package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.5.1.tar.gz
md5=cc320f66f10555c54822da624419e003
sha512=f8d5f7a5ae790bf0388d74261673803cf375f91f92f7b413b70db1ce5841ef55343a208f98727c8551d66f1840ab892f1c0c943a34861d14d79ce469b235a2f2
doc/src/logtk/Literals.ml.html
Source file Literals.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Array of literals} *) module BV = CCBV module T = Term module S = Subst module Lit = Literal type term = Term.t type t = Literal.t array let prof_maxlits = Util.mk_profiler "lits.maxlits" let equal lits1 lits2 = let rec check i = if i = Array.length lits1 then true else Lit.equal lits1.(i) lits2.(i) && check (i+1) in if Array.length lits1 <> Array.length lits2 then false else check 0 let equal_com lits1 lits2 = let rec check i = if i = Array.length lits1 then true else Lit.equal_com lits1.(i) lits2.(i) && check (i+1) in if Array.length lits1 <> Array.length lits2 then false else check 0 let compare lits1 lits2 = CCArray.compare Lit.compare lits1 lits2 let compare_multiset ~ord (l1:t) (l2:t) : Comparison.t = let module M = Multiset.Make(Literal) in M.compare_partial_l (Literal.Comp.compare ~ord) (Array.to_list l1) (Array.to_list l2) let hash lits = Hash.array Lit.hash lits let variant ?(subst=S.empty) (a1,sc1) (a2,sc2) = Unif.unif_array_com ~size:`Same (subst,[]) (a1,sc1) (a2,sc2) ~op:(fun (subst,t1) x y k -> Lit.variant ~subst x y (fun (s,t2) -> k (s,t1@t2))) |> Iter.filter (fun (s,_) -> Subst.is_renaming s) let are_variant a1 a2 = not (Iter.is_empty (variant (Scoped.make a1 0) (Scoped.make a2 1))) let matching ?(subst=S.empty) ~pattern:(a1,sc1) (a2,sc2) = Unif.unif_array_com ~size:`Same (subst,[]) (a1,sc1) (a2,sc2) ~op:(fun (subst,t1) x y k -> Lit.matching ~subst ~pattern:x y (fun (s,t2) -> k (s,t1@t2))) let matches a1 a2 = not (Iter.is_empty (matching ~pattern:(Scoped.make a1 0) (Scoped.make a2 1))) let weight lits = Array.fold_left (fun w lit -> w + Lit.weight lit) 0 lits let depth lits = Array.fold_left (fun d lit -> max d (Lit.depth lit)) 0 lits let vars lits = Iter.of_array lits |> Iter.flat_map Lit.Seq.vars |> T.VarSet.of_seq |> T.VarSet.to_list let is_ground lits = CCArray.for_all Lit.is_ground lits let to_form lits = let lits = Array.map Lit.Conv.to_form lits in Array.to_list lits (** Apply the substitution to the array of literals, with scope *) let apply_subst renaming subst (lits,sc) = Array.map (fun lit -> Lit.apply_subst renaming subst (lit,sc)) lits let of_unif_subst renaming s = Literal.of_unif_subst renaming s |> Array.of_list let map f lits = Array.map (fun lit -> Lit.map f lit) lits (** bitvector of literals that are positive *) let pos lits = let bv = BV.create ~size:(Array.length lits) false in for i = 0 to Array.length lits - 1 do if Lit.is_pos lits.(i) then BV.set bv i done; bv (** bitvector of literals that are positive *) let neg lits = let bv = BV.create ~size:(Array.length lits) false in for i = 0 to Array.length lits - 1 do if Lit.is_neg lits.(i) then BV.set bv i done; bv (** Multiset of literals, with their index *) module MLI = Multiset.Make(struct type t = Lit.t * int let compare (l1,i1)(l2,i2) = if i1=i2 then Lit.compare l1 l2 else Pervasives.compare i1 i2 end) let _compare_lit_with_idx ~ord (lit1,i1) (lit2,i2) = if i1=i2 then Comparison.Eq (* ignore collisions *) else ( let c = Lit.Comp.compare ~ord lit1 lit2 in (* two occurrences of one lit should be incomparable (and therefore maximal) *) if c = Comparison.Eq then Comparison.Incomparable else c ) let _to_multiset_with_idx lits = CCArray.foldi (fun acc i x -> MLI.add acc (x,i)) MLI.empty lits (* TODO: optimize! quite a bottleneck on pb47.p with NoSelection *) let maxlits_l ~ord lits = Util.enter_prof prof_maxlits; let m = _to_multiset_with_idx lits in let max = MLI.max_seq (_compare_lit_with_idx ~ord) m |> Iter.map fst |> Iter.to_list in Util.exit_prof prof_maxlits; max let maxlits ~ord lits = Util.enter_prof prof_maxlits; let m = _to_multiset_with_idx lits in let max = MLI.max_seq (_compare_lit_with_idx ~ord) m |> Iter.map (fun (x,_) -> snd x) |> Iter.to_list |> BV.of_list in Util.exit_prof prof_maxlits; max let is_max ~ord lits = (* let max = maxlits_l ~ord lits in fun i -> List.exists (fun (_,j) -> i=j) max *) let m = _to_multiset_with_idx lits in fun i -> let lit = lits.(i) in MLI.is_max (_compare_lit_with_idx ~ord) (lit,i) m let is_trivial lits = (* check if a pair of lits is trivial *) let rec check_multi lits i = if i = Array.length lits then false else let triv = match lits.(i) with | Lit.Prop (p, sign) -> CCArray.exists (function | Lit.Prop (p', sign') when sign = not sign' -> T.equal p p' (* p \/ ~p *) | _ -> false) lits | Lit.Equation (l, r, true) when T.equal l r -> true | Lit.Equation (l, r, sign) -> CCArray.exists (function | Lit.Equation (l', r', sign') when sign = not sign' -> (T.equal l l' && T.equal r r') || (T.equal l r' && T.equal l' r) | _ -> false) lits | lit -> Lit.is_trivial lit in triv || check_multi lits (i+1) in CCArray.exists Lit.is_trivial lits || check_multi lits 0 let is_absurd lits = CCArray.for_all Lit.is_absurd lits let apply_subst renaming subst (lits,sc) = CCArray.map (fun l -> Lit.apply_subst renaming subst (l,sc)) lits module Seq = struct let vars lits = Iter.of_array lits |> Iter.flat_map Lit.Seq.vars let terms a = Iter.of_array a |> Iter.flat_map Lit.Seq.terms let to_form a = Iter.of_array a |> Iter.map Lit.Conv.to_form end (** {3 High Order combinators} *) module Pos = struct let _fail_lits lits pos = let msg = CCFormat.sprintf "@[invalid position @[%a@]@ in lits [@[%a@]]@]" Position.pp pos (CCFormat.array Lit.pp) lits in invalid_arg msg let _fail_pos pos = let msg = CCFormat.sprintf "@[<2>invalid literal-array position@ @[%a@]@]" Position.pp pos in invalid_arg msg let at lits pos = match pos with | Position.Arg (idx, pos') when idx >= 0 && idx < Array.length lits -> Lit.Pos.at lits.(idx) pos' | _ -> _fail_lits lits pos let lit_at lits pos = match pos with | Position.Arg (i, pos') when i >= 0 && i < Array.length lits -> lits.(i), pos' | _ -> _fail_lits lits pos let replace lits ~at ~by = match at with | Position.Arg (idx, pos') when idx >= 0 && idx < Array.length lits -> lits.(idx) <- Lit.Pos.replace lits.(idx) ~at:pos' ~by | _ -> _fail_lits lits at let idx = function | Position.Arg(i, _) -> i | p -> _fail_pos p let tail = function | Position.Arg (_, pos') -> pos' | p -> _fail_pos p let cut = function | Position.Arg (i, pos') -> i, pos' | p -> _fail_pos p end module Conv = struct let of_forms ?hooks forms = let forms = Array.of_list forms in Array.map (Lit.Conv.of_form ?hooks) forms let to_forms ?hooks lits = Array.to_list (Array.map (Lit.Conv.to_form ?hooks) lits) let to_s_form ?allow_free_db ?(ctx=T.Conv.create()) ?hooks lits = Array.to_list lits |> List.map (Literal.Conv.to_s_form ?hooks ?allow_free_db ~ctx) |> TypedSTerm.Form.or_ end module View = struct let get_eqn lits pos = match pos with | Position.Arg (idx, pos') when idx < Array.length lits -> Lit.View.get_eqn lits.(idx) pos' | _ -> None let get_arith lits pos = match pos with | Position.Arg (idx, pos') when idx < Array.length lits -> Lit.View.focus_arith lits.(idx) pos' | _ -> None let get_rat lits pos = match pos with | Position.Arg (idx, pos') when idx < Array.length lits -> Lit.View.focus_rat lits.(idx) pos' | _ -> None let _unwrap2 ~msg f x y = match f x y with | Some z -> z | None -> invalid_arg msg let get_eqn_exn = _unwrap2 ~msg:"get_eqn: improper position" get_eqn let get_arith_exn = _unwrap2 ~msg:"get_arith: improper position" get_arith let get_rat_exn = _unwrap2 ~msg:"get_rat: improper position" get_rat end let fold_lits ~eligible lits k = let rec aux i = if i = Array.length lits then () else if not (eligible i lits.(i)) then aux (i+1) else ( k (lits.(i), i); aux (i+1) ) in aux 0 let fold_eqn ?(both=true) ?sign ~ord ~eligible lits k = let sign_ok s = match sign with | None -> true | Some sign -> sign = s in let rec aux i = if i = Array.length lits then () else if not (eligible i lits.(i)) then aux (i+1) else ( begin match lits.(i) with | Lit.Equation (l,r,sign) when sign_ok sign -> begin match Ordering.compare ord l r with | Comparison.Gt -> k (l, r, sign, Position.(arg i @@ left @@ stop)) | Comparison.Lt -> k (r, l, sign, Position.(arg i @@ right @@ stop)) | Comparison.Eq | Comparison.Incomparable -> if both then ( (* visit both sides of the equation *) k (r, l, sign, Position.(arg i @@ right @@ stop)); k (l, r, sign, Position.(arg i @@ left @@ stop)) ) else (* only one side *) k (l, r, sign, Position.(arg i @@ left @@ stop)) end | Lit.Prop (p, sign) when sign_ok sign -> k (p, T.true_, sign, Position.(arg i @@ left @@ stop)) | Lit.Prop _ | Lit.Equation _ | Lit.Int _ | Lit.Rat _ | Lit.True | Lit.False -> () end; aux (i+1) ) in aux 0 let fold_arith ~eligible lits k = let rec aux i = if i = Array.length lits then () else if not (eligible i lits.(i)) then aux (i+1) else ( begin match Lit.View.get_arith lits.(i) with | None -> () | Some x -> let pos = Position.(arg i stop) in k (x, pos) end; aux (i+1) ) in aux 0 let fold_arith_terms ~eligible ~which ~ord lits k = let module M = Monome in let module MF = Monome.Focus in fold_arith ~eligible lits (fun (a_lit, pos) -> (* do we use the given term? *) let do_term = match which with | `All -> (fun _ -> true) | `Max -> let max_terms = Int_lit.max_terms ~ord a_lit in fun t -> CCList.mem ~eq:T.equal t max_terms in Int_lit.Focus.fold_terms ~pos a_lit (fun (foc_lit, pos) -> let t = Int_lit.Focus.term foc_lit in if do_term t then k (t, foc_lit, pos)) ) let fold_rat ~eligible lits k = let rec aux i = if i = Array.length lits then () else if not (eligible i lits.(i)) then aux (i+1) else ( begin match Lit.View.get_rat lits.(i) with | None -> () | Some x -> let pos = Position.(arg i stop) in k (x, pos) end; aux (i+1) ) in aux 0 let fold_rat_terms ~eligible ~which ~ord lits k = let module M = Monome in let module MF = Monome.Focus in fold_rat ~eligible lits (fun (a_lit, pos) -> (* do we use the given term? *) let do_term = match which with | `All -> (fun _ -> true) | `Max -> let max_terms = Rat_lit.max_terms ~ord a_lit in fun t -> CCList.mem ~eq:T.equal t max_terms in Rat_lit.Focus.fold_terms ~pos a_lit (fun (foc_lit, pos) -> let t = Rat_lit.Focus.term foc_lit in if do_term t then k (t, foc_lit, pos)) ) let fold_terms ?(vars=false) ?ty_args ~(which : [< `All|`Max]) ~ord ~subterms ~eligible lits k = let rec aux i = if i = Array.length lits then () else if not (eligible i lits.(i)) then aux (i+1) (* ignore lit *) else ( Lit.fold_terms ~position:Position.(arg i stop) ?ty_args ~vars ~which ~ord ~subterms lits.(i) k; aux (i+1) ) in aux 0 let symbols ?(init=ID.Set.empty) lits = Iter.of_array lits |> Iter.flat_map Lit.Seq.symbols |> ID.Set.add_seq init (** {3 IO} *) let pp_gen ~false_ ~l ~r ~sep ~pp_lit out lits = match lits with | [||] -> CCFormat.string out false_ | [| l |] -> pp_lit out l | _ -> Format.fprintf out "%s@[<hv>%a@]%s" l CCFormat.(array ~sep pp_lit) lits r let pp out lits = let pp_lit = CCFormat.hovbox Lit.pp in pp_gen ~l:"[" ~r:"]" ~false_:"⊥" ~sep:(CCFormat.return "@ ∨ ") ~pp_lit out lits let pp_vars_gen ~pp_var ~pp_lits out lits = let pp_vars out = function | [] -> () | l -> Format.fprintf out "forall @[%a@].@ " (Util.pp_list ~sep:" " pp_var) l in let vars_ = Seq.vars lits |> T.VarSet.of_seq |> T.VarSet.to_list in Format.fprintf out "@[<2>%a%a@]" pp_vars vars_ pp_lits lits let pp_vars out lits = pp_vars_gen ~pp_var:Type.pp_typed_var ~pp_lits:pp out lits let pp_tstp out lits = let pp_lit = CCFormat.hovbox Lit.pp_tstp in pp_gen ~l:"(" ~r:")" ~false_:"$false" ~sep:(CCFormat.return "@ | ") ~pp_lit out lits (* print quantified literals *) let pp_tstp_closed out lits = let pp_vars out = function | [] -> () | l -> Format.fprintf out "![@[%a@]]:@ " (Util.pp_list ~sep:", " Type.TPTP.pp_typed_var) l in Format.fprintf out "@[<2>%a%a@]" pp_vars (vars lits) pp_tstp lits let pp_zf out lits = let pp_lit = CCFormat.hovbox Lit.pp_zf in pp_gen ~l:"(" ~r:")" ~false_:"false" ~sep:(CCFormat.return "@ || ") ~pp_lit out lits let pp_zf_closed out lits = pp_vars_gen ~pp_var:Type.ZF.pp_typed_var ~pp_lits:pp_zf out lits let to_string a = CCFormat.to_string pp a (** {2 Special kinds of array} *) (** Recognized whether the clause is a Range-Restricted Horn clause *) let is_RR_horn_clause lits = let bv = pos lits in match BV.to_list bv with | [i] -> (* single positive lit, check variables restrictions, ie all vars occur in the head *) let hd_vars = Lit.vars lits.(i) in List.length hd_vars = List.length (vars lits) | _ -> false (** Recognizes Horn clauses (at most one positive literal) *) let is_horn lits = let bv = pos lits in BV.cardinal bv <= 1 let is_pos_eq lits = match lits with | [| Lit.Equation (l,r,true) |] -> Some (l,r) | [| Lit.Prop(p,true) |] -> Some (p, T.true_) | [| Lit.True |] -> Some (T.true_, T.true_) | _ -> None (** {2 Shielded Variables} *) let is_shielded var (lits:t) : bool = let var_eq = HVar.equal Type.equal in let rec shielded_by_term ~root t = match T.view t with | T.Var v' when var_eq v' var -> not root | _ when Type.Seq.vars (T.ty t) |> Iter.exists (var_eq var) -> true (* shielded by type *) | T.Var _ | T.DB _ | T.Const _ -> false | T.AppBuiltin (_, l) -> List.exists (shielded_by_term ~root:false) l | T.App (f, l) -> shielded_by_term ~root f || List.exists (shielded_by_term ~root:false) l | T.Fun (_, bod) -> shielded_by_term ~root:false bod in (* is there a term, directly under a literal, that shields the variable? *) begin lits |> Seq.terms |> Iter.exists (shielded_by_term ~root:true) end let unshielded_vars ?(filter=fun _->true) lits: _ list = vars lits |> List.filter (fun var -> filter var && not (is_shielded var lits))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>