package memtrace_viewer
Interactive memory profiler based on Memtrace
Install
Dune Dependency
Authors
Maintainers
Sources
memtrace_viewer-v0.16.0.tar.gz
sha256=bb50fc48fef748dffe7ff1e151021b1361500c432a8c2991065fd31fd474f817
doc/src/memtrace_viewer.common/fragment_trie.ml.html
Source file fragment_trie.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
open! Core include Fragment_trie_intf let enable_invariants = Ppx_inline_test_lib.am_running (* Pull this up out of the applicative functor *) module Fragment_id = Identifier.Make () module Make (Location : Location) (Entry : Entry) (Metadata : Metadata) : S with module Location := Location and module Entry := Entry and module Metadata := Metadata = struct module type Suffix_tree = Suffix_tree with type location := Location.t and type entry := Entry.t module Backtrace = struct module T = struct type t = Location.t list [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make_binable (T) module Debug = struct type t = Location.Debug.t list [@@deriving sexp_of] end module Reversed : sig type t [@@deriving sexp, bin_io, compare, hash] include Comparable.S_binable with type t := t val nil : t val cons : Location.t -> t -> t val append : t -> t -> t val of_forward : Location.t list -> t val of_reversed_list : Location.t list -> t val elements : t -> Location.t list val head_and_tail : t -> (Location.t * t) option val hd : t -> Location.t option val tl : t -> t option module Debug : sig type nonrec t = t [@@deriving sexp_of] end end = struct module T = T include T include Comparable.Make_binable (T) let nil = [] let cons loc t = loc :: t let append t1 t2 = t1 @ t2 let of_forward t = List.rev t let of_reversed_list t = t let elements t = t let hd = function | [] -> None | loc :: _ -> Some loc ;; let tl = function | [] -> None | _ :: rest -> Some rest ;; let head_and_tail = function | [] -> None | loc :: t -> Some (loc, t) ;; module Debug = struct type t = Location.Debug.t list [@@deriving sexp_of] end end let of_reversed (t : Reversed.t) = List.rev (Reversed.elements t) end module Fragment = struct module Id = Fragment_id type t = { id : Id.t ; mutable entry : Entry.t ; mutable first_caller : Location.t ; last_callee : Location.t ; mutable retraction_by_caller : t ; mutable retraction_by_callee : t ; mutable extensions_by_caller : (Location.t, t) List.Assoc.t ; mutable extensions_by_callee : (Location.t, t) List.Assoc.t ; mutable representative : t ; mutable length : int } [@@deriving fields] let is_empty t = phys_equal t t.retraction_by_caller let is_singleton t = (not (is_empty t)) && is_empty t.retraction_by_callee let same t1 t2 = phys_equal t1 t2 let first t ~orient = match orient with | Orientation.Callers -> t.first_caller | Orientation.Callees -> t.last_callee ;; let retract t ~orient = if is_empty t then None else ( let retraction = match orient with | Orientation.Callers -> t.retraction_by_caller | Orientation.Callees -> t.retraction_by_callee in Some retraction) ;; let rec retract_by t ~orient ~n = if n <= 0 then Some t else ( match retract t ~orient with | None -> None | Some t -> retract_by t ~orient ~n:(n - 1)) ;; let backtrace t = let rec loop t acc = if is_empty t then acc else loop t.retraction_by_callee (t.last_callee :: acc) in loop t [] ;; let backtrace_rev t = let rec loop t acc = if is_empty t then acc else loop t.retraction_by_caller (Backtrace.Reversed.cons t.first_caller acc) in loop t Backtrace.Reversed.nil ;; let rec deep_fold_callers t ~backtrace ~init ~f = let init = f ~backtrace ~fragment:t init in List.fold t.extensions_by_caller ~init ~f:(fun acc (loc, child) -> let backtrace = loc :: backtrace in deep_fold_callers child ~backtrace ~init:acc ~f) ;; let rec deep_fold_callees t ~backtrace_rev ~init ~f = let init = f ~backtrace_rev ~fragment:t init in List.fold t.extensions_by_callee ~init ~f:(fun acc (loc, child) -> let backtrace_rev = Backtrace.Reversed.cons loc backtrace_rev in deep_fold_callees child ~backtrace_rev ~init:acc ~f) ;; let one_frame_extensions t ~orient = match orient with | Orientation.Callers -> t.extensions_by_caller | Callees -> t.extensions_by_callee ;; let has_extensions t ~orient = not (List.is_empty (one_frame_extensions t ~orient)) let extend t ~orient loc = List.Assoc.find ~equal:Location.equal (one_frame_extensions t ~orient) loc ;; let rec extend_by_callers t backtrace_rev = match Backtrace.Reversed.head_and_tail backtrace_rev with | None -> Some t | Some (loc, locs) -> let%bind.Option child = extend ~orient:Callers t loc in extend_by_callers child locs ;; let rec extend_by_callees t backtrace = match backtrace with | [] -> Some t | loc :: locs -> let%bind.Option child = extend ~orient:Callees t loc in extend_by_callees child locs ;; let is_extension t ~extension ~orient = let n = length extension - length t in if n < 0 then false else ( match retract_by ~orient ~n extension with | None -> assert false | Some extension -> same extension t) ;; module Debug = struct type nonrec t = t let sexp_of_t t = [%message "" ~id:(t.id : Id.t) ~allocations:(t.entry : Entry.Debug.t) ~backtrace:(backtrace t : Backtrace.Debug.t)] ;; end module Oriented = struct type nonrec t = { fragment : t ; orient : Orientation.t } let fragment { fragment; _ } = fragment let orient { orient; _ } = orient let first { fragment; orient } = first fragment ~orient let retract { fragment; orient } = let%map.Option fragment = retract fragment ~orient in { fragment; orient } ;; let retract_by { fragment; orient } ~n = let%map.Option fragment = retract_by fragment ~orient ~n in { fragment; orient } ;; let one_frame_extensions { fragment; orient } = one_frame_extensions fragment ~orient |> List.Assoc.map ~f:(fun fragment -> { fragment; orient }) ;; let extend { fragment; orient } loc = let%map.Option fragment = extend fragment ~orient loc in { fragment; orient } ;; let has_extensions { fragment; orient } = has_extensions fragment ~orient module Debug = struct type nonrec t = t = { fragment : Debug.t ; orient : Orientation.t } [@@deriving sexp_of] end end let oriented fragment ~orient = { Oriented.fragment; orient } module Iterator = struct (* We represent a position within a fragment the prefix ending at that position and the suffix ending at that position: {v |ABCDEFGHIJKLMNOPQRSTUVWXYZ| fragment ________I_________________ position |ABCDEFGHI|________________ prefix ________|IJKLMNOPQRSTUVWXYZ| suffix v} *) type nonrec t = { prefix : t ; suffix : t } let prefix { prefix; _ } = prefix let suffix { suffix; _ } = suffix let location { suffix; _ } = first ~orient:Callers suffix let next { prefix; suffix } = match retract ~orient:Callers suffix with | None -> assert false | Some suffix -> if is_empty suffix then None else ( let next_loc = first ~orient:Callers suffix in let prefix = match extend ~orient:Callees prefix next_loc with | Some fragment -> fragment | None -> assert false in Some { prefix; suffix }) ;; let prev { prefix; suffix } = match retract ~orient:Callees prefix with | None -> assert false | Some prefix -> let next_loc = first ~orient:Callees prefix in if is_empty prefix then None else ( let suffix = match extend ~orient:Callers suffix next_loc with | Some fragment -> fragment | None -> assert false in Some { prefix; suffix }) ;; module Trace = struct module T = struct type t = { prefix_trace : Backtrace.Reversed.t ; suffix_trace : Backtrace.t } [@@deriving sexp, bin_io, compare, hash] end include T include Comparable.Make_binable (T) end let trace { prefix; suffix } = let prefix_trace = backtrace_rev prefix in let suffix_trace = backtrace suffix in { Trace.prefix_trace; suffix_trace } ;; end let iterator_start t = if is_empty t then None else ( let rec loop prefix = match retract ~orient:Callees prefix with | None -> assert false | Some prev -> if is_empty prev then prefix else loop prev in let prefix = loop t in let suffix = t in Some { Iterator.prefix; suffix }) ;; let iterator_end t = if is_empty t then None else ( let rec loop suffix = match retract ~orient:Callers suffix with | None -> assert false | Some next -> if is_empty next then suffix else loop next in let suffix = loop t in let prefix = t in Some { Iterator.prefix; suffix }) ;; end module Trie = struct type t = { root : Fragment.t ; children_of_root : Fragment.t Location.Table.t ; metadata : Metadata.t } let invariant_on_suffix_tree (type tree) (module Tree : Suffix_tree with type t = tree) (tree : tree) = let backtraces_by_id : Backtrace.Reversed.t Tree.Node.Id.Table.t = let table = Tree.Node.Id.Table.create () in let rec loop ~node ~backtrace_rev = Hashtbl.set table ~key:(Tree.Node.id node) ~data:backtrace_rev; List.iter (Tree.Node.children node) ~f:(fun (edge, child) -> let backtrace_rev = Backtrace.Reversed.cons edge backtrace_rev in loop ~node:child ~backtrace_rev) in loop ~node:(Tree.root tree) ~backtrace_rev:Backtrace.Reversed.nil; table in List.iter (Tree.Node.children (Tree.root tree)) ~f:(fun (_edge, child_of_root) -> let rec loop ~node ~suffix_backtrace_rev = let suffix = match Tree.Node.suffix node with | None -> raise_s [%message "Non-root node has no suffix" (node : Tree.Node.Debug.t)] | Some suffix -> suffix in let actual_suffix_backtrace_rev = match Hashtbl.find backtraces_by_id (Tree.Node.id suffix) with | Some backtrace -> backtrace | None -> raise_s [%message "Node's suffix not found by id" (node : Tree.Node.Debug.t) (suffix : Tree.Node.Debug.t)] in if not (Backtrace.Reversed.equal suffix_backtrace_rev actual_suffix_backtrace_rev) then raise_s [%message "Node's suffix has wrong backtrace" (node : Tree.Node.Debug.t) (suffix : Tree.Node.Debug.t) ~expected_suffix:(suffix_backtrace_rev : Backtrace.Reversed.Debug.t) ~found_suffix: (actual_suffix_backtrace_rev : Backtrace.Reversed.Debug.t)]; List.iter (Tree.Node.children node) ~f:(fun (edge, child) -> let suffix_backtrace_rev = Backtrace.Reversed.cons edge suffix_backtrace_rev in loop ~node:child ~suffix_backtrace_rev) in loop ~node:child_of_root ~suffix_backtrace_rev:Backtrace.Reversed.nil) ;; let invariant t = Fragment.deep_fold_callees t.root ~init:() ~backtrace_rev:Backtrace.Reversed.nil ~f:(fun ~backtrace_rev ~fragment () -> if not (Backtrace.Reversed.equal backtrace_rev (Fragment.backtrace_rev fragment)) then raise_s [%message "Fragment's reversed backtrace doesn't match accumulator" (backtrace_rev : Backtrace.Reversed.Debug.t) (Fragment.backtrace_rev fragment : Backtrace.Reversed.Debug.t)]; let rev_of_backtrace = Fragment.backtrace fragment |> List.rev |> Backtrace.Reversed.of_reversed_list in if not (Backtrace.Reversed.equal backtrace_rev rev_of_backtrace) then raise_s [%message "Fragment's forward and backward backtraces don't match" (backtrace_rev : Backtrace.Reversed.Debug.t) (rev_of_backtrace : Backtrace.Reversed.Debug.t)]) ;; let create ~(root : Fragment.t) ~metadata = assert ( List.equal (Tuple2.equal ~eq1:Location.equal ~eq2:Fragment.same) root.extensions_by_caller root.extensions_by_callee); let children_of_root = Location.Table.of_alist_exn root.extensions_by_callee in let t = { root; children_of_root; metadata } in if enable_invariants then invariant t; t ;; let empty_fragment t = t.root module type Suffix_tree = Suffix_tree let of_suffix_tree (type tree) (module Tree : Suffix_tree with type t = tree) (tree : tree) ~metadata : t = if enable_invariants then invariant_on_suffix_tree (module Tree) tree; let id_gen = Fragment.Id.Generator.create () in let old_root_node = Tree.root tree in let old_root_children = Tree.Node.children old_root_node in let cache : Fragment.t Tree.Node.Id.Table.t = Tree.Node.Id.Table.create () in let rec new_root_node = { Fragment.id = Fragment.Id.Generator.generate id_gen ; entry = Tree.Node.entry old_root_node ; first_caller = Location.dummy ; last_callee = Location.dummy ; retraction_by_caller = new_root_node ; retraction_by_callee = new_root_node ; extensions_by_caller = [] ; extensions_by_callee = [] ; representative = new_root_node ; length = 0 } in Hashtbl.add_exn cache ~key:(Tree.Node.id old_root_node) ~data:new_root_node; let node_of old_node = Hashtbl.find_or_add cache (Tree.Node.id old_node) ~default:(fun () -> let id = Fragment.Id.Generator.generate id_gen in let entry = Tree.Node.entry old_node in let first_caller = (* to be corrected *) Location.dummy in let last_callee = Tree.Node.incoming_edge old_node in let retraction_by_caller = (* to be corrected *) new_root_node in let retraction_by_callee = (* to be corrected *) new_root_node in let extensions_by_caller = (* to be corrected *) [] in let extensions_by_callee = (* to be corrected *) [] in let representative = (* to be corrected *) new_root_node in let length = 0 in { Fragment.id ; entry ; first_caller ; last_callee ; retraction_by_caller ; retraction_by_callee ; extensions_by_caller ; extensions_by_callee ; representative ; length }) in let rec translate ~length ~first_edge ~new_parent (last_edge, old_node) = let new_node = node_of old_node in new_node.first_caller <- first_edge; new_node.length <- length; new_node.extensions_by_callee <- List.map ~f:(translate ~length:(length + 1) ~first_edge ~new_parent:new_node) (Tree.Node.children old_node); new_node.retraction_by_callee <- new_parent; (* This is the node in which this node appears among the [extensions_by_caller]. *) let parent_by_caller = (* Since the suffix trie represents stacks in caller-first order, the parent by caller is the suffix. *) match Tree.Node.suffix old_node with | Some old_suffix -> node_of old_suffix | None -> raise_s [%message "non-root node has no suffix" ~id:(Tree.Node.id old_node : Tree.Node.Id.t) ~debug:(old_node : Tree.Node.Debug.t)] in new_node.retraction_by_caller <- parent_by_caller; parent_by_caller.extensions_by_caller <- (first_edge, new_node) :: parent_by_caller.extensions_by_caller; new_node.representative <- node_of (Tree.Node.representative old_node); last_edge, new_node in let children_of_root = List.map old_root_children ~f:(fun ((first_edge, _) as child) -> translate ~length:1 ~first_edge ~new_parent:new_root_node child) in new_root_node.extensions_by_caller <- children_of_root; new_root_node.extensions_by_callee <- children_of_root; create ~root:new_root_node ~metadata ;; let metadata t = t.metadata let deep_fold_callers t ~init ~f = Fragment.deep_fold_callers t.root ~backtrace:[] ~init ~f ;; let deep_fold_callees t ~init ~f = Fragment.deep_fold_callees t.root ~backtrace_rev:Backtrace.Reversed.nil ~init ~f ;; let fold_singletons t ~init ~f = Hashtbl.fold t.children_of_root ~init ~f:(fun ~key ~data -> f ~location:key ~fragment:data) ;; let find t backtrace = match backtrace with | [] -> Some t.root | first :: backtrace -> let%bind.Option child = Hashtbl.find t.children_of_root first in Fragment.extend_by_callees child backtrace ;; let find_rev t backtrace_rev = match Backtrace.Reversed.head_and_tail backtrace_rev with | None -> Some t.root | Some (first, backtrace_rev) -> let%bind.Option child = Hashtbl.find t.children_of_root first in Fragment.extend_by_callers child backtrace_rev ;; let find_singleton t location = Hashtbl.find t.children_of_root location let find_iterator t { Fragment.Iterator.Trace.prefix_trace; suffix_trace } = let%bind.Option prefix = find_rev t prefix_trace in let%bind.Option suffix = find t suffix_trace in (* Check that the iterator is still valid *) let%map.Option (_ : Fragment.t) = let prefix_tail = Option.value_exn (Backtrace.Reversed.tl prefix_trace) in Fragment.extend_by_callers suffix prefix_tail in { Fragment.Iterator.prefix; suffix } ;; module Serialized = struct module Unserialized_fragment = Fragment module Fragment = struct type t = { id : Fragment.Id.t ; entry : Entry.t ; first_caller : Location.t ; last_callee : Location.t ; retraction_id_by_caller : Fragment.Id.t ; extension_ids_by_caller : (Location.t * Fragment.Id.t) array ; extensions_by_callee : (Location.t * t) array ; representative_id : Fragment.Id.t ; length : int } [@@deriving bin_io, sexp] let rec of_trie_node ({ id ; entry ; first_caller ; last_callee ; retraction_by_caller ; retraction_by_callee = _ ; extensions_by_caller ; extensions_by_callee ; representative ; length } : Fragment.t) = let retraction_id_by_caller = retraction_by_caller.id in let extension_ids_by_caller = Array.of_list_map extensions_by_caller ~f:(fun (loc, (child : Fragment.t)) -> loc, child.id) in let extensions_by_callee = Array.of_list_map extensions_by_callee ~f:(fun (loc, node) -> loc, of_trie_node node) in let representative_id = representative.id in { id ; entry ; first_caller ; last_callee ; retraction_id_by_caller ; extension_ids_by_caller ; extensions_by_callee ; representative_id ; length } ;; end type trie = t type t = { root : Fragment.t ; metadata : Metadata.t } [@@deriving sexp, bin_io] let serialize (trie : trie) = let root = Fragment.of_trie_node trie.root in let metadata = trie.metadata in { root; metadata } ;; let unserialize t : trie = (* Two passes: 1. Create the trie by a simple traversal, leaving the caller children and back pointers empty. 2. Fill in the caller children, now that we have a node for each id. *) (* Each unserialized node, along with the edges and ids of its prefix children; we use this to perform pass 2 *) let fragment_cache : Unserialized_fragment.t Unserialized_fragment.Id.Table.t = Unserialized_fragment.Id.Table.create () in let find_in_cache desc id = match Hashtbl.find fragment_cache id with | Some fragment -> fragment | None -> raise_s [%message desc (id : Unserialized_fragment.Id.t)] in let rec unserialize_without_callers ~retraction_by_callee ({ id ; entry ; first_caller ; last_callee ; retraction_id_by_caller = _ ; extension_ids_by_caller = _ ; extensions_by_callee ; representative_id = _ ; length } : Fragment.t) = let rec fragment : Unserialized_fragment.t = { id ; entry ; first_caller ; last_callee ; retraction_by_caller = (* to be corrected *) fragment ; retraction_by_callee ; extensions_by_caller = (* to be corrected *) [] ; extensions_by_callee = (* corrected immediately below *) [] ; representative = (* to be corrected *) fragment ; length } in fragment.extensions_by_callee <- List.Assoc.map ~f:(unserialize_without_callers ~retraction_by_callee:fragment) (extensions_by_callee |> Array.to_list); Hashtbl.add_exn fragment_cache ~key:id ~data:fragment; fragment in let rec fill_in_callers (new_fragment : Unserialized_fragment.t) (old_fragment : Fragment.t) = new_fragment.retraction_by_caller <- find_in_cache "retraction_by_caller" old_fragment.retraction_id_by_caller; let extensions_by_caller = List.Assoc.map ~f:(find_in_cache "extensions_by_caller") (old_fragment.extension_ids_by_caller |> Array.to_list) in new_fragment.extensions_by_caller <- extensions_by_caller; new_fragment.representative <- find_in_cache "representative" old_fragment.representative_id; List.iter2_exn new_fragment.extensions_by_callee (old_fragment.extensions_by_callee |> Array.to_list) ~f:(fun (_, new_child) (_, old_child) -> fill_in_callers new_child old_child) in let rec root = { Unserialized_fragment.id = t.root.id ; entry = t.root.entry ; first_caller = t.root.first_caller ; last_callee = t.root.last_callee ; retraction_by_caller = root ; retraction_by_callee = root ; extensions_by_caller = [] ; extensions_by_callee = [] ; representative = root ; length = 0 } in Hashtbl.add_exn fragment_cache ~key:root.id ~data:root; root.extensions_by_callee <- List.Assoc.map ~f:(unserialize_without_callers ~retraction_by_callee:root) (t.root.extensions_by_callee |> Array.to_list); fill_in_callers root t.root; let metadata = t.metadata in create ~root ~metadata ;; end include Sexpable.Of_sexpable (Serialized) (struct type nonrec t = t let to_sexpable = Serialized.serialize let of_sexpable = Serialized.unserialize end) module Debug = struct type nonrec t = t let sexp_of_t { root; _ } = Fragment.Debug.sexp_of_t root end end module For_testing = struct module Dumped = struct open Trie type nonrec t = t let sexp_of_t (t : t) = Serialized.sexp_of_t (t |> Serialized.serialize) end end end [@@inline always]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>