ty) = let ty, _ = method_type priv ty in prepare_type ty let tree_of_method mode (lab, priv, virt, ty) = let (ty, tyl) = method_type priv ty in let tty = tree_of_typexp mode ty in Variable_names.remove_names (List.map Transient_expr.repr tyl); let priv = priv <> Mpublic in let virt = virt = Virtual in Ocsg_method (lab, priv, virt, tty) let rec prepare_class_type params = function | Cty_constr (_p, tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !Aliases.visited_objects || not (List.for_all is_Tvar params) || List.exists (deep_occur row) tyl then prepare_class_type params cty else List.iter prepare_type tyl | Cty_signature sign -> (* Self may have a name *) let px = proxy sign.csig_self_row in if List.memq px !Aliases.visited_objects then Aliases.add_proxy px else Aliases.(visited_objects := px :: !visited_objects); Vars.iter (fun _ (_, _, ty) -> prepare_type ty) sign.csig_vars; Meths.iter prepare_method sign.csig_meths | Cty_arrow (_, ty, cty) -> prepare_type ty; prepare_class_type params cty let rec tree_of_class_type mode params = function | Cty_constr (p', tyl, cty) -> let row = Btype.self_type_row cty in if List.memq (proxy row) !Aliases.visited_objects || not (List.for_all is_Tvar params) then tree_of_class_type mode params cty else let nso, p' = best_class_type_path p' in let tyl = apply_subst_opt nso tyl in let namespace = Namespace.best_class_namespace p' in Octy_constr (tree_of_path namespace p', tree_of_typlist Type_scheme tyl) | Cty_signature sign -> let px = proxy sign.csig_self_row in let self_ty = if Aliases.is_aliased_proxy px then Some (Otyp_var (false, Variable_names.(name_of_type new_name) px)) else None in let csil = [] in let csil = List.fold_left (fun csil (ty1, ty2) -> Ocsg_constraint (ty1, ty2) :: csil) csil (tree_of_constraints params) in let all_vars = Vars.fold (fun l (m, v, t) all -> (l, m, v, t) :: all) sign.csig_vars [] in (* Consequence of PR#3607: order of Map.fold has changed! *) let all_vars = List.rev all_vars in let csil = List.fold_left (fun csil (l, m, v, t) -> Ocsg_value (l, m = Mutable, v = Virtual, tree_of_typexp mode t) :: csil) csil all_vars in let all_meths = Meths.fold (fun l (p, v, t) all -> (l, p, v, t) :: all) sign.csig_meths [] in let all_meths = List.rev all_meths in let csil = List.fold_left (fun csil meth -> tree_of_method mode meth :: csil) csil all_meths in Octy_signature (self_ty, List.rev csil) | Cty_arrow (l, ty, cty) -> let lab = if !print_labels || is_optional l then l else Nolabel in let tr = if is_optional l then match get_desc ty with | Tconstr(path, [ty], _) when Path.same path Predef.path_option -> tree_of_typexp mode ty | _ -> Otyp_stuff "<hidden>" else tree_of_typexp mode ty in Octy_arrow (lab, tr, tree_of_class_type mode params cty) let tree_of_class_param param variance = let ot_variance = if is_Tvar param then Asttypes.(NoVariance, NoInjectivity) else variance in match tree_of_typexp Type_scheme param with Otyp_var (ot_non_gen, ot_name) -> {ot_non_gen; ot_name; ot_variance} | _ -> {ot_non_gen=false; ot_name="?"; ot_variance} let class_variance = let open Variance in let open Asttypes in List.map (fun v -> (if not (mem May_pos v) then Contravariant else if not (mem May_neg v) then Covariant else NoVariance), NoInjectivity) let tree_of_class_declaration id cl rs = let params = filter_params cl.cty_params in reset_except_conflicts (); List.iter Aliases.add params; prepare_class_type params cl.cty_type; let px = proxy (Btype.self_type_row cl.cty_type) in List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; if Aliases.is_aliased_proxy px then Aliases.add_printed_proxy ~non_gen:false px; let vir_flag = cl.cty_new = None in Osig_class (vir_flag, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.cty_variance), tree_of_class_type Type_scheme params cl.cty_type, tree_of_rec rs) let tree_of_cltype_declaration id cl rs = let params = cl.clty_params in reset_except_conflicts (); List.iter Aliases.add params; prepare_class_type params cl.clty_type; let px = proxy (Btype.self_type_row cl.clty_type) in List.iter prepare_type params; List.iter (Aliases.add_printed ~non_gen:false) params; Aliases.mark_as_printed px; let sign = Btype.signature_of_class_type cl.clty_type in let has_virtual_vars = Vars.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_vars false in let has_virtual_meths = Meths.fold (fun _ (_,vr,_) b -> vr = Virtual || b) sign.csig_meths false in Osig_class_type (has_virtual_vars || has_virtual_meths, Ident.name id, List.map2 tree_of_class_param params (class_variance cl.clty_variance), tree_of_class_type Type_scheme params cl.clty_type, tree_of_rec rs) (* Print a module type *) (* Wrap env from merlin: let wrap_env fenv ftree arg = let env = !printing_env in let env' = Env.update_short_paths (fenv env) in set_printing_env env'; let tree = ftree arg in set_printing_env env; tree *) let wrap_env fenv ftree arg = (* We save the current value of the short-path cache *) (* From keys *) let env = !printing_env in let old_pers = !printing_pers in (* to data *) let old_map = !printing_map in let old_depth = !printing_depth in let old_cont = !printing_cont in set_printing_env (Env.update_short_paths (fenv env)); let tree = ftree arg in if !Clflags.real_paths || same_printing_env env then () (* our cached key is still live in the cache, and we want to keep all progress made on the computation of the [printing_map] *) else begin (* we restore the snapshotted cache before calling set_printing_env *) printing_old := env; printing_pers := old_pers; printing_depth := old_depth; printing_cont := old_cont; printing_map := old_map end; set_printing_env env; tree let dummy = { type_params = []; type_arity = 0; type_kind = Type_abstract Definition; type_private = Public; type_manifest = None; type_variance = []; type_separability = []; type_is_newtype = false; type_expansion_scope = Btype.lowest_level; type_loc = Location.none; type_attributes = []; type_immediate = Unknown; type_unboxed_default = false; type_uid = Uid.internal_not_actually_unique; } (** we hide items being defined from short-path to avoid shortening [type t = Path.To.t] into [type t = t]. *) let ident_sigitem = function | Types.Sig_type(ident,_,_,_) -> {hide=true;ident} | Types.Sig_class(ident,_,_,_) | Types.Sig_class_type (ident,_,_,_) | Types.Sig_module(ident,_, _,_,_) | Types.Sig_value (ident,_,_) | Types.Sig_modtype (ident,_,_) | Types.Sig_typext (ident,_,_,_) -> {hide=false; ident } let hide ids env = let hide_id id env = (* Global idents cannot be renamed *) if id.hide && not (Ident.global id.ident) then Env.add_type ~check:false (Ident.rename_no_exn id.ident) dummy env else env in List.fold_right hide_id ids env let ids f = let ids f = wrap_env (hide ids) (Ident_names.with_hidden ids) f in if not !Clflags.real_paths then with_hidden_in_printing_env ids f else Ident_names.with_hidden ids f let add_sigitem env x = Env.add_signature (Signature_group.flatten x) env let rec tree_of_modtype ?(ellipsis=false) = function | Mty_ident p -> let p = best_module_path p in Omty_ident (tree_of_path (Some Module_type) p) | Mty_signature sg -> Omty_signature (if ellipsis then [Osig_ellipsis] else tree_of_signature sg) | Mty_functor(param, ty_res) -> let param, env = tree_of_functor_parameter param in let res = wrap_env env (tree_of_modtype ~ellipsis) ty_res in Omty_functor (param, res) | Mty_alias p -> let p = best_module_path p in Omty_alias (tree_of_path (Some Module) p) | Mty_for_hole -> Omty_hole and tree_of_functor_parameter = function | Unit -> None, fun k -> k | Named (param, ty_arg) -> let name, env = match param with | None -> None, fun env -> env | Some id -> Some (Ident.name id), Env.add_module ~arg:true id Mp_present ty_arg in Some (name, tree_of_modtype ~ellipsis:false ty_arg), env and tree_of_signature sg = wrap_env (fun env -> env)(fun sg -> let tree_groups = tree_of_signature_rec !printing_env sg in List.concat_map (fun (_env,l) -> List.map snd l) tree_groups ) sg and tree_of_signature_rec env' sg = let structured = List.of_seq (Signature_group.seq sg) in let collect_trees_of_rec_group group = let env = !printing_env in let env', group_trees = trees_of_recursive_sigitem_group env group in set_printing_env env'; (env, group_trees) in set_printing_env env'; List.map collect_trees_of_rec_group structured and trees_of_recursive_sigitem_group env (syntactic_group: Signature_group.rec_group) = let display (x:Signature_group.sig_item) = x.src, tree_of_sigitem x.src in let env = Env.add_signature syntactic_group.pre_ghosts env in match syntactic_group.group with | Not_rec x -> add_sigitem env x, [display x] | Rec_group items -> let ids = List.map (fun x -> ident_sigitem x.Signature_group.src) items in List.fold_left add_sigitem env items, with_hidden_items ids (fun () -> List.map display items) and tree_of_sigitem = function | Sig_value(id, decl, _) -> tree_of_value_description id decl | Sig_type(id, decl, rs, _) -> tree_of_type_declaration id decl rs | Sig_typext(id, ext, es, _) -> tree_of_extension_constructor id ext es | Sig_module(id, _, md, rs, _) -> let ellipsis = List.exists (function | Parsetree.{attr_name = {txt="..."}; attr_payload = PStr []} -> true | _ -> false) md.md_attributes in tree_of_module id md.md_type rs ~ellipsis | Sig_modtype(id, decl, _) -> tree_of_modtype_declaration id decl | Sig_class(id, decl, rs, _) -> tree_of_class_declaration id decl rs | Sig_class_type(id, decl, rs, _) -> tree_of_cltype_declaration id decl rs and tree_of_modtype_declaration id decl = let mty = match decl.mtd_type with | None -> Omty_abstract | Some mty -> tree_of_modtype mty in Osig_modtype (Ident.name id, mty) and tree_of_module id ?ellipsis mty rs = Osig_module (Ident.name id, tree_of_modtype ?ellipsis mty, tree_of_rec rs) (* For the toplevel: merge with tree_of_signature? *) let print_items showval env x = Variable_names.refresh_weak(); Ident_conflicts.reset (); let extend_val env (sigitem,outcome) = outcome, showval env sigitem in let post_process (env,l) = List.map (extend_val env) l in List.concat_map post_process @@ tree_of_signature_rec env x let same_path t t' = eq_type t t' || match get_desc t, get_desc t' with | Tconstr(p,tl,_), Tconstr(p',tl',_) -> begin match best_type_path p, best_type_path p' with | Nth n, Nth n' when n = n' -> true | Path(nso, p), Path(nso', p') when Path.same p p' -> let tl = apply_subst_opt nso tl in let tl' = apply_subst_opt nso' tl' in List.length tl = List.length tl' && List.for_all2 eq_type tl tl' | _ -> false end | _ -> false type 'a diff = Same of 'a | Diff of 'a * 'a let trees_of_type_expansion mode Errortrace.{ty = t; expanded = t'} = Aliases.reset (); Aliases.mark_loops t; if same_path t t' then begin Aliases.add_delayed (proxy t); Same (tree_of_typexp mode t) end else begin Aliases.mark_loops t'; let t' = if proxy t == proxy t' then unalias t' else t' in (* beware order matter due to side effect, e.g. when printing object types *) let first = tree_of_typexp mode t in let second = tree_of_typexp mode t' in if first = second then Same first else Diff(first,second) end let pp_type ppf t = Style.as_inline_code !Oprint.out_type ppf t let pp_type_expansion ppf = function | Same t -> pp_type ppf t | Diff(t,t') -> fprintf ppf "@[<2>%a@ =@ %a@]" pp_type t pp_type t' (* Hide variant name and var, to force printing the expanded type *) let hide_variant_name t = let open Types in match get_desc t with | Tvariant row -> let Row {fields; more; name; fixed; closed} = row_repr row in if name = None then t else Btype.newty2 ~level:(get_level t) (Tvariant (create_row ~fields ~fixed ~closed ~name:None ~more:(Ctype.newvar2 (get_level more)))) | _ -> t let prepare_expansion Errortrace.{ty; expanded} = let expanded = hide_variant_name expanded in Variable_names.reserve ty; if not (same_path ty expanded) then Variable_names.reserve expanded; Errortrace.{ty; expanded} (* Adapt functions to exposed interface *) let namespaced_tree_of_path n = tree_of_path (Some n) let tree_of_path ?disambiguation p = tree_of_path ?disambiguation None p let tree_of_modtype = tree_of_modtype ~ellipsis:false let tree_of_type_declaration ident td rs = with_hidden_items [{hide=true; ident}] (fun () -> tree_of_type_declaration ident td rs) let tree_of_class_type kind cty = tree_of_class_type kind [] cty let prepare_class_type cty = prepare_class_type [] cty let tree_of_type_path p = let (p', s) = best_type_path_original p in let p'' = if (s = Id) then p' else p in tree_of_best_type_path p p'' let wrap_printing_env ?(error = true) = wrap_printing_env ~error let shorten_type_path env p = wrap_printing_env env (fun () -> best_type_path_simple p) let shorten_module_type_path env p = wrap_printing_env env (fun () -> best_module_type_path p) let shorten_module_path env p = wrap_printing_env env (fun () -> best_module_path p) let shorten_class_type_path env p = wrap_printing_env env (fun () -> best_class_type_path_simple p) let () = Env.shorten_module_path := shorten_module_path
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>