package memtrace_viewer
Interactive memory profiler based on Memtrace
Install
Dune Dependency
Authors
Maintainers
Sources
memtrace_viewer-v0.16.0.tar.gz
sha256=bb50fc48fef748dffe7ff1e151021b1361500c432a8c2991065fd31fd474f817
doc/src/memtrace_viewer.common/data.ml.html
Source file data.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
open! Core include Data_intf module Call_site = struct module T = struct type t = { defname : string ; filename : string ; position : (string[@compare.ignore] [@hash.ignore]) ; line : int ; start_char : int ; end_char : int } [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make (T) include Hashable.Make (T) let create ~filename ~line ~start_char ~end_char ~defname = let position = sprintf "%d:%d-%d" line start_char end_char in { defname; filename; position; line; start_char; end_char } ;; let defname t = t.defname let filename t = t.filename let position t = t.position let to_string { defname; filename; position; _ } = sprintf "%s (%s:%s)" defname filename position ;; module Debug = struct type nonrec t = t let sexp_of_t t = Sexp.Atom (t |> to_string) end end module Allocation_site = struct module T = struct type t = Call_site.t [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make (T) include Hashable.Make (T) let of_call_site t = t let defname = Call_site.defname let filename = Call_site.filename let position = Call_site.position let short_name t = sprintf "%s:%s" (filename t) (position t) let full_name t = sprintf "Allocation in %s (%s:%s)" (defname t) (filename t) (position t) ;; module Debug = struct type nonrec t = t let sexp_of_t t = Sexp.Atom (full_name t) end end module Function = struct module T = struct type t = { defname : string } [@@unboxed] [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make_binable (T) include Hashable.Make (T) let create ~defname = { defname } let full_name { defname } ~call_sites = match call_sites with | None -> defname | Some call_sites -> let locs_str = match call_sites with | [] -> (* possible if all call sites are actually allocation sites *) "no outgoing calls" | first_call_site :: remaining_call_sites -> (* Since the filenames are all the same, include the filename for the first call site only. *) let first_loc_str = sprintf "%s:%s" (Call_site.filename first_call_site) (Call_site.position first_call_site) in let remaining_loc_strs = List.map ~f:Call_site.position remaining_call_sites in String.concat ~sep:", " (first_loc_str :: remaining_loc_strs) in sprintf "%s (%s)" defname locs_str ;; let defname t = t.defname module Debug = struct type nonrec t = t let sexp_of_t t = Sexp.Atom (defname t) end end module Location = struct module T = struct type t = | Function of Function.t | Allocation_site of Allocation_site.t | Allocator | Toplevel | Dummy [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make (T) include Hashable.Make (T) let create_function func = Function func let create_allocation_site alloc_site = Allocation_site alloc_site let allocator = Allocator let toplevel = Toplevel let dummy = Dummy let is_allocator = function | Allocator -> true | _ -> false ;; let is_toplevel = function | Toplevel -> true | _ -> false ;; let is_dummy = function | Dummy -> true | _ -> false ;; let is_special = function | Allocator | Toplevel | Dummy -> true | Function _ | Allocation_site _ -> false ;; let allocator_string = "(allocator)" let toplevel_string = "(toplevel)" let dummy_string = "(no location)" let defname = function | Function { defname; _ } -> defname | Allocation_site { defname; _ } -> defname | Allocator -> allocator_string | Toplevel -> toplevel_string | Dummy -> dummy_string ;; let full_name t ~call_sites = match t with | Function func -> Function.full_name func ~call_sites | Allocation_site alloc_site -> Allocation_site.full_name alloc_site | Allocator -> allocator_string | Toplevel -> toplevel_string | Dummy -> dummy_string ;; module Debug = struct type nonrec t = t = | Function of Function.Debug.t | Allocation_site of Call_site.Debug.t | Allocator | Toplevel | Dummy [@@deriving sexp_of] end end module Call_sites = struct type t = Call_site.t list Function.Table.t [@@deriving sexp] let create list = list |> List.filter_map ~f:(fun (func, call_sites) -> if List.is_empty call_sites then None else Some (func, call_sites |> List.sort ~compare:Call_site.compare)) |> Function.Table.of_alist_exn ;; let for_function t func = Hashtbl.find t func |> Option.value ~default:[] let for_location t (loc : Location.t) = match loc with | Function func -> for_function t func | Allocation_site _ | Allocator | Toplevel | Dummy -> [] ;; module Serialized = struct type t = (Function.t * Call_site.t list) list [@@deriving bin_io, sexp] let serialize t = t |> Hashtbl.to_alist let unserialize t = t |> Function.Table.of_alist_exn end end module Entry = struct type t = { allocations : Byte_units.Stable.V2.t ; direct_allocations : Byte_units.Stable.V2.t ; allocations_string : string ; percentage_string : string ; is_heavy : bool } [@@deriving sexp, bin_io, fields] let empty = let allocations = Byte_units.zero in let direct_allocations = Byte_units.zero in let is_heavy = false in let allocations_string = Byte_units.Short.to_string allocations in let percentage_string = "0%" in { allocations; direct_allocations; is_heavy; allocations_string; percentage_string } ;; let create ~total_allocations_in_trie ~allocations ~direct_allocations ~is_heavy = let allocations_string = Byte_units.Short.to_string allocations in let percentage = 100. *. Byte_units.(allocations // total_allocations_in_trie) in let percentage_string = Format.sprintf "%.1f%%" percentage in { allocations; direct_allocations; is_heavy; allocations_string; percentage_string } ;; module Debug = struct type nonrec t = t let sexp_of_t t = [%sexp_of: string] t.allocations_string end end module Metadata = struct type t = { total_allocations : Byte_units.Stable.V2.t } [@@deriving sexp, bin_io] end module Fragment_trie0 = Fragment_trie.Make (Location) (Entry) (Metadata) module Backtrace = struct include Fragment_trie0.Backtrace let is_trivial = function | [] -> true | [ loc ] -> Location.is_special loc | _ -> false ;; end module Graph = struct type t = { points : (Time_ns.Span.t * Byte_units.Stable.V2.t) list ; max_x : Time_ns.Span.t ; max_y : Byte_units.Stable.V2.t } [@@deriving sexp, bin_io, fields] let create points = let max_x, max_y = List.fold_left points ~init:(Time_ns.Span.zero, Byte_units.zero) ~f:(fun (_, max_y) (x, y) -> x, Byte_units.max max_y y) in { points; max_x; max_y } ;; end module Fragment = struct include Fragment_trie0.Fragment let is_trivial t = is_empty t || (is_singleton t && Location.is_special (first ~orient:Callees t)) ;; end module type Suffix_tree = Fragment_trie0.Suffix_tree (* Since every fragment trie has the special singleton nodes representing the toplevel and the allocation site, we need to build a bit of structure even for an "empty" trie *) module Empty_suffix_tree : Suffix_tree with type t = unit = struct module Location = Location module Entry = Entry module Node = struct module Id = struct module T = struct type t = | Empty | Allocator | Toplevel [@@deriving sexp, hash, compare] end include T include Hashable.Make (T) end type t = Id.t let id t = t let entry _t = Entry.empty let incoming_edge (t : t) : Location.t = match t with | Empty -> Dummy | Allocator -> Allocator | Toplevel -> Toplevel ;; let suffix (t : t) : t option = match t with | Empty -> None | Allocator | Toplevel -> Some Empty ;; let children (t : t) : (Location.t, t) List.Assoc.t = match t with | Empty -> [ Allocator, Allocator; Toplevel, Toplevel ] | Allocator | Toplevel -> [] ;; let representative t = t module Debug = struct type nonrec t = Id.t [@@deriving sexp_of] end end type t = unit let root () : Node.t = Empty end module Fragment_trie = struct include Fragment_trie0.Trie let total_allocations t = (metadata t).total_allocations let empty = let suffix_tree : Empty_suffix_tree.t = () in let metadata : Metadata.t = { total_allocations = Byte_units.zero } in of_suffix_tree (module Empty_suffix_tree) suffix_tree ~metadata ;; let of_suffix_tree (type tree) (module Suffix_tree : Suffix_tree with type t = tree) (tree : tree) ~total_allocations = let metadata : Metadata.t = { total_allocations } in let is_empty_tree = let children_of_root = Suffix_tree.Node.children (Suffix_tree.root tree) in List.is_empty children_of_root in if is_empty_tree then (* Ensure that we still have the special singleton nodes *) empty else of_suffix_tree (module Suffix_tree) tree ~metadata ;; let toplevel_fragment t = find t [ Toplevel ] |> Option.value_exn let allocator_fragment t = find t [ Allocator ] |> Option.value_exn end module Info = struct type t = { sample_rate : float ; word_size : Byte_units.Stable.V2.t ; executable_name : string ; host_name : string ; ocaml_runtime_params : string ; pid : Int64.t ; start_time : Time_ns.Stable.Alternate_sexp.V1.t ; context : string option } [@@deriving sexp, bin_io] end type t = { graph : Graph.t ; filtered_graph : Graph.t option ; trie : Fragment_trie.t ; total_allocations_unfiltered : Byte_units.t ; peak_allocations : Byte_units.t ; peak_allocations_time : Time_ns.Span.t ; call_sites : Call_sites.t ; hot_paths : Fragment.t list ; hot_locations : Fragment.t list ; info : Info.t option } module Serialized = struct type t = { graph : Graph.t ; filtered_graph : Graph.t option ; serialized_trie : Fragment_trie.Serialized.t ; total_allocations_unfiltered : Byte_units.Stable.V2.t ; peak_allocations : Byte_units.Stable.V2.t ; peak_allocations_time : Time_ns.Span.t ; serialized_call_sites : Call_sites.Serialized.t ; hot_path_backtraces : Backtrace.t list ; hot_locations : Location.t list ; info : Info.t option } [@@deriving sexp, bin_io] let serialize { hot_paths ; hot_locations ; graph ; filtered_graph ; trie ; total_allocations_unfiltered ; peak_allocations ; peak_allocations_time ; call_sites ; info } = let hot_path_backtraces = List.map ~f:Fragment.backtrace hot_paths in let hot_locations = List.map ~f:(Fragment.first ~orient:Callers) hot_locations in let serialized_trie = Fragment_trie.Serialized.serialize trie in let serialized_call_sites = Call_sites.Serialized.serialize call_sites in { hot_path_backtraces ; hot_locations ; graph ; filtered_graph ; serialized_trie ; total_allocations_unfiltered ; peak_allocations ; peak_allocations_time ; serialized_call_sites ; info } ;; let unserialize { hot_path_backtraces ; hot_locations ; graph ; filtered_graph ; serialized_trie ; total_allocations_unfiltered ; peak_allocations ; peak_allocations_time ; serialized_call_sites ; info } = let trie = Fragment_trie.Serialized.unserialize serialized_trie in let call_sites = Call_sites.Serialized.unserialize serialized_call_sites in let hot_paths = hot_path_backtraces |> List.map ~f:(fun backtrace -> Fragment_trie.find trie backtrace |> Option.value_exn) in let hot_locations = hot_locations |> List.map ~f:(fun location -> Fragment_trie.find_singleton trie location |> Option.value_exn) in { hot_paths ; hot_locations ; graph ; filtered_graph ; trie ; total_allocations_unfiltered ; peak_allocations ; peak_allocations_time ; call_sites ; info } ;; end include Sexpable.Of_sexpable (Serialized) (struct type nonrec t = t let to_sexpable = Serialized.serialize let of_sexpable = Serialized.unserialize end) let empty = { graph = Graph.create [] ; filtered_graph = None ; trie = Fragment_trie.empty ; total_allocations_unfiltered = Byte_units.zero ; peak_allocations = Byte_units.zero ; peak_allocations_time = Time_ns.Span.zero ; call_sites = Call_sites.create [] ; hot_paths = [] ; hot_locations = [] ; info = None } ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>