package logtk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file LLTerm.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Terms For Proofs} *)

open Logtk

module Fmt = CCFormat
module I_map = Util.Int_map

let errorf msg = Util.errorf ~where:"llterm" msg

module Int_op = struct
  type t = Leq0 | Geq0 | Lt0 | Gt0 | Eq0 | Neq0 | Divisible_by of Z.t | Not_div_by of Z.t
  let equal a b = match a, b with
    | Divisible_by a, Divisible_by b -> Z.equal a b
    | Not_div_by a, Not_div_by b -> Z.equal a b
    | Divisible_by _, _ | _, Divisible_by _
    | Not_div_by _, _ | _, Not_div_by _ -> false
    | _ -> a=b
  let hash = function
    | Divisible_by n -> Hash.combine2 10 (Z.hash n)
    | Not_div_by n -> Hash.combine2 20 (Z.hash n)
    | x -> Hash.poly x
  let not = function
    | Leq0 -> Gt0 | Geq0 -> Lt0
    | Lt0 -> Geq0 | Gt0 -> Leq0
    | Eq0 -> Neq0 | Neq0 -> Eq0
    | Divisible_by n -> Not_div_by n | Not_div_by n -> Divisible_by n
  let pp out = function
    | Leq0 -> Fmt.fprintf out "=< 0"
    | Geq0 -> Fmt.fprintf out ">= 0"
    | Lt0 -> Fmt.fprintf out "< 0"
    | Gt0 -> Fmt.fprintf out "> 0"
    | Eq0 -> Fmt.fprintf out "= 0"
    | Neq0 -> Fmt.fprintf out "!= 0"
    | Divisible_by n -> Fmt.fprintf out "div_by %a" Z.pp_print n
    | Not_div_by n -> Fmt.fprintf out "not_div_by %a" Z.pp_print n
end

module Rat_op = struct
  type t = Leq0 | Geq0 | Lt0 | Gt0 | Eq0 | Neq0
  let equal : t -> t -> bool = (=)
  let hash : t -> int = Hash.poly
  let pp out = function
    | Leq0 -> Fmt.fprintf out "=< 0"
    | Geq0 -> Fmt.fprintf out ">= 0"
    | Lt0 -> Fmt.fprintf out "< 0"
    | Gt0 -> Fmt.fprintf out "> 0"
    | Eq0 -> Fmt.fprintf out "= 0"
    | Neq0 -> Fmt.fprintf out "!= 0"
  let not = function
    | Leq0 -> Gt0 | Geq0 -> Lt0
    | Lt0 -> Geq0 | Gt0 -> Leq0
    | Eq0 -> Neq0 | Neq0 -> Eq0
end

type t = {
  view: view;
  ty: t option;
  mutable id: int; (** unique ID *)
}

and view =
  | Type
  | Const of ID.t
  | App of t * t (** curried application *)
  | Arrow of t * t (** functional arrow *)
  | Var of var (** bound var *)
  | Bind of {
      binder: Binder.t;
      ty_var: t;
      body: t;
    }
  | AppBuiltin of Builtin.t * t list
  | Ite of t * t * t
  | Int_pred of Z.t linexp * Int_op.t
  | Rat_pred of Q.t linexp * Rat_op.t

and var = t HVar.t
and 'a linexp = {
  const: 'a;
  coeffs: (t * 'a) I_map.t;
}

type term = t
type ty = t

module type NUM = sig
  type t
  val equal : t -> t -> bool
  val zero : t
  val one : t
  val (+) : t -> t -> t
  val (-) : t -> t -> t
  val ( * ) : t -> t -> t
  val to_string : t -> string
  val pp_print : t CCFormat.printer
end

module type LINEXP = sig
  type num
  type t = num linexp
  val zero : t
  val is_zero : t -> bool
  val is_const : t -> bool
  val ( + ) : t -> t -> t
  val ( - ) : t -> t -> t
  val ( * ) : num -> t -> t
  val add : num -> term -> t -> t
  val const : num -> t
  val monomial : num -> term -> t
  val monomial1 : term -> t
  val equal : t -> t -> bool
  val map : (term -> term) -> t -> t
  val subterms : t -> term Iter.t
  val pp : term CCFormat.printer -> t CCFormat.printer
end

module Make_linexp(N : NUM) = struct
  type num = N.t
  type t = num linexp
  let zero : t = {const=N.zero; coeffs=I_map.empty}
  let is_const e = I_map.is_empty e.coeffs
  let is_zero e = is_const e && N.equal N.zero e.const
  let merge_ f a b : t = {
    const=f a.const b.const;
    coeffs=I_map.merge_safe a.coeffs b.coeffs
        ~f:(fun _ o -> match o with
            | `Left n | `Right n -> Some n
            | `Both ((t,a),(t2,b)) ->
              assert (t==t2);
              let c = f a b in
              if N.equal N.zero c then None else Some (t,c))
  }

  let (+) = merge_ N.(+)
  let (-) = merge_ N.(-)
  let ( * ) c e : t =
    if N.equal N.zero c then zero
    else {const=N.(c * e.const); coeffs=I_map.map (fun (t,n) -> t, N.(c*n)) e.coeffs}
  let const c = {const=c; coeffs=I_map.empty}
  let add c t e =
    let _, n = I_map.get_or ~default:(t,N.zero) t.id e.coeffs in
    let n = N.(n + c) in
    let coeffs =
      if N.equal N.zero n
      then I_map.remove t.id e.coeffs else I_map.add t.id (t,n) e.coeffs
    in
    {e with coeffs;}
  let monomial c t = {const=N.zero; coeffs=I_map.singleton t.id (t,c)}
  let monomial1 t = {const=N.zero; coeffs=I_map.singleton t.id (t,N.one)}
  let equal e1 e2 =
    N.equal e1.const e2.const &&
    I_map.equal (CCEqual.pair (==) N.equal) e1.coeffs e2.coeffs
  let hash hash_t e =
    let hash_n n = Hash.string @@ N.to_string n in
    Hash.combine3 10
      (hash_n e.const)
      (Hash.seq (Hash.pair hash_t hash_n) @@ I_map.values e.coeffs)
  let map f e =
    I_map.fold (fun _ (t,n) acc -> add n (f t) acc) e.coeffs (const e.const)

  let subterms e = I_map.values e.coeffs |> Iter.map fst

  let pp pp_t out (e:t): unit =
    if is_const e then N.pp_print out e.const
    else (
      let pp_const out () =
        if N.equal N.zero e.const then ()
        else Fmt.fprintf out "@ + %a" N.pp_print e.const
      and pp_pair out (t,c) =
        if N.equal N.one c then pp_t out t
        else Fmt.fprintf out "@[<2>%a@ @<1>· %a@]" N.pp_print c pp_t t
      in
      Fmt.fprintf out "(@[<hv>%a%a@])"
        Fmt.(iter ~sep:(return "@ + ") pp_pair)
        (I_map.values e.coeffs) pp_const ()
    )
end

module Linexp_int = Make_linexp(Z)
module Linexp_rat = Make_linexp(Q)

let[@inline] view t = t.view
let[@inline] ty t = t.ty
let[@inline] ty_exn t = match t.ty with Some ty -> ty | None -> assert false
let[@inline] equal (a:t) (b:t) : bool = a == b
let[@inline] hash (a:t) : int = CCHash.int a.id
let[@inline] compare (a:t) (b:t) : int = CCInt.compare a.id b.id

module H_cons = Hashcons.Make(struct
    type t = term
    let equal a b =
      begin match a.ty, b.ty with
        | Some ty1, Some ty2 -> equal ty1 ty2
        | None, None -> true
        | Some _, None
        | None, Some _ -> false
      end &&
      begin match a.view, b.view with
        | Type, Type -> true
        | Const id1, Const id2 -> ID.equal id1 id2
        | App (f1,x1), App (f2,x2) -> equal f1 f2 && equal x1 x2
        | Arrow (a1,b1), Arrow (a2,b2) -> equal a1 a2 && equal b1 b2
        | Var v1, Var v2 -> HVar.equal equal v1 v2
        | Bind b1, Bind b2 ->
          Binder.equal b1.binder b2.binder &&
          equal b1.ty_var b2.ty_var &&
          equal b1.body b2.body
        | AppBuiltin (b1,l1), AppBuiltin (b2,l2) ->
          Builtin.equal b1 b2 &&
          CCList.equal equal l1 l2
        | Ite (a1,b1,c1), Ite (a2,b2,c2) ->
          equal a1 a2 && equal b1 b2 && equal c1 c2
        | Int_pred (l1,o1), Int_pred (l2,o2) ->
          Int_op.equal o1 o2 && Linexp_int.equal l1 l2
        | Rat_pred (l1,o1), Rat_pred (l2,o2) ->
          Rat_op.equal o1 o2 && Linexp_rat.equal l1 l2
        | Type, _
        | Const _, _
        | App _, _
        | Arrow _, _
        | Var _, _
        | Bind _, _
        | AppBuiltin _, _
        | Ite _, _
        | Int_pred _, _
        | Rat_pred _, _
          -> false
      end

    let hash (a:t) : int = match a.view with
      | Type -> 1
      | Const id -> CCHash.combine2 10 (ID.hash id)
      | Var v -> CCHash.combine2 20 (HVar.hash v)
      | App (f,x) -> CCHash.combine3 30 (hash f) (hash x)
      | Arrow (a,b) -> CCHash.combine3 35 (hash a) (hash b)
      | Bind b ->
        CCHash.combine4 40 (Binder.hash b.binder) (hash b.ty_var) (hash b.body)
      | AppBuiltin (b,l) ->
        CCHash.combine3 50 (Builtin.hash b) (CCHash.list hash l)
      | Ite (a,b,c) ->
        CCHash.combine4 60 (hash a)(hash b)(hash c)
      | Int_pred (l,o) -> Hash.combine3 70 (Linexp_int.hash hash l) (Int_op.hash o)
      | Rat_pred (l,o) -> Hash.combine3 80 (Linexp_rat.hash hash l) (Rat_op.hash o)

    let tag (i:int) (t:t) : unit =
      assert (t.id = -1);
      t.id <- i
  end)

let rec pp_rec depth out (t:t) = match view t with
  | Type -> Fmt.string out "type"
  | Const id -> ID.pp_fullc out id
  | App (f,a) -> Fmt.fprintf out "@[%a@ %a@]" (pp_rec depth) f (pp_rec_inner depth) a
  | Arrow (a,b) ->
    Fmt.fprintf out "@[%a@ @<1>→ %a@]" (pp_rec_inner depth) a (pp_rec depth) b
  | Var v -> Format.fprintf out "Y%d" (depth-HVar.id v-1)
  | AppBuiltin (Builtin.Box_opaque, [t]) ->
    Format.fprintf out "@<1>⟦@[%a@]@<1>⟧" (pp_rec depth) t
  | AppBuiltin (b, [a]) when Builtin.is_prefix b ->
    Format.fprintf out "@[<1>%a@ %a@]" Builtin.pp b (pp_rec_inner depth) a
  | AppBuiltin (b, ([t1;t2] | [_;t1;t2])) when Builtin.fixity b = Builtin.Infix_binary ->
    Format.fprintf out "@[<1>%a %a@ %a@]"
      (pp_rec_inner depth) t1 Builtin.pp b (pp_rec_inner depth) t2
  | AppBuiltin (b, l) when Builtin.is_infix b && List.length l > 0 ->
    Format.fprintf out "@[<hv>%a@]" (pp_infix_ depth b) l
  | AppBuiltin (b, []) -> Builtin.pp out b
  | AppBuiltin (b, l) ->
    Format.fprintf out "(@[<hv>%a@ %a@])"
      Builtin.pp b (Util.pp_list (pp_rec_inner depth)) l
  | Bind {ty_var;binder;body} ->
    Fmt.fprintf out "@[%a (@[Y%d:%a@]).@ %a@]"
      Binder.pp binder
      depth (pp_rec depth) ty_var
      (pp_rec @@ depth+1) body
  | Ite (a,b,c) ->
    Fmt.fprintf out "@[<hv2>ite %a@ %a@ %a@]"
      (pp_rec_inner depth) a
      (pp_rec_inner depth) b
      (pp_rec_inner depth) c
  | Int_pred (l,o) ->
    Fmt.fprintf out "(@[%a@ %a@])" (Linexp_int.pp (pp_rec_inner depth)) l Int_op.pp o
  | Rat_pred (l,o) ->
    Fmt.fprintf out "(@[%a@ %a@])" (Linexp_rat.pp (pp_rec_inner depth)) l Rat_op.pp o
and pp_rec_inner depth out t = match view t with
  | App _ | Bind _ | AppBuiltin (_,_::_) | Arrow _ | Ite _ ->
    Fmt.fprintf out "(%a)/%d" (pp_rec depth) t t.id
  | Type | Const _ | Var _ | AppBuiltin (_,[]) | Int_pred _ | Rat_pred _ ->
    Fmt.fprintf out "%a/%d" (pp_rec depth) t t.id
and pp_infix_ depth b out l = match l with
  | [] -> assert false
  | [t] -> pp_rec_inner depth out t
  | t :: l' ->
    Format.fprintf out "@[%a@]@ %a %a"
      (pp_rec_inner depth) t Builtin.pp b (pp_infix_ depth b) l'

let pp = pp_rec 0
let pp_inner = pp_rec_inner 0

let subterms (t:t) (k:t -> unit) : unit =
  let rec aux t =
    k t;
    CCOpt.iter aux (ty t);
    begin match view t with
      | Type | Const _ | Var _ -> ()
      | App (f,a) -> aux f; aux a
      | Arrow (a,b) -> aux a; aux b
      | Bind { body;_ } -> aux body
      | AppBuiltin  (_,l) -> List.iter aux l
      | Ite (a,b,c) -> aux a; aux b; aux c
      | Int_pred (l,_) -> Linexp_int.subterms l k
      | Rat_pred (l,_) -> Linexp_rat.subterms l k
    end
  in
  aux t

let[@inline] mk_ view ty : t =
  let t = {view; ty; id= -1; } in
  H_cons.hashcons t

let t_type = mk_ Type None
let[@inline] var v = mk_ (Var v) (Some (HVar.ty v))
let[@inline] const ~ty id = mk_ (Const id) (Some ty)
let prop = mk_ (AppBuiltin (Builtin.Prop,[])) (Some t_type)

let[@inline] is_type t : bool = match ty t with
  | Some ty -> ty == t_type
  | None -> false

let ite a b c =
  begin match ty b, ty c with
    | Some ty1, Some ty2 when equal ty1 ty2 ->
      mk_ (Ite (a,b,c)) (ty b)
    | _ ->
      errorf "type error:@ cannot build `@[ite %a %a %a@]`@ incompatible types"
        pp a pp b pp c
  end

let[@inline] app_ f x ~ty = mk_ (App (f,x)) (Some ty)
let[@inline] arrow_ a b = mk_ (Arrow (a,b)) (Some t_type)

let[@inline] bind_ ~ty binder ~ty_var body = mk_ (Bind {binder;ty_var;body}) (Some ty)

let id_eta_ = ID.make "test_eta_" (* privat to {!as_eta_expansion} *)

let[@inline] app_builtin ~ty b l =
  let mk_ b l = mk_ (AppBuiltin(b,l)) (Some ty) in
  begin match b, l with
    | Builtin.Not, [f'] ->
      begin match view f' with
        | AppBuiltin (Builtin.Eq,l) -> mk_ Builtin.Neq l
        | AppBuiltin (Builtin.Neq,l) -> mk_ Builtin.Eq l
        | AppBuiltin (Builtin.Not,[t]) -> t
        | AppBuiltin (Builtin.True,[]) -> mk_ Builtin.False []
        | AppBuiltin (Builtin.False,[]) -> mk_ Builtin.True []
        | _ -> mk_ b l
      end
    | _ -> mk_ b l
  end

let[@inline] builtin ~ty b = app_builtin ~ty b []

let bool = builtin ~ty:t_type Builtin.Prop
let true_ = builtin ~ty:bool Builtin.True
let false_ = builtin ~ty:bool Builtin.False
let of_bool b = if b then true_ else false_

let int_pred l o =
  if Linexp_int.is_const l then (
    let module O = Int_op in
    let n = l.const in
    begin match o with
      | O.Leq0 -> Z.sign n <= 0
      | O.Geq0 -> Z.sign n >= 0
      | O.Lt0 -> Z.sign n < 0
      | O.Gt0 -> Z.sign n > 0
      | O.Eq0 -> Z.sign n = 0
      | O.Neq0 -> Z.sign n <> 0
      | O.Divisible_by k -> Z.equal Z.zero (Z.rem n k)
      | O.Not_div_by k -> not (Z.equal Z.zero (Z.rem n k))
    end |> of_bool
  ) else mk_ (Int_pred (l,o)) (Some prop)

let rat_pred l o =
  if Linexp_rat.is_const l then (
    let module O = Rat_op in
    let n = l.const in
    begin match o with
      | O.Leq0 -> Q.sign n <= 0
      | O.Geq0 -> Q.sign n >= 0
      | O.Lt0 -> Q.sign n < 0
      | O.Gt0 -> Q.sign n > 0
      | O.Eq0 -> Q.sign n = 0
      | O.Neq0 -> Q.sign n <> 0
    end |> of_bool
  ) else mk_ (Rat_pred (l,o)) (Some prop)

let[@inline] map ~f ~bind:f_bind b_acc t = match view t with
  | Type -> t_type
  | Var v -> var (HVar.update_ty v ~f:(f b_acc))
  | Const id -> const ~ty:(f b_acc @@ ty_exn t) id
  | App (hd,a) -> app_ (f b_acc hd) (f b_acc a) ~ty:(f b_acc (ty_exn t))
  | Arrow (a,b) -> arrow_ (f b_acc a) (f b_acc b)
  | Bind b ->
    let b_acc' = f_bind b_acc in
    bind_ b.binder ~ty:(f b_acc @@ ty_exn t) ~ty_var:(f b_acc b.ty_var)
      (f b_acc' b.body)
  | AppBuiltin (b,l) ->
    app_builtin ~ty:(f b_acc @@ ty_exn t) b (List.map (f b_acc) l)
  | Ite (a,b,c) ->
    ite (f b_acc a) (f b_acc b) (f b_acc c)
  | Int_pred (l,o) -> int_pred (Linexp_int.map (f b_acc) l) o
  | Rat_pred (l,o) -> rat_pred (Linexp_rat.map (f b_acc) l) o

(* shift DB indices by [n] *)
let db_shift n (t:t) : t =
  let rec aux k t = match view t with
    | Var v ->
      if HVar.id v >= k then var (HVar.make (HVar.id v+n) ~ty:(HVar.ty v))
      else t
    | _ ->
      map ~f:aux ~bind:succ k t
  in
  aux 0 t

(* replace DB 0 by [sub] in [t] *)
let db_eval ~(sub:t) (t:t) : t =
  let rec aux k t = match view t with
    | Var v ->
      if HVar.id v = k then (
        (* shift [sub] by the number of binders added since binding point *)
        db_shift k sub
      ) else if (HVar.id v > k) then (
        (* shift down by 1, to account for the vanished binder *)
        var (HVar.make (HVar.id v-1) ~ty:(HVar.ty v))
      )
      else t
    | _ ->
      map ~f:aux ~bind:succ k t
  in
  aux 0 t

let bind ~ty binder ~ty_var body = match binder, view body with
  | Binder.Lambda, App (t, {view=Var v; _}) when HVar.id v = 0 ->
    (* eta reduction for λ:
       check if replacing [db0] with a fresh [c] in [t] contains [c] *)
    let c = const id_eta_ ~ty:(HVar.ty v) in
    let t_reduced = db_eval ~sub:c t in
    if subterms t_reduced |> Iter.exists (equal c)
    then bind_ binder ~ty ~ty_var body
    else t_reduced
  | _ -> bind_ binder ~ty ~ty_var body

let app_ f x = match ty f, ty x with
  | Some {view=Arrow (a,b);_}, Some a' when equal a a' -> app_ f x ~ty:b
  | Some {view=Bind{binder=Binder.ForallTy;ty_var;body};_}, Some ty_x ->
    (* polymorphic type *)
    if not (equal ty_x t_type) then (
      errorf "cannot apply@ `@[<2>%a@ : %a@]`@ to non-type `@[<2>%a@ : %a@]`"
        pp f (Fmt.opt pp) (ty f) pp x (Fmt.opt pp) (ty x)
    );
    if not (equal ty_var t_type) then (
      errorf "ill-formed polymorphic type@ `%a`" pp (ty_exn f);
    );
    let ty = db_eval ~sub:x body in
    app_ f x ~ty
  | _ ->
    errorf "type error: cannot apply `@[<2>%a@ : %a@]`@ to `@[<2>%a@ : %a@]`"
      pp f (Fmt.opt pp) (ty f) pp x (Fmt.opt pp) (ty x)

let app f x = match view f with
  | Bind {binder=Binder.Lambda;ty_var;body} ->
    (* β-reduction *)
    begin match ty x with
      | Some ty_x when equal ty_var ty_x ->
        db_eval ~sub:x body
      | Some ty_x ->
        errorf "type error: cannot apply `%a`@ to `%a : %a`" pp f pp x pp ty_x
      | None -> errorf "type error: cannot apply `%a`@ to `%a : none`" pp f pp x
    end
  | _ -> app_ f x

let rec app_l f = function
  | [] -> f
  | a :: tail -> app_l (app f a) tail

let rec returns (t:t) : ty = match view t with
  | Arrow (_, ret) -> returns ret
  | _ -> t

let arrow a b = match ty a, ty b with
  | Some {view=Type;_}, Some {view=Type;_} -> arrow_ a b
  | _ when a == t_type && returns b == t_type -> arrow_ a b (* type constructor *)
  | _ ->
    errorf "type error: cannot make arrow between non-types@ :from `%a`@ :to `%a`"
      pp a pp b

let rec arrow_l l ret = match l with
  | [] -> ret
  | a :: tail -> arrow a (arrow_l tail ret)

let box_opaque t = app_builtin ~ty:(ty_exn t) Builtin.Box_opaque [t]

let id_eta_ = ID.make "test_eta_" (* privat to {!as_eta_expansion} *)

(* check if [body = t db0], with [db0 ∉ t].
   returns [Some (t shift -1)] if it's the case *)
let as_eta_expansion body : _ option = match view body with
  | App (t, {view=Var v; _}) when HVar.id v = 0 ->
    (* check if replacing [db0] with a fresh [c] in [t] contains [c] *)
    let c = const id_eta_ ~ty:(HVar.ty v) in
    let t_reduced = db_eval ~sub:c t in
    if subterms t_reduced |> Iter.exists (equal c) then None else Some t_reduced
  | _ -> None

let[@inline] lambda ~ty_var body =
  bind Binder.Lambda ~ty:(arrow ty_var @@ ty_exn body) ~ty_var body

module Form = struct
  type t = term
  type view =
    | True
    | False
    | Or of t list
    | And of t list
    | Not of t
    | Equiv of t * t
    | Xor of t * t
    | Imply of t * t
    | Atom of t
    | Eq of t * t
    | Neq of t * t
    | Int_pred of Z.t linexp * Int_op.t
    | Rat_pred of Q.t linexp * Rat_op.t
    | Forall of {ty_var: ty; body: t}
    | Exists of {ty_var: ty; body: t}

  let pp = pp

  let view t = match view t with
    | AppBuiltin (Builtin.True,[]) -> True
    | AppBuiltin (Builtin.False,[]) -> False
    | AppBuiltin (Builtin.And, l) -> And l
    | AppBuiltin (Builtin.Or, l) -> Or l
    | AppBuiltin (Builtin.Not, [t]) -> Not t
    | AppBuiltin (Builtin.Eq, ([_;t;u]|[t;u])) -> Eq(t,u)
    | AppBuiltin (Builtin.Neq, ([_;t;u]|[t;u])) -> Neq(t,u)
    | AppBuiltin (Builtin.Imply, [t;u]) -> Imply(t,u)
    | AppBuiltin (Builtin.Equiv, [t;u]) -> Equiv(t,u)
    | AppBuiltin (Builtin.Xor, [t;u]) -> Xor(t,u)
    | Bind {binder=Binder.Forall; ty_var; body; _} -> Forall {ty_var;body}
    | Bind {binder=Binder.Exists; ty_var; body; _} -> Exists {ty_var;body}
    | Int_pred (l,o) -> Int_pred (l,o)
    | Rat_pred (l,o) -> Rat_pred (l,o)
    | _ -> Atom t

  let true_ = true_
  let false_ = false_
  let eq a b = app_builtin ~ty:(ty_exn a) Builtin.Eq [a;b]
  let neq a b = app_builtin ~ty:bool Builtin.Neq [a;b]
  let and_ a = app_builtin ~ty:bool Builtin.And a
  let or_ a = app_builtin ~ty:bool Builtin.Or a
  let equiv a b = app_builtin ~ty:(ty_exn a) Builtin.Equiv [a;b]
  let imply a b = app_builtin ~ty:(ty_exn a) Builtin.Imply [a;b]
  let xor a b = app_builtin ~ty:(ty_exn a) Builtin.Xor [a;b]
  let int_pred = int_pred
  let rat_pred = rat_pred
  let forall ~ty_var body = bind Binder.Forall ~ty:bool ~ty_var body
  let exists ~ty_var body = bind Binder.Exists ~ty:bool ~ty_var body

  let not_ a = match view a with
    | Eq (a,b) -> neq a b
    | Neq (a,b) -> eq a b
    | Not f -> f
    | Int_pred (l,o) -> int_pred l (Int_op.not o)
    | Rat_pred (l,o) -> rat_pred l (Rat_op.not o)
    | _ -> app_builtin ~ty:bool Builtin.Not [a]
end

module As_key = struct
  type t = term
  let compare = compare
end

module Set = CCSet.Make(As_key)

module Conv = struct
  module T = TypedSTerm

  type ctx = {
    depth: int; (* depth *)
    vars: (T.t,int * ty) Var.Subst.t; (* depth at binding site, + type *)
  }

  let create() : ctx = {depth=0; vars=Var.Subst.empty}

  let pp_ctx out (c:ctx) : unit =
    Fmt.fprintf out "(@[ctx@ :depth %d@ :vars %a@])"
      c.depth (Var.Subst.pp (Fmt.map fst Fmt.int)) c.vars

  let rec of_term (ctx:ctx) (t:T.t): t = match T.view t with
    | T.Var v ->
      begin match Var.Subst.find ctx.vars v with
        | None -> errorf "cannot find var `%a`@ in %a" Var.pp v pp_ctx ctx
        | Some (i,ty) ->
          assert (ctx.depth > i);
          let ty = db_shift (ctx.depth-i) ty in
          var (HVar.make (ctx.depth-i-1) ~ty)
      end
    | T.AppBuiltin (Builtin.Pseudo_de_bruijn i, []) ->
      (* NOTE: magic here. This was a free De Bruijn index, typically coming
         from rewriting under lambdas. Now we convert it back into a
         normal DB index. *)
      let ty = of_term ctx (T.ty_exn t) in
      var (HVar.make i ~ty)
    | T.Const id ->
      let ty = of_term ctx (T.ty_exn t) in
      const id ~ty
    | T.App (f, l) ->
      let f = of_term ctx f in
      let l = List.map (of_term ctx) l in
      app_l f l
    | T.Ite (a,b,c) ->
      let a = of_term ctx a in
      let b = of_term ctx b in
      let c = of_term ctx c in
      ite a b c
    | T.Bind (b,var,body) ->
      let ty = of_term ctx (T.ty_exn t) in
      let ty_var = of_term ctx (Var.ty var) in
      let ctx = {
        depth=ctx.depth+1;
        vars=Var.Subst.add ctx.vars var (ctx.depth,ty_var)
      } in
      bind b ~ty_var ~ty (of_term ctx body)
    | T.AppBuiltin (Builtin.TType, []) -> t_type
    | T.AppBuiltin (Builtin.Arrow, ret::l) ->
      let ret = of_term ctx ret in
      let l = List.map (of_term ctx) l in
      arrow_l l ret
    | T.AppBuiltin (b, l) ->
      let ty = T.ty_exn t in
      begin match b with
        | (Builtin.Greatereq | Builtin.Lesseq | Builtin.Less
          | Builtin.Greater | Builtin.Eq | Builtin.Neq) when List.exists is_arith l ->
          if List.exists is_int l then (
            conv_int_pred ctx ~ty b l
          ) else (
            assert (List.exists is_rat l);
            conv_rat_pred ctx ~ty b l
          )
        | _ -> conv_builtin ctx ~ty b l
      end
    | T.Let _ -> assert false (* FIXME *)
    | T.Match _ -> assert false (* FIXME? *)
    | T.Multiset _ -> assert false (* FIXME? *)
    | T.Record _ -> assert false (* FIXME? *)
    | T.Meta _ -> assert false

  and is_int t = T.Ty.equal T.Ty.int (T.ty_exn t)
  and is_rat t = T.Ty.equal T.Ty.rat (T.ty_exn t)
  and is_arith t = is_int t || is_rat t

  (* default conv for builtins *)
  and conv_builtin ctx ~ty b l =
    let ty = of_term ctx ty in
    let l = List.map (of_term ctx) l in
    app_builtin ~ty b l

  and conv_int_pred ctx ~ty b l : term =
    let module O = Int_op in
    let op = match b with
      | Builtin.Greatereq -> O.Geq0
      | Builtin.Lesseq -> O.Leq0
      | Builtin.Less -> O.Lt0
      | Builtin.Greater -> O.Gt0
      | Builtin.Eq -> O.Eq0
      | Builtin.Neq -> O.Neq0
      | _ -> assert false
    in
    match l with
    | [_; a; b] | [a;b] ->
      let a = conv_int_linexp ctx a in
      let b = conv_int_linexp ctx b in
      int_pred Linexp_int.(a - b) op
    | _ -> conv_builtin ctx ~ty b l

  and conv_rat_pred ctx ~ty b l : term =
    let module O = Rat_op in
    let op = match b with
      | Builtin.Greatereq -> O.Geq0
      | Builtin.Lesseq -> O.Leq0
      | Builtin.Less -> O.Lt0
      | Builtin.Greater -> O.Gt0
      | Builtin.Eq -> O.Eq0
      | Builtin.Neq -> O.Neq0
      | _ -> assert false
    in
    match l with
    | [_; a; b] | [a;b] ->
      let a = conv_rat_linexp ctx a in
      let b = conv_rat_linexp ctx b in
      rat_pred Linexp_rat.(a - b) op
    | _ -> conv_builtin ctx ~ty b l

  and conv_int_linexp ctx t : Linexp_int.t = match T.view t with
    | T.AppBuiltin (Builtin.Int z, []) -> Linexp_int.const z
    | T.AppBuiltin (Builtin.Sum, [_;a;b]) ->
      Linexp_int.(conv_int_linexp ctx a + conv_int_linexp ctx b)
    | T.AppBuiltin (Builtin.Difference, [_;a;b]) ->
      Linexp_int.(conv_int_linexp ctx a - conv_int_linexp ctx b)
    | T.AppBuiltin (Builtin.Product, [_;a;b]) ->
      begin match T.view a, T.view b with
        | T.AppBuiltin (Builtin.Int n,[]), _ ->
          Linexp_int.(n * conv_int_linexp ctx b)
        | _, T.AppBuiltin (Builtin.Int n,[]) ->
          Linexp_int.(n * conv_int_linexp ctx a)
        | _ -> Linexp_int.monomial1 (of_term ctx t)
      end
    | _ -> Linexp_int.monomial1 (of_term ctx t)

  and conv_rat_linexp ctx t : Linexp_rat.t = match T.view t with
    | T.AppBuiltin (Builtin.Rat z, []) -> Linexp_rat.const z
    | T.AppBuiltin (Builtin.Sum, [_;a;b]) ->
      Linexp_rat.(conv_rat_linexp ctx a + conv_rat_linexp ctx b)
    | T.AppBuiltin (Builtin.Difference, [_;a;b]) ->
      Linexp_rat.(conv_rat_linexp ctx a - conv_rat_linexp ctx b)
    | T.AppBuiltin (Builtin.Product, [_;a;b]) ->
      begin match T.view a, T.view b with
        | T.AppBuiltin (Builtin.Rat n,[]), _ ->
          Linexp_rat.(n * conv_rat_linexp ctx b)
        | _, T.AppBuiltin (Builtin.Rat n,[]) ->
          Linexp_rat.(n * conv_rat_linexp ctx a)
        | _ -> Linexp_rat.monomial1 (of_term ctx t)
      end
    | _ -> Linexp_rat.monomial1 (of_term ctx t)
end
OCaml

Innovation. Community. Security.