package logtk
Core types and algorithms for logic
Install
Dune Dependency
Authors
Maintainers
Sources
1.5.1.tar.gz
md5=cc320f66f10555c54822da624419e003
sha512=f8d5f7a5ae790bf0388d74261673803cf375f91f92f7b413b70db1ce5841ef55343a208f98727c8551d66f1840ab892f1c0c943a34861d14d79ce469b235a2f2
doc/src/logtk/Unif.ml.html
Source file Unif.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
(* This file is free software, part of Logtk. See file "license" for more details. *) (** {1 Unification and Matching} *) module T = InnerTerm module S = Subst module US = Unif_subst exception Fail type unif_subst = Unif_subst.t type subst = Subst.t type term = InnerTerm.t type ty = InnerTerm.t type 'a sequence = ('a -> unit) -> unit let section = Util.Section.make "unif" let prof_unify = Util.mk_profiler "unify" let prof_matching = Util.mk_profiler "matching" let fail () = raise Fail let _allow_partial_skolem_application = ref false let _allow_pattern_unif = ref true (** {2 Signatures} *) module type S = Unif_intf.S (** {2 Base (scoped terms)} *) (* Does [v] appear in [t] if we apply the substitution, or is [t] open? *) let occurs_check ~depth subst (v,sc_v) t = let rec check ~depth (t,sc_t) = match T.ty t with | T.NoType -> false | T.HasType ty -> (* check type and subterms *) check ~depth (ty, sc_t) || match T.view t with | T.Var v' -> (HVar.equal T.equal v v' && sc_v = sc_t) || begin match Subst.find subst (v',sc_t) with | None -> false | Some t' -> check ~depth t' end | T.DB i -> i>=depth (* not closed! *) | T.Const _ -> false | T.Bind (_, varty, t') -> check ~depth (varty,sc_t) || check ~depth:(depth+1) (t',sc_t) | T.AppBuiltin (_, l) -> check_l ~depth l sc_t | T.App (hd, l) -> check ~depth (hd,sc_t) || check_l ~depth l sc_t and check_l ~depth l sc = match l with | [] -> false | [t] -> check ~depth (t,sc) | t :: tail -> check ~depth (t,sc) || check_l ~depth tail sc in check ~depth t let unif_array_com ?(size=`Same) subst ~op (a1,sc1) (a2,sc2) k = let module BV = CCBV in (* match a1.(i...) with a2\bv *) let rec iter2 subst bv i = if i = Array.length a1 then k subst (* success *) else iter3 subst bv i 0 (* find a matching literal for a1.(i), within a2.(j...)\bv *) and iter3 subst bv i j = if j = Array.length a2 then () (* fail *) else ( if not (BV.get bv j) then ( (* try to match i-th literal of a1 with j-th literal of a2 *) BV.set bv j; op subst (a1.(i),sc1) (a2.(j),sc2) (fun subst -> iter2 subst bv (i+1)); BV.reset bv j ); iter3 subst bv i (j+1) ) in let size_ok = match size with | `Same -> Array.length a1 = Array.length a2 | `Smaller -> Array.length a1 <= Array.length a2 in if size_ok then ( let bv = BV.create ~size:(Array.length a1) false in iter2 subst bv 0 ) let unif_list_com ?size subst ~op (l1,sc1) (l2,sc2) = unif_array_com ?size subst ~op (Array.of_list l1,sc1) (Array.of_list l2,sc2) let rec unif_list subst ~op (l1,sc1) (l2,sc2) k = match l1, l2 with | [], [] -> k subst | [], _ | _, [] -> () | x1 :: tail1, x2 :: tail2 -> op subst (x1,sc1) (x2,sc2) (fun subst -> unif_list subst ~op (tail1,sc1)(tail2,sc2) k) let pair_lists_right f1 l1 f2 l2 : _ list * _ list = let len1 = List.length l1 and len2 = List.length l2 in if len1 = len2 then f1::l1, f2::l2 else if len1 < len2 then let l2_1, l2_2 = CCList.take_drop (len2 - len1) l2 in (* NOTE: this should work, because there is only one way to type application, therefore it should be well-typed *) let f2' = T.app ~ty:(T.ty_exn f1) f2 l2_1 in f1 :: l1, f2' :: l2_2 else let l1_1, l1_2 = CCList.take_drop (len1 - len2) l1 in (T.app ~ty:(T.ty_exn f2) f1 l1_1) :: l1_2, f2 :: l2 let pair_lists_left l1 ret1 l2 ret2 : _ list * _ list = let len1 = List.length l1 and len2 = List.length l2 in if len1 = len2 then ret1::l1, ret2::l2 else if len1 < len2 then ( let l2_1, l2_2 = CCList.take_drop len1 l2 in let ret2' = T.arrow l2_2 ret2 in ret1 :: l1, ret2' :: l2_1 ) else ( let l1_1, l1_2 = CCList.take_drop len2 l1 in let ret1' = T.arrow l1_2 ret1 in ret1' :: l1_1, ret2 :: l2 ) (** During matching or variant checking, we need to {b protect} some variables from being bound. Typically, when matching [u] against pattern [t], we can bind variables from [t] but not from [u] (since [u] must be preserved). Two styles of protection exist: - by explicit set of variables (when both [t] and [u] live in the same scope) - by scope: all variables in this scope are protected, EXCEPT fresh variables. Fresh variables are not protected because pattern unification/matching will move both terms into the same (protected) scope, but we still need to bind (freshly renamed) variables from the pattern. *) type protected = | P_vars of T.VarSet.t (* blocked variables *) | P_scope of int (* blocked scope *) let pp_protected out = function | P_scope c -> Format.fprintf out "protect[%d]" c | P_vars s -> Format.fprintf out "protect{@[%a@]}@])" (T.VarSet.pp HVar.pp) s (** The various operations to perform. - unification - matching (with some variables protected, see {!protected}) - variant checking (equality modulo renaming) - equality (modulo some substitution) *) type op = | O_unify | O_match_protect of protected | O_variant of protected | O_equal let pp_op out = function | O_unify -> CCFormat.string out "unify" | O_equal -> CCFormat.string out "equal" | O_variant p -> Format.fprintf out "(@[variant %a@])" pp_protected p | O_match_protect p -> Format.fprintf out "(@[match %a@])" pp_protected p (** {2 Unary Unification} *) module Inner = struct type ty = T.t type term = T.t (* public "bind" function that performs occur check *) let bind ?(check=true) subst v t = if check && occurs_check ~depth:0 subst v t then fail() else if S.mem subst v then fail() else S.bind subst v t (* public "update" function to replace a binding (with occur check) *) let update ?(check=true) subst v t = if check && occurs_check ~depth:0 subst v t then fail() else if not (S.mem subst v) then fail() else S.update subst v t (* is the type of [t] prop, or some other non-syntactically unifiable type? *) let has_non_unifiable_type_or_is_prop (t:T.t): bool = match T.ty t with | T.NoType -> false | T.HasType ty -> T.type_is_prop ty || not (T.type_is_unifiable ty) (* change the scope of variables in this term so they live in [scope] NOTE: terrible hack starts here: rename variables of [t'] to fresh variables that will live in [scope] *) let restrict_to_scope subst (t,sc_t) ~into:scope : Unif_subst.t * term = let rec aux sc_t subst t : US.t * term = match T.ty t with | T.NoType -> subst, t | T.HasType ty -> let subst, ty = aux sc_t subst ty in begin match T.view t with | T.Var v -> begin match Subst.find (US.subst subst) (v,sc_t) with | Some (u,sc_u) -> if sc_t = scope then (* Variable is already in [scope] *) let subst, u' = aux sc_u subst u in let subst = US.update subst (v,scope) (u', scope) in subst, T.var v else if T.is_var u && sc_u = scope then (* We already have a corresponding variable in [scope]. Use that one.*) subst, u else ( (* Create a corresponding variable v' in [scope]. *) let v' = HVar.fresh ~ty () in (* Recursive call on u, giving u' *) let subst, u' = aux sc_u subst u in (* Modify the substitution from v -> u into v -> v', v' -> u' *) let subst = US.update subst (v,sc_t) (T.var v', scope) in let subst = US.bind subst (v',scope) (u', scope) in subst, T.var v' ) | None -> if sc_t = scope then subst, T.var (HVar.cast ~ty v) else ( (* make a copy into [scope] *) let v' = HVar.fresh ~ty () in US.bind subst (v,sc_t) (T.var v', scope), T.var v' ) end | T.App (f, l) -> let subst, f = aux sc_t subst f in let subst, l = CCList.fold_map (aux sc_t) subst l in subst, T.app ~ty f l | T.AppBuiltin (b,l) -> let subst, l = CCList.fold_map (aux sc_t) subst l in subst, T.app_builtin ~ty b l | T.DB i -> subst, T.bvar ~ty i | T.Const id -> subst, T.const ~ty id | T.Bind (b, tyvar, body) -> let subst, varty = aux sc_t subst tyvar in let subst, body = aux sc_t subst body in subst, T.bind ~ty ~varty b body end in aux sc_t subst t (* dereference head of term, and reduce to WHNF. NOTE: assumes the term will stay in the same scope, fails otherwise *) let rec whnf_deref_rec (subst:US.t) (t,sc_t) : US.t * T.t = begin match T.view t with | T.Var _ -> let u, sc_u = US.deref subst (t,sc_t) in assert (sc_t=sc_u || T.is_ground u); if T.equal t u then subst, u else whnf_deref_rec subst (u,sc_t) (* fixpoint, maybe [u] is reducible *) | T.App (f0, l) -> let subst, f = whnf_deref_rec subst (f0,sc_t) in let t = if T.equal f0 f then t else T.app ~ty:(T.ty_exn t) f l in (* now reduce to WHNF *) let u = Lambda.Inner.whnf t in if T.equal t u then subst, t else whnf_deref_rec subst (u,sc_t) (* reduce further? *) | _ -> subst, t end let whnf_deref subst t = let subst, u = whnf_deref_rec subst t in (*Format.printf "(@[whnf_deref@ :subst %a@ `%a`@ :yields `%a`@])@." US.pp subst (Scoped.pp T.pp) t T.pp u;*) subst, u module B_vars : sig type t = private { left: T.t DBEnv.t; right: T.t DBEnv.t; } val empty : t val make : T.t DBEnv.t -> T.t DBEnv.t -> t val pp : t CCFormat.printer end = struct type t = { left: T.t DBEnv.t; right: T.t DBEnv.t; } let make left right = assert (DBEnv.size left = DBEnv.size right); {left; right} let empty : t = make DBEnv.empty DBEnv.empty let pp out (b:t) = Format.fprintf out "{@[@[%a@] |@ @[%a@]@]}" (DBEnv.pp T.pp) b.left (DBEnv.pp T.pp) b.right end (* list of distinct terms? *) let distinct_term_l l : bool = List.length l = (T.Set.of_list l |> T.Set.cardinal) (* distinct set of variables? *) let distinct_bvar_l ~bvars l : bool = let n = DBEnv.size bvars in List.for_all (fun t -> match T.view t with | T.DB i -> i < n | _ -> false) l && distinct_term_l l (* distinct ground terms *) let distinct_ground_l l : bool = List.for_all T.is_ground l && distinct_term_l l (* given [l], a list of distinct (ground) terms, and [rhs], replace [l] by distinct fresh variables indices in [rhs], and return [λvars. rhs] *) let lift_terms (l:T.t list) (rhs:T.t) : T.t = assert (List.for_all T.is_ground l); let vars = List.map (fun t -> HVar.fresh ~ty:(T.ty_exn t) ()) l in (* now replace [l] by [vars] *) let body = let m = List.map2 (fun t v -> t, T.var v) l vars |> T.Map.of_list in T.replace_m rhs m in T.fun_of_fvars vars body (* assuming all elements are [Some x], get the list of [x] *) let env_l_dense (e:'a DBEnv.t) : 'a list = DBEnv.to_list e |> List.map (function | Some x -> x | None -> assert false) (* Abstract on given bound variables *) let fun_of_bvars ~bvars (l:T.t list) (t:T.t) : T.t = assert (List.for_all T.is_bvar l); let n = List.length l in let env = DBEnv.to_list_i bvars |> CCList.filter_map (function | None -> None | Some (i, _) -> match CCList.find_idx (T.is_bvar_i i) l with | None -> None | Some (j, t_bvar) -> let ty = T.ty_exn t_bvar in (* map DB i into db (n-j) *) Some (i, T.bvar ~ty (n-j-1))) |> DBEnv.of_list in T.DB.eval env t |> T.fun_l (List.map T.ty_exn l) let restrict_fun1 : unif_subst -> ty:T.t -> to_:T.t DBEnv.t -> scope:Scoped.scope -> (_ HVar.t * T.t list) -> unif_subst = fun subst ~ty ~to_:subset ~scope (v,args) -> assert (not (US.mem subst (v,scope))); (* only keep bound args *) let args = List.filter (fun t -> match T.view t with | T.DB i -> DBEnv.mem subset i | _ -> assert false) args in let n = List.length args in (* fresh variable *) let ty_fun = T.arrow (List.map T.ty_exn args) ty in let f = HVar.fresh ~ty:ty_fun () in (* new function *) let rhs = T.app ~ty (T.var f) (List.mapi (fun i a -> T.bvar ~ty:(T.ty_exn a) (n-i-1)) args) |> T.fun_l (List.map T.ty_exn args) in US.bind subst (v,scope) (rhs,scope) let is_match_op = function O_match_protect _ -> true | _ -> false (* restrict functions to their common set of arguments that are variables present in [bvars], by creating a new function [H] and binding both to [λall_vars. H (l1 ∩ l2)] *) let restrict_fun2 : unif_subst -> ty_ret:T.t -> bvars:B_vars.t -> scope:Scoped.scope -> _ -> _ -> unif_subst = fun subst ~ty_ret ~bvars ~scope (v1,l1) (v2,l2) -> assert (not (HVar.equal T.equal v1 v2)); (* non-trivial *) assert (not (US.mem subst (v1,scope))); assert (not (US.mem subst (v2,scope))); (* compute intersection *) let inter = List.filter (fun t -> match T.view t with | T.DB i -> DBEnv.mem bvars.B_vars.left i && List.exists (T.is_bvar_i i) l2 | _ -> assert false) l1 in (* type of new function *) let ty_fun = T.arrow (List.map T.ty_exn inter) ty_ret in (* fresh variable *) let f = HVar.fresh ~ty:ty_fun () in (* build terms to replace [v1] and [v2] *) let mk_rhs l = let n = List.length l in let args = List.map (fun a -> let i = CCList.find_idx (T.equal a) l |> CCOpt.get_exn |> fst in T.bvar ~ty:(T.ty_exn a) (n-i-1)) inter in let body = T.app ~ty:ty_ret (T.var f) args in T.fun_l (List.map T.ty_exn l) body in let rhs1 = mk_rhs l1 in let rhs2 = mk_rhs l2 in let subst = US.bind subst (v1,scope) (rhs1,scope) in let subst = US.bind subst (v2,scope) (rhs2,scope) in subst (* delay pair, closing it if necessary *) let delay ~bvars ~ subst t1 sc1 t2 sc2 = if T.equal t1 t2 && sc1=sc2 then subst (* trivial *) else ( let u1 = T.fun_l (env_l_dense bvars.B_vars.left |> List.rev) t1 in let u2 = T.fun_l (env_l_dense bvars.B_vars.right |> List.rev) t2 in if T.DB.closed u1 && T.DB.closed u2 then ( US.add_constr (Unif_constr.make ~tags (u1,sc1)(u2,sc2)) subst ) else ( fail() ) ) let partial_skolem_fail f l1 l2 = not !_allow_partial_skolem_application && List.length l1 - List.length l2 < ID.num_mandatory_args f (* @param op which operation to perform (unification,matching,alpha-eq) @param root if we are at the root of the original problem. This is @param env typing environment for binders useful for constraints (only allowed in subterms, where [root=false]) *) let rec unif_rec ~op ~root ~bvars subst t1s t2s : unif_subst = let t1,sc1 = US.deref subst t1s and t2,sc2 = US.deref subst t2s in begin match T.ty t1, T.ty t2 with | T.NoType, T.NoType -> assert (t1 == t2 && t1 == T.tType); subst | T.NoType, _ | _, T.NoType -> fail() | T.HasType ty1, T.HasType ty2 -> (* unify types, then terms *) let subst = unif_rec ~op ~root:true ~bvars subst (ty1,sc1) (ty2,sc2) in unif_term ~op ~root ~bvars subst t1 sc1 t2 sc2 end and unif_term ~op ~root ~bvars subst t1 sc1 t2 sc2 : unif_subst = let view1 = T.view t1 and view2 = T.view t2 in let delay() = delay ~bvars subst t1 sc1 t2 sc2 in (* fast check for terms in WHNF *) let is_whnf t sc_t = match T.view t with | T.App (f, _) -> not (T.is_lambda f) && not (T.is_var f && US.mem subst (T.as_var_exn f,sc_t)) | _ -> true in (*Format.printf "(@[unif_rec@ :t1 `%a`@ :t2 `%a`@ :op %a@ :subst @[%a@]@ :bvars %a@])@." (Scoped.pp T.pp) (t1,sc1) (Scoped.pp T.pp) (t2,sc2) pp_op op US.pp subst B_vars.pp bvars;*) assert (not (T.is_a_type t1 && Type.is_forall (Type.of_term_unsafe t1))); assert (not (T.is_a_type t2 && Type.is_forall (Type.of_term_unsafe t2))); begin match view1, view2 with | _ when sc1=sc2 && T.equal t1 t2 -> subst (* the terms are equal under any substitution *) | T.Var _, _ when is_whnf t2 sc2 -> unif_vars ~op subst t1 sc1 t2 sc2 | _, T.Var _ when is_whnf t1 sc1 -> unif_vars ~op subst t1 sc1 t2 sc2 | T.DB i, T.DB j -> if i = j then subst else raise Fail | T.Const f, T.Const g -> if ID.equal f g then subst else if op=O_unify && not root && has_non_unifiable_type_or_is_prop t1 then ( let = T.type_non_unifiable_tags (T.ty_exn t1) in US.add_constr (Unif_constr.make ~tags (t1,sc1)(t2,sc2)) subst ) else raise Fail | T.App ({T.term=T.Const id1; _}, l1), T.App ({T.term=T.Const id2; _}, l2) -> (* first-order applications *) if ID.equal id1 id2 && List.length l1 = List.length l2 then ( (* just unify subterms pairwise *) unif_list ~op ~bvars subst l1 sc1 l2 sc2 ) else if op=O_unify && not root && has_non_unifiable_type_or_is_prop t1 then ( (* TODO: notion of value, here, to fail fast in some cases. e.g. [a + 1 = a] should fail immediately *) let = T.type_non_unifiable_tags (T.ty_exn t1) in delay ~tags () ) else fail() | T.App ({T.term=(T.Var _ | T.DB _ | T.Bind (Binder.Lambda, _, _)); _}, _), _ | _, T.App ({T.term=(T.Var _ | T.DB _ | T.Bind (Binder.Lambda, _, _)); _}, _) | T.Bind (Binder.Lambda, _, _), _ | _, T.Bind (Binder.Lambda, _, _) -> (* perform HO unification after moving both terms into same scope [sc2] *) begin match op with | O_match_protect (P_scope sc2') | O_variant (P_scope sc2') -> assert (sc2=sc2'); if sc1=sc2' then ( (* no renaming at all, same scope already *) unif_ho ~op ~root ~bvars subst t1 t2 ~scope:sc2 ) else ( let subst, t1 = restrict_to_scope subst (t1,sc1) ~into:sc2 in (* NOTE: we collapse both scopes together. The idea now is that by renaming variables of [t1] we allow the (fresh) variables of [t1] to bind, but not the variables of [t2] *) unif_ho ~op ~root ~bvars subst t1 t2 ~scope:sc2 ) | O_match_protect (P_vars _) | O_variant (P_vars _) | O_equal -> (* rename in [t1] but not [t2] *) let subst, t1 = restrict_to_scope subst (t1,sc1) ~into:sc2 in unif_ho ~op ~root ~bvars subst t1 t2 ~scope:sc2 | O_unify -> let subst, t1 = restrict_to_scope subst (t1,sc1) ~into:sc2 in let subst, t2 = restrict_to_scope subst (t2,sc2) ~into:sc2 in unif_ho ~op ~root ~bvars subst t1 t2 ~scope:sc2 end | T.AppBuiltin (Builtin.Arrow, ret1::args1), T.AppBuiltin (Builtin.Arrow, ret2::args2) -> (* unify [a -> b] and [a' -> b'], virtually *) let l1, l2 = pair_lists_left args1 ret1 args2 ret2 in unif_list ~op ~bvars subst l1 sc1 l2 sc2 | T.Bind ((Binder.Forall | Binder.Exists | Binder.ForallTy) as b1, varty1, t1'), T.Bind (b2, varty2, t2') when b1=b2 -> (* unify types, then enter bodies *) let subst = unif_rec ~op ~root:true ~bvars subst (varty1,sc1) (varty2,sc2) in unif_rec ~op ~root:false ~bvars subst (t1',sc1) (t2',sc2) | T.Bind ((Binder.Forall | Binder.Exists), _, _), _ | _, T.Bind ((Binder.Forall | Binder.Exists), _, _) -> delay ~tags:[] () (* cannot unify non-atomic propositions, so delay *) | T.AppBuiltin (Builtin.Int n1,[]), T.AppBuiltin (Builtin.Int n2,[]) -> if Z.equal n1 n2 then subst else raise Fail (* int equality *) | T.AppBuiltin (Builtin.Rat n1,[]), T.AppBuiltin (Builtin.Rat n2,[]) -> if Q.equal n1 n2 then subst else raise Fail (* rational equality *) | T.AppBuiltin (Builtin.True, _), _ | T.AppBuiltin (Builtin.False, _), _ -> if T.equal t1 t2 then subst else raise Fail (* boolean equality *) | _ when op=O_unify && not root && has_non_unifiable_type_or_is_prop t1 -> let = T.type_non_unifiable_tags (T.ty_exn t1) in delay ~tags () (* push pair as a constraint, because of typing. *) | T.AppBuiltin (s1,l1), T.AppBuiltin (s2, l2) when Builtin.equal s1 s2 -> (* try to unify/match builtins pairwise *) unif_list ~op ~bvars subst l1 sc1 l2 sc2 | _, _ -> raise Fail end and unif_vars ~op subst t1 sc1 t2 sc2 : unif_subst = begin match T.view t1, T.view t2, op with | T.Var v1, T.Var v2, O_equal -> if HVar.equal T.equal v1 v2 && sc1=sc2 then subst else fail() | T.Var v1, T.Var v2, _ when HVar.equal T.equal v1 v2 && sc1=sc2 -> subst | T.Var v1, _, O_match_protect (P_vars s) when T.VarSet.mem v1 s -> assert (sc1=sc2); fail() (* blocked variable *) | T.Var v1, _, O_match_protect (P_scope sc) when sc1 = sc && not (HVar.is_fresh v1) -> fail() (* variable belongs to the protected scope and is not fresh *) | T.Var v1, _, O_match_protect (P_scope _) -> (* no need for occur check when matching from distinct scopes *) US.bind subst (v1,sc1) (t2,sc2) | T.Var v1, _, (O_unify | O_match_protect (P_vars _)) -> if occurs_check ~depth:0 (US.subst subst) (v1,sc1) (t2,sc2) then fail () (* occur check or t2 is open *) else US.bind subst (v1,sc1) (t2,sc2) | T.Var v1, T.Var _, O_variant (P_vars s) when not (T.VarSet.mem v1 s) -> US.bind subst (v1,sc1) (t2,sc2) | T.Var v1, T.Var _, O_variant (P_scope sc') when sc1<>sc' || HVar.is_fresh v1 -> US.bind subst (v1,sc1) (t2,sc2) | _, T.Var v2, O_unify -> if occurs_check ~depth:0 (US.subst subst) (v2,sc2) (t1,sc1) then fail() (* occur check *) else US.bind subst (v2,sc2) (t1,sc1) | _ -> fail () (* fail *) end (* unify lists pairwise *) and unif_list ~op ~bvars subst l1 sc1 l2 sc2 : unif_subst = match l1, l2 with | [], [] -> subst | _, [] | [], _ -> fail () | t1::l1', t2::l2' -> let subst = unif_rec ~op ~root:false ~bvars subst (t1,sc1) (t2,sc2) in unif_list ~op ~bvars subst l1' sc1 l2' sc2 (* non-trivial cases of HO unification *) and unif_ho ~op ~root ~bvars subst t1_0 t2_0 ~scope : unif_subst = (* first, normalize and un-app both terms *) let subst, t1 = whnf_deref subst (t1_0,scope) in let subst, t2 = whnf_deref subst (t2_0,scope) in (*Format.printf "(@[unif_ho@ :t1 `%a`@ :t1_nf `%a`@ :t2 `%a`@ :t2_nf `%a`@ \ :sc %d :subst %a@ :op %a@ :bvars %a@])@." T.pp t1_0 T.pp t1 T.pp t2_0 T.pp t2 scope US.pp subst pp_op op B_vars.pp bvars;*) let f1, l1 = T.as_app t1 in let f2, l2 = T.as_app t2 in let delay() = delay ~bvars subst t1 scope t2 scope in (* case where heads are the same *) let same_rigid_head() = if List.length l1 = List.length l2 then ( (* just unify subterms pairwise *) unif_list ~op ~bvars subst l1 scope l2 scope ) else if op=O_unify && not root && has_non_unifiable_type_or_is_prop t1 then ( let = T.type_non_unifiable_tags (T.ty_exn t1) in delay ~tags () ) else fail() in begin match T.view f1, T.view f2 with | _ when T.equal f1 f2 -> same_rigid_head() | T.Bind (Binder.Lambda, _, _), T.Bind (Binder.Lambda, _, _) -> assert (l1=[] && l2=[]); let new_vars1, f1, new_vars2, f2 = T.open_bind2 Binder.Lambda f1 f2 in unif_rec ~op ~root:false ~bvars:(B_vars.make (DBEnv.push_l_rev bvars.B_vars.left new_vars1) (DBEnv.push_l_rev bvars.B_vars.right new_vars2)) subst (f1,scope) (f2,scope) | T.Bind (Binder.Lambda, _, _), _ -> (* [λx. t = u] becomes [t = u x] *) assert (l1=[]); let new_vars, f1 = T.open_bind Binder.Lambda f1 in let n = List.length new_vars in unif_rec ~op ~root ~bvars:(B_vars.make (DBEnv.push_l_rev bvars.B_vars.left new_vars) (DBEnv.push_l_rev bvars.B_vars.right new_vars)) subst (f1,scope) (T.app ~ty:(T.ty_exn f1) (T.DB.shift n t2) (List.mapi (fun i ty->T.bvar ~ty (n-i-1)) new_vars), scope) | _, T.Bind (Binder.Lambda, _, _) -> (* same as above *) assert (l2=[]); let new_vars, f2 = T.open_bind Binder.Lambda f2 in let n = List.length new_vars in unif_rec ~op ~root ~bvars:(B_vars.make (DBEnv.push_l_rev bvars.B_vars.left new_vars) (DBEnv.push_l_rev bvars.B_vars.right new_vars)) subst (T.app ~ty:(T.ty_exn f2) (T.DB.shift n t1) (List.mapi (fun i ty -> T.bvar ~ty (n-i-1)) new_vars), scope) (f2,scope) | T.Const id1, T.Const id2 -> (* first-order applications *) if ID.equal id1 id2 then same_rigid_head() else if op=O_unify && not root && has_non_unifiable_type_or_is_prop t1 then ( let = T.type_non_unifiable_tags (T.ty_exn t1) in delay ~tags () (* push pair as a constraint, because of typing. *) ) else fail() | T.DB i1, T.DB i2 -> if i1=i2 then same_rigid_head() else fail() | T.Var _, _ when l1=[] -> unif_rec ~op ~bvars ~root subst (t1,scope) (t2, scope) (* to bind *) | _, T.Var _ when l2=[] -> unif_rec ~op ~bvars ~root subst (t1,scope) (t2, scope) (* to bind *) | T.Const f, T.Var _ when partial_skolem_fail f l1 l2 -> fail() | T.Var _, T.Const g when partial_skolem_fail g l2 l1 -> fail() | T.Var v1, T.Const _ -> begin match op with | O_match_protect (P_scope sc2') when sc2' = scope && not (HVar.is_fresh v1) -> fail() | O_match_protect (P_vars s) when T.VarSet.mem v1 s -> fail() | O_unify | O_match_protect _ -> () | O_variant _ | O_equal -> fail() end; (*Format.printf "(@[unif_ho.flex_rigid@ `@[:f1 %a :l1 %a@]`@ :t2 `%a`@ :subst %a@ :bvars %a@])@." (Scoped.pp T.pp) (f1,scope) (CCFormat.Dump.list T.pp) l1 (Scoped.pp T.pp) (t2,scope) US.pp subst B_vars.pp bvars;*) if !_allow_pattern_unif && distinct_bvar_l ~bvars:bvars.B_vars.left l1 then ( (* flex/rigid pattern unif *) flex_rigid ~bvars:bvars.B_vars.left subst f1 l1 t2 ~scope ) else if !_allow_pattern_unif && distinct_ground_l l1 then ( (* [v t = t2] becomes [v = λx. t2[x/t]] *) let t2 = lift_terms l1 t2 in unif_rec ~op ~root ~bvars subst (f1,scope) (t2,scope) ) else if l2<>[] then ( (* λfree-HO: unify with currying, "from the right" *) let l1, l2 = pair_lists_right f1 l1 f2 l2 in (* Variables do not take type arguments. So we can fail early if `hd l2` does take type arguments. This avoids errors with the debug output. *) assert (T.expected_ty_vars (HVar.ty v1) = 0); if T.expected_ty_vars (T.ty_exn (List.hd l2)) != 0 then fail(); unif_list ~op ~bvars subst l1 scope l2 scope ) else fail() | T.Const _, T.Var v2 -> (*Format.printf "(@[unif_ho.flex_rigid@ `@[:f2 %a :l2 %a@]`@ :t1 `%a`@ :subst %a@ :bvars %a@])@." (Scoped.pp T.pp) (f2,scope) (CCFormat.Dump.list T.pp) l2 (Scoped.pp T.pp) (t1,scope) US.pp subst B_vars.pp bvars;*) if !_allow_pattern_unif && distinct_bvar_l ~bvars:bvars.B_vars.right l2 && op=O_unify then ( (* flex/rigid pattern unif *) flex_rigid ~bvars:bvars.B_vars.right subst f2 l2 t1 ~scope ) else if !_allow_pattern_unif && distinct_ground_l l2 && op=O_unify then ( (* [t1 = v t] becomes [v = λx. t1[x/t]] *) let t1 = lift_terms l2 t1 in unif_rec ~op ~root ~bvars subst (t1,scope) (f2,scope) ) else if l1<>[] then ( (* λfree-HO: unify with currying, "from the right" *) let l1, l2 = pair_lists_right f1 l1 f2 l2 in (* Variables do not take type arguments. So we can fail early if `hd l1` does take type arguments. This avoids errors with the debug output. *) assert (T.expected_ty_vars (HVar.ty v2) = 0); if T.expected_ty_vars (T.ty_exn (List.hd l1)) != 0 then fail(); unif_list ~op ~bvars subst l1 scope l2 scope ) else fail() | T.Var v1, T.Var v2 when op=O_unify && !_allow_pattern_unif && distinct_bvar_l ~bvars:bvars.B_vars.left l1 && distinct_bvar_l ~bvars:bvars.B_vars.right l2 -> (* flex/flex equation for pattern unif *) flex_flex_unif subst ~bvars ~ty_ret:(T.ty_exn t1) ~scope v1 l1 v2 l2 | T.Var v1, T.Var v2 when is_match_op op && !_allow_pattern_unif && distinct_bvar_l ~bvars:bvars.B_vars.left l1 && distinct_bvar_l ~bvars:bvars.B_vars.right l2 && CCList.subset ~eq:T.equal l2 l1 -> (* TODO: use equality mod subst for [subset] check *) flex_flex_matching ~op subst ~bvars ~ty_ret:(T.ty_exn t2) ~scope v1 l1 v2 l2 | T.Var _, T.Var _ -> (* λfree-HO: unify with currying, "from the right" *) let l1, l2 = pair_lists_right f1 l1 f2 l2 in unif_list ~op ~bvars subst l1 scope l2 scope | _ -> fail() end (* flex/rigid pair *) and flex_rigid ~bvars subst f1 l1 t2 ~scope : unif_subst = Util.debugf ~section 5 "(@[flex_rigid@ :subst %a@ `@[%a %a@]`@ :rhs `%a`@ :bvars %a@])" (fun k->k US.pp subst T.pp f1 (Util.pp_list T.pp) l1 T.pp t2 (DBEnv.pp T.pp) bvars); assert (l1<>[]); assert (List.for_all T.is_bvar l1); assert (T.is_var f1); (* bind [v1 := λl1. t2], then traverse [t2] *) let rhs = fun_of_bvars ~bvars l1 t2 in let subst = unif_rec ~op:O_unify ~root:true ~bvars:B_vars.empty subst (f1,scope) (rhs,scope) in Util.debugf ~section 5 "(@[flex_rigid_bind@ :subst %a@])" (fun k->k US.pp subst); (* now ensure that RHS is consistent with assignment *) Util.debugf ~section 5 "(@[proj@ :bvars %a@ :in `%a`@])" (fun k->k (DBEnv.pp T.pp) bvars T.pp t2); proj_fun ~bvars subst (t2,scope) (* project on a set of DB indices in [vars] *) and proj_fun ~bvars subst (t,sc_t) : unif_subst = let subst, t = whnf_deref subst (t,sc_t) in let f, l = T.as_app t in begin match T.view f with | T.Const _ -> proj_fun_l ~bvars subst (l,sc_t) | T.Bind (b, _, _) -> assert (l=[]); let new_vars, body = T.open_bind b f in proj_fun ~bvars:(DBEnv.push_l_rev bvars new_vars) subst (body,sc_t) | T.App _ -> assert false | T.AppBuiltin (_, l2) -> assert (l=[]); proj_fun_l ~bvars subst (l2,sc_t) | T.DB i -> if DBEnv.mem bvars i then proj_fun_l ~bvars subst (l,sc_t) else fail() (* this variable is not in scope anymore *) | T.Var v -> if l=[] then subst else if List.for_all T.is_bvar l then ( (* restrict [v] on [bvars], as a pattern. *) restrict_fun1 subst ~ty:(T.ty_exn t) ~to_:bvars ~scope:sc_t (v,l) ) else fail() end and proj_fun_l ~bvars subst (l,sc) : unif_subst = List.fold_left (fun subst t -> proj_fun ~bvars subst (t,sc)) subst l (* flex/flex unif pair: find common subset of arguments, introduce function variable parametrized by this subset @param ty_ret the type of the terms to unify *) and flex_flex_unif ~bvars subst ~ty_ret v1 l1 v2 l2 ~scope : unif_subst = Util.debugf ~section 5 "(@[flex_flex@ `@[%a %a@]`[%d]@ `@[%a %a@]`[%d]@ :subst %a@ :bvars %a@])" (fun k->k HVar.pp v1 (Util.pp_list T.pp) l1 scope HVar.pp v2 (Util.pp_list T.pp) l2 scope US.pp subst B_vars.pp bvars); let subst = restrict_fun2 subst ~ty_ret ~bvars ~scope (v1,l1) (v2,l2) in (*Format.printf "(@[flex_flex_yield@ :subst %a@])@." US.pp subst;*) subst (* flex/flex matching pair: similar to flex/flex above, but we project [v1] over [l2] using [v2] @param ty_ret the type of the terms to match *) and flex_flex_matching ~op ~bvars subst ~ty_ret v1 l1 v2 l2 ~scope : unif_subst = Util.debugf ~section 5 "(@[flex_flex_matching@ `@[%a %a@]`[%d]@ `@[%a %a@]`[%d]@ :subst %a@ :bvars %a@])" (fun k->k HVar.pp v1 (Util.pp_list T.pp) l1 scope HVar.pp v2 (Util.pp_list T.pp) l2 scope US.pp subst B_vars.pp bvars); (* check matching conditions *) begin match op with | O_match_protect (P_scope sc') when sc'=scope && not (HVar.is_fresh v1) -> fail() | O_match_protect (P_vars s) when T.VarSet.mem v1 s -> fail() | _ -> () end; let n = List.length l1 in (* imitate [t2] *) let rhs = T.app ~ty:ty_ret (T.var v2) (List.map (fun a -> let i = CCList.find_idx (T.equal a) l1 |> CCOpt.get_exn|>fst in T.bvar ~ty:(T.ty_exn a) (n-i-1)) l2) |> T.fun_l (List.map T.ty_exn l1) in let subst = US.bind subst (v1,scope) (rhs,scope) in (*Format.printf "(@[flex_flex_match_yield@ :subst %a@])@." US.pp subst;*) subst (* equality modulo subst *) and equal_ ~subst a b : bool = try let _ = unif_rec ~op:O_equal ~root:true ~bvars:B_vars.empty subst a b in true with Fail -> false let unify_full ?(subst=US.empty) a b : unif_subst = Util.with_prof prof_unify (fun () -> unif_rec ~root:true ~op:O_unify ~bvars:B_vars.empty subst a b) () let unify_syn ?(subst=Subst.empty) a b : Subst.t = let subst = US.of_subst subst in let subst = unify_full ~subst a b in if US.has_constr subst then raise Fail else US.subst subst let matching ?(subst=Subst.empty) ~pattern b = if Scoped.same_scope pattern b then invalid_arg "Unif.matching: same scopes"; let scope = Scoped.scope b in Util.with_prof prof_matching (fun () -> let subst = US.of_subst subst in let subst = unif_rec subst pattern b ~root:true ~op:(O_match_protect (P_scope scope)) ~bvars:B_vars.empty in assert (not @@ US.has_constr subst); US.subst subst) () let matching_same_scope ?(protect=Iter.empty) ?(subst=S.empty) ~scope ~pattern b = (* set of variables that should not be bound, including the free variables of [b] *) let protect = Iter.append protect (T.Seq.vars b) in let blocked = T.VarSet.of_seq protect in Util.with_prof prof_matching (fun () -> let subst = US.of_subst subst in let subst = unif_rec subst (Scoped.make pattern scope) (Scoped.make b scope) ~op:(O_match_protect (P_vars blocked)) ~root:true ~bvars:B_vars.empty in assert (not @@ US.has_constr subst); US.subst subst) () let matching_adapt_scope ?protect ?subst ~pattern t = if Scoped.same_scope pattern t then matching_same_scope ?protect ?subst ~scope:(Scoped.scope t) ~pattern:(Scoped.get pattern) (Scoped.get t) else matching ?subst ~pattern t let variant ?(subst=Subst.empty) ((_,sc1)as a) ((t2,sc2) as b) = let subst = US.of_subst subst in let op = let protect = if sc1=sc2 then P_vars (T.Seq.vars t2 |> T.VarSet.of_seq) else P_scope sc2 in O_variant protect in let subst = unif_rec ~op ~root:true ~bvars:B_vars.empty subst a b in assert (not @@ US.has_constr subst); let subst = US.subst subst in if Subst.is_renaming subst then subst else raise Fail (* equality modulo subst *) let equal ~subst a b = let subst = US.of_subst subst in try let subst = unif_rec ~op:O_equal ~root:true ~bvars:B_vars.empty subst a b in assert (not @@ US.has_constr subst); true with Fail -> false let are_variant t1 t2 = try let _ = variant (Scoped.make t1 0) (Scoped.make t2 1) in true with Fail -> false let matches ~pattern t = try let _ = matching ~pattern:(Scoped.make pattern 0) (Scoped.make t 1) in true with Fail -> false let are_unifiable_full t1 t2 = try let _ = unify_full (Scoped.make t1 0) (Scoped.make t2 1) in true with Fail -> false let are_unifiable_syn t1 t2 = try let _ = unify_syn (Scoped.make t1 0) (Scoped.make t2 1) in true with Fail -> false end (** {2 Specializations} *) module Ty = struct open Inner type ty = Type.t type term = Type.t let bind = (bind :> ?check:bool -> subst -> ty HVar.t Scoped.t -> term Scoped.t -> subst) let update = (update :> ?check:bool -> subst -> ty HVar.t Scoped.t -> term Scoped.t -> subst) let unify_full = (unify_full :> ?subst:unif_subst -> term Scoped.t -> term Scoped.t -> unif_subst) let unify_syn = (unify_syn :> ?subst:subst -> term Scoped.t -> term Scoped.t -> subst) let matching = (matching :> ?subst:subst -> pattern:term Scoped.t -> term Scoped.t -> subst) let matching_same_scope = (matching_same_scope :> ?protect:(Type.t HVar.t Iter.t) -> ?subst:subst -> scope:int -> pattern:term -> term -> subst) let matching_adapt_scope = (matching_adapt_scope :> ?protect:(Type.t HVar.t Iter.t) -> ?subst:subst -> pattern:term Scoped.t -> term Scoped.t -> subst) let variant = (variant :> ?subst:subst -> term Scoped.t -> term Scoped.t -> subst) let equal = (equal :> subst:subst -> term Scoped.t -> term Scoped.t -> bool) let are_unifiable_full = (are_unifiable_full :> term -> term -> bool) let are_unifiable_syn = (are_unifiable_syn :> term -> term -> bool) let matches = (matches :> pattern:term -> term -> bool) let are_variant = (are_variant :> term -> term -> bool) let type_is_unifiable = (T.type_is_unifiable :> term -> bool) end module FO = struct open Inner type ty = Type.t type term = Term.t let bind = (bind :> ?check:bool -> subst -> ty HVar.t Scoped.t -> term Scoped.t -> subst) let update = (update :> ?check:bool -> subst -> ty HVar.t Scoped.t -> term Scoped.t -> subst) let unify_full = (unify_full :> ?subst:unif_subst -> term Scoped.t -> term Scoped.t -> unif_subst) let unify_syn = (unify_syn :> ?subst:subst -> term Scoped.t -> term Scoped.t -> subst) let matching = (matching :> ?subst:subst -> pattern:term Scoped.t -> term Scoped.t -> subst) let matching_same_scope = (matching_same_scope :> ?protect:(Type.t HVar.t Iter.t) -> ?subst:subst -> scope:int -> pattern:term -> term -> subst) let matching_adapt_scope = (matching_adapt_scope :> ?protect:(Type.t HVar.t Iter.t) -> ?subst:subst -> pattern:term Scoped.t -> term Scoped.t -> subst) let variant = (variant :> ?subst:subst -> term Scoped.t -> term Scoped.t -> subst) let equal = (equal :> subst:subst -> term Scoped.t -> term Scoped.t -> bool) let are_unifiable_full = (are_unifiable_full :> term -> term -> bool) let are_unifiable_syn = (are_unifiable_syn :> term -> term -> bool) let matches = (matches :> pattern:term -> term -> bool) let are_variant = (are_variant :> term -> term -> bool) (* anti-unification of the two terms with at most one disagreement point *) let anti_unify ?(cut=max_int) (t:term)(u:term): (term * term) list option = let module T = Term in let pairs = ref [] in let len = ref 0 in let rec aux t u = match T.view t, T.view u with | _ when T.equal t u -> () (* trivial *) | _ when not (Type.equal (T.ty t) (T.ty u)) -> raise Exit (* irreconciliable *) | _ when Type.equal (Type.returns (T.ty t)) Type.tType -> raise Exit (* distinct types *) | T.App (f, ts), T.App (g, us) when T.equal f g && List.length ts = List.length us -> List.iter2 aux ts us | _ -> incr len; if !len <= cut then ( pairs := (t, u) :: !pairs; ) else raise Exit (* went above cut *) in assert (not (T.equal t u)); try aux t u; Some !pairs with Exit -> None let pair_lists_ = (pair_lists_right :> term -> term list -> term -> term list -> InnerTerm.t list * InnerTerm.t list) let pair_lists f1 l1 f2 l2 = let l1, l2 = pair_lists_ f1 l1 f2 l2 in Term.of_term_unsafe_l l1, Term.of_term_unsafe_l l2 end let () = Options.add_opts [ "--partial-skolem", Arg.Set _allow_partial_skolem_application, " allow partial application of skolem constants (sound only assuming the axiom of choice)"; "--no-unif-pattern", Arg.Clear _allow_pattern_unif, " disable pattern unification"; "--unif-pattern", Arg.Set _allow_pattern_unif, " enable pattern unification"; ]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>