package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/elf_memory_image_of_elf64_file.ml.html
Source file elf_memory_image_of_elf64_file.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
(*Generated by Lem from elf_memory_image_of_elf64_file.lem.*) open Lem_basic_classes open Lem_function open Lem_string open Lem_tuple open Lem_bool open Lem_list open Lem_sorting open Lem_map (*import Set*) open Lem_num open Lem_maybe open Lem_assert_extra open Byte_pattern open Byte_sequence open Default_printing open Error open Missing_pervasives open Show open Endianness open Elf_header open Elf_file open Elf_interpreted_section open Elf_interpreted_segment open Elf_section_header_table open Elf_program_header_table open Elf_symbol_table open Elf_types_native_uint open Elf_relocation open String_table open Memory_image open Memory_image_orderings open Elf_memory_image (*val section_name_is_unique : string -> elf64_file -> bool*) let section_name_is_unique name1 f:bool= ((match mapMaybe (fun sec -> if name1 = sec.elf64_section_name_as_string then Some sec else None ) f.elf64_file_interpreted_sections with [_] -> true | _ -> false )) (*val create_unique_name_for_section_from_index : natural -> elf64_interpreted_section -> elf64_file -> string*) let create_unique_name_for_section_from_index idx1 s f:string= (let secname1 = (s.elf64_section_name_as_string) in if section_name_is_unique secname1 f then secname1 else gensym secname1) (*val create_unique_name_for_common_symbol_from_linkable_name : string -> elf64_symbol_table_entry -> string -> elf64_file -> string*) let create_unique_name_for_common_symbol_from_linkable_name fname1 syment symname f:string= ( (* FIXME: uniqueness? I suppose file names are unique. How to avoid overlapping with * section names? *)fname1 ^ ("_" ^ symname)) (*val get_unique_name_for_common_symbol_from_linkable_name : string -> elf64_symbol_table_entry -> string -> string*) let get_unique_name_for_common_symbol_from_linkable_name fname1 syment symname:string= ( (* FIXME: uniqueness? I suppose file names are unique. How to avoid overlapping with * section names? *)fname1 ^ ("_" ^ symname)) (*val elf_memory_image_of_elf64_file : forall 'abifeature. abi 'abifeature -> string -> elf64_file -> elf_memory_image*) let elf_memory_image_of_elf64_file a fname1 f:(Abis.any_abi_feature)annotated_memory_image= ( (* Do we have program headers? This decides whether we choose a * sectionwise or segmentwise view. *)(match f.elf64_file_program_header_table with [] -> let extracted_symbols = (extract_definitions_from_symtab_of_type sht_symtab f) in let interpreted_sections_without_null = ((match f.elf64_file_interpreted_sections with [] -> failwith "impossible: empty list of interpreted sections" | null_entry :: more -> more )) in let section_names_and_elements = (mapMaybei (fun i -> (fun isec1 -> (* In principle, we can have unnamed sections. But * don't add the dummy initial SHT entry. This is *not* in the * list of interpreted sections. *) if elf64_interpreted_section_equal isec1 null_elf64_interpreted_section then (if Nat_big_num.equal i( (Nat_big_num.of_int 0)) then None else failwith "internal error: null interpreted section not at index 0") else if Nat_big_num.equal i( (Nat_big_num.of_int 0)) then failwith "internal error: non-null interpreted section at index 0" else let created_name = (create_unique_name_for_section_from_index i isec1 f) in (*let _ = errln ("In file " ^ fname ^ " created element name " ^ created_name ^ " for section idx " ^ (show i) ^ ", name " ^ isec.elf64_section_name_as_string) in*) Some (created_name, { startpos = None ; length1 = (Some isec1.elf64_section_size) ; contents = (byte_pattern_of_byte_sequence isec1.elf64_section_body) }) )) f.elf64_file_interpreted_sections) in let common_symbols = (List.filter (fun x -> Nat_big_num.equal (Uint32_wrapper.to_bigint (x.def_syment.elf64_st_shndx)) shn_common) extracted_symbols) in (*let _ = Missing_pervasives.errln ("Found " ^ (show (length common_symbols)) ^ " common symbols in file " ^ fname) in*) let common_symbol_names_and_elements = (mapMaybei (fun i -> (fun isym -> let symlen = (Ml_bindings.nat_big_num_of_uint64 isym.def_syment.elf64_st_size) in Some (get_unique_name_for_common_symbol_from_linkable_name fname1 isym.def_syment isym.def_symname, { startpos = None ; length1 = (Some symlen) ; contents = (Missing_pervasives.replicate0 symlen None) }) )) common_symbols) in let all_names_and_elements = (List.rev_append (List.rev section_names_and_elements) common_symbol_names_and_elements) in (* -- annotations are reloc sites, symbol defs, ELF sections/segments/headers, PLT/GOT/... * Since we stripped the null SHT entry, mapMaybei would ideally index from one. We add one. *) let (elf_sections : ( element_range option * elf_range_tag) list) = (mapMaybei (fun secidx_minus_one -> ( (fun (isec1, (secname1, _)) -> let (r : element_range option) = (Some(secname1, ( (Nat_big_num.of_int 0), isec1.elf64_section_size))) in Some (r, FileFeature(ElfSection( Nat_big_num.add secidx_minus_one( (Nat_big_num.of_int 1)), isec1))) ))) (list_combine interpreted_sections_without_null section_names_and_elements)) in let (symbol_defs : ( element_range option * elf_range_tag) list) = (mapMaybe (fun x -> let section_num = (Uint32_wrapper.to_bigint x.def_syment.elf64_st_shndx) in let labelled_range = (if Nat_big_num.equal section_num shn_abs then (* We have an annotation that doesn't apply to any range. * That's all right -- that's why the range is a maybe. *) None else if Nat_big_num.equal section_num shn_common then (* Each common symbol becomes its own elemenet (\approx section). * We label *that element* with a (coextensive) symbol definition. *) let element_name = (get_unique_name_for_common_symbol_from_linkable_name fname1 x.def_syment x.def_symname) in Some(element_name, ( (Nat_big_num.of_int 0), Ml_bindings.nat_big_num_of_uint64 x.def_syment.elf64_st_size)) else let (section_name, _) = ((match Ml_bindings.list_index_big_int ( Nat_big_num.sub_nat section_num( (Nat_big_num.of_int 1))) section_names_and_elements with Some x -> x | None -> failwith ("symbol " ^ (x.def_symname ^ " references nonexistent section")) )) in Some(section_name, (Ml_bindings.nat_big_num_of_uint64 x.def_syment.elf64_st_value, Ml_bindings.nat_big_num_of_uint64 x.def_syment.elf64_st_size))) in Some (labelled_range, SymbolDef(x)) ) (extract_definitions_from_symtab_of_type sht_symtab f)) in (* FIXME: should a common symbol be a reference too? * I prefer to think of common symbols as mergeable sections. * Under this interpretation, there's no need for a reference. * BUT the GC behaviour might be different! What happens if * a common symbol is not referenced? *) let (symbol_refs : ( element_range option * elf_range_tag) list) = (mapMaybe (fun (x : symbol_reference) -> Some (None, SymbolRef({ ref = x; maybe_reloc = None; maybe_def_bound_to = None })) ) (extract_references_from_symtab_of_type sht_symtab f)) in let (all_reloc_sites : (element_range * elf_range_tag) list) = (Lem_list.map (fun (x : symbol_reference_and_reloc_site) -> let rel = ((match x.maybe_reloc with Some rel -> rel | None -> failwith "impossible: reloc site has no reloc" )) in let (section_name, _) = ((match Ml_bindings.list_index_big_int ( Nat_big_num.sub_nat rel.ref_src_scn( (Nat_big_num.of_int 1))) section_names_and_elements with Some y -> y | None -> failwith "relocs came from nonexistent section" )) in let (rel_type1, _) = (a.parse_reloc_info rel.ref_relent.elf64_ra_info) in let (_, applyfn) = (a.reloc rel_type1) in let (width, calcfn) = (applyfn (get_empty_memory_image ())( (Nat_big_num.of_int 0)) x) (* GAH. We don't have an image. If we pass an empty memory image, will we fail? Need to make it work *) in (* FIXME: for copy relocs, the size depends on the *definition*. AHA! a copy reloc always *has* a symbol definition locally; it just gets its *value* from the shared object's definition. In other words, a copy reloc always references a defined symbol, and the amount copied is the minimum of that symbol's size and the overridden (copied-from .so)'s symbol's size. *) let (offset : Uint64_wrapper.uint64) = (rel.ref_relent.elf64_ra_offset) in ((section_name, (Ml_bindings.nat_big_num_of_uint64 offset, width)), SymbolRef(x)) ) (extract_all_relocs_as_symbol_references fname1 f)) in let all_reloc_pairs = (Lem_list.map (fun (el_range, r_tag) -> (Some el_range, r_tag)) all_reloc_sites) in let reloc_as_triple = (fun ((_ : bool Memory_image.range_tag), (x : bool Memory_image.range_tag)) -> ((match x with SymbolRef(r) -> (match r.maybe_reloc with Some rel -> (rel.ref_rel_scn, rel.ref_rel_idx, rel.ref_src_scn) | None -> failwith "impossible: " ) | _ -> failwith "unexpected tag" ))) in (*let _ = Missing_pervasives.errln ("Extracted " ^ (show (length all_reloc_sites)) ^ " reloc site tags from " ^ "file " ^ fname ^ ": " ^ (show (List.map reloc_as_triple all_reloc_sites))) in*) let retrieved_reloc_sites = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict)) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict)) (Memory_image_orderings.tagEquiv Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef(null_symbol_reference_and_reloc_site)) (let ((fst : (string * Memory_image.range) list), (snd : ( Abis.any_abi_feature Memory_image.range_tag) list)) = (List.split all_reloc_sites) in (Pset.from_list (pairCompare compare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) (list_combine snd fst)))) in (*let _ = Missing_pervasives.errln ("Re-reading: retrieved " ^ (show (length retrieved_reloc_sites)) ^ " reloc site tags from " ^ "file " ^ fname ^ ": " ^ (show (List.map reloc_as_triple (let (fst, snd) = unzip retrieved_reloc_sites in zip snd fst)))) in*) let elf_header = ([(Some("header", ( (Nat_big_num.of_int 0), Uint32_wrapper.to_bigint f.elf64_file_header.elf64_ehsize)), FileFeature(ElfHeader(f.elf64_file_header)))]) in (*let _ = Missing_pervasives.errln ("ELF header contributes " ^ (show (List.length elf_header)) ^ " annotations.") in*) let all_annotations_list = (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev all_reloc_pairs) symbol_refs)) symbol_defs)) elf_sections)) elf_header) in let all_annotations_length = (List.length all_annotations_list) in (*let _ = Missing_pervasives.errln ("total annotations: " ^ (show all_annotations_length)) in*) let all_annotations = (Pset.from_list (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare) all_annotations_list) in let (apply_content_relocations : string -> byte_pattern -> byte_pattern) = (fun (name1 : string) -> (fun content -> let this_element_reloc_sites = (List.filter (fun ((n, range1), _) -> name1 = n) all_reloc_sites) in let ((this_element_name_and_reloc_ranges : (string * (Nat_big_num.num * Nat_big_num.num)) list), _) = (List.split this_element_reloc_sites) in let (this_element_reloc_ranges : (Nat_big_num.num * Nat_big_num.num) list) = (snd (List.split this_element_name_and_reloc_ranges)) in let (all_ranges_expanded : bool list) = (expand_unsorted_ranges this_element_reloc_ranges (byte_pattern_length content) []) in relax_byte_pattern content all_ranges_expanded )) in let new_elements_list = (Lem_list.map (fun (name1, element1) -> (* We can now mark the relocation sites in the section contents as "subject to change". *) ( name1, { startpos = (element1.startpos) ; length1 = (element1.length1) ; contents = ( (*let _ = errln ("Reloc-relaxing section " ^ name ^ " in file " ^ fname ^ ": before, first 20 bytes: " ^ (show (take 20 element.contents))) in*)let relaxed = (apply_content_relocations name1 element1.contents) in (*let _ = errln ("After, first 20 bytes: " ^ (show (take 20 relaxed))) in*) relaxed) } ) ) all_names_and_elements) in (* List.foldr (fun acc -> (fun element.contents this_element_reloc_ranges let (expand_and_relax : list (maybe byte) -> (natural * natural) -> list (maybe byte)) = fun pat -> (fun r -> ( relax_byte_pattern pat (expand_ranges r) )) in*) { elements = (Lem_map.fromList (instance_Map_MapKeyType_var_dict instance_Basic_classes_SetType_var_dict) new_elements_list) (* : memory_image -- the image elements, without annotation, i.e. a map from string to (startpos, length, contents) -- an element is the ELF header, PHT, SHT, section or segment -- exploit the fact that section names beginning `.' are reserved, and the reserved ones don't use caps: ".PHT", ".SHT", ".HDR" -- what about ambiguous section names? use ".GENSYM_<...>" perhaps *) ; by_range = all_annotations ; by_tag = (let (fst, snd) = (List.split all_annotations_list) in (Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) (list_combine snd fst))) (* : multimap (elf_range_tag 'symdef 'reloc 'filefeature 'abifeature) (string * range) -- annotations by *) } | pht -> let segment_names_and_images = (mapMaybei (fun i -> (fun seg -> Some((gensym (hex_string_of_natural seg.elf64_segment_base) ^ ("_" ^ (hex_string_of_natural seg.elf64_segment_type))), { startpos = (Some seg.elf64_segment_base) ; length1 = (Some seg.elf64_segment_memsz) ; contents = (byte_pattern_of_byte_sequence seg.elf64_segment_body) }) )) f.elf64_file_interpreted_segments) in (* let annotations = *) { elements = (Lem_map.fromList (instance_Map_MapKeyType_var_dict instance_Basic_classes_SetType_var_dict) segment_names_and_images) (* : memory_image -- the image elements, without annotation, i.e. a map from string to (startpos, length, contents) -- an element is the ELF header, PHT, SHT, section or segment -- exploit the fact that section names beginning `.' are reserved, and the reserved ones don't use caps: ".PHT", ".SHT", ".HDR" -- what about ambiguous section names? use ".GENSYM_<...>" perhaps *) ; by_range = (Pset.from_list (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare) []) (* : map element_range (list (elf_range_tag 'symdef 'reloc 'filefeature 'abifeature)) -- annotations are reloc sites, symbol defs, ELF sections/segments/headers, PLT/GOT/... *) ; by_tag = (Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) []) (* : multimap (elf_range_tag 'symdef 'reloc 'filefeature 'abifeature) (string * range) -- annotations by *) } )) (*val elf_memory_image_header : elf_memory_image -> elf64_header*) let elf_memory_image_header img2:elf64_header= ((match unique_tag_matching Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict (FileFeature(ElfHeader(null_elf_header))) img2 with FileFeature(ElfHeader(x)) -> x | _ -> failwith "impossible: no header" )) (*val elf_memory_image_sht : elf_memory_image -> maybe elf64_section_header_table*) let elf_memory_image_sht img2:((elf64_section_header_table_entry)list)option= ((match unique_tag_matching Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict (FileFeature(null_section_header_table)) img2 with FileFeature(ElfSectionHeaderTable(x)) -> Some x | _ -> None )) (*val elf_memory_image_section_ranges : elf_memory_image -> (list elf_range_tag * list element_range)*) let elf_memory_image_section_ranges img2:((Abis.any_abi_feature)range_tag)list*(element_range)list= ( (* find all element ranges labelled as ELF sections *)let tagged_ranges = (tagged_ranges_matching_tag Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict (FileFeature(ElfSection( (Nat_big_num.of_int 0), null_elf64_interpreted_section))) img2) in let (, maybe_ranges) = (List.split tagged_ranges) in (tags, make_ranges_definite maybe_ranges)) (*val elf_memory_image_section_by_index : natural -> elf_memory_image -> maybe elf64_interpreted_section*) let elf_memory_image_section_by_index idx1 img2:(elf64_interpreted_section)option= ( (* find all element ranges labelled as ELF sections *)let (allSectionTags, allSectionElementRanges) = (elf_memory_image_section_ranges img2) in let matches = (mapMaybei (fun i -> (fun tag -> (match tag with FileFeature(ElfSection(itsIdx, s)) -> if Nat_big_num.equal itsIdx idx1 then Some s else None | _ -> failwith "impossible" ))) allSectionTags) in (match matches with [] -> None | [x] -> Some x | x -> failwith ("impossible: more than one ELF section with same index" (*"(" ^ (show idx) ^ ")"*)) )) (*val elf_memory_image_element_coextensive_with_section : natural -> elf_memory_image -> maybe string*) let elf_memory_image_element_coextensive_with_section idx1 img2:(string)option= ( (* find all element ranges labelled as ELF sections *)let (allSectionTags, allSectionElementRanges) = (elf_memory_image_section_ranges img2) in let matches = (mapMaybei (fun i -> (fun (tag, (elName, (rangeStart, rangeLen))) -> (match tag with FileFeature(ElfSection(itsIdx, s)) -> let el_rec = ((match Pmap.lookup elName img2.elements with Some x -> x | None -> failwith "impossible: element not found" )) in let size_matches = ( (* HMM. This is complicated. Generally we like to ignore * isec fields that are superseded by memory_image fields, * here the element length. But we want to catch the case * where there's an inconsistency, and we *might* want to allow the * case where the element length is still vague (Nothing). *)let range_len_matches_sec = ( Nat_big_num.equal rangeLen s.elf64_section_size) in let sec_matches_element_len = ( (Lem.option_equal Nat_big_num.equal(Some(s.elf64_section_size)) el_rec.length1)) in let range_len_matches_element_len = ( (Lem.option_equal Nat_big_num.equal(Some(rangeLen)) el_rec.length1)) in (* If any pair are unequal, then warn. *) (*let _ = if (range_len_matches_sec <> sec_matches_element_len || sec_matches_element_len <> range_len_matches_element_len || range_len_matches_sec <> range_len_matches_element_len) then errln ("Warning: section lengths do not agree: " ^ s.elf64_section_name_as_string) else () in*) range_len_matches_element_len) in if Nat_big_num.equal itsIdx idx1 && (Nat_big_num.equal rangeStart( (Nat_big_num.of_int 0)) && size_matches) then (* *) (* Sanity check: does the *) Some elName else None | _ -> failwith "impossible" ))) (list_combine allSectionTags allSectionElementRanges)) in (match matches with [] -> None | [x] -> Some x | xs -> failwith ("impossible: more than one ELF section coextensive with section" ^ ((Nat_big_num.to_string idx1) ^ (", names: " ^ (string_of_list instance_Show_Show_string_dict xs)))) )) (*val name_of_elf_interpreted_section : elf64_interpreted_section -> elf64_interpreted_section -> maybe string*) let name_of_elf_interpreted_section s shstrtab:(string)option= ((match get_string_at s.elf64_section_name (string_table_of_byte_sequence shstrtab.elf64_section_body) with Success(x) -> Some x | Fail(e) -> None )) (*val elf_memory_image_sections_with_indices : elf_memory_image -> list (elf64_interpreted_section * natural)*) let elf_memory_image_sections_with_indices img2:(elf64_interpreted_section*Nat_big_num.num)list= ( (* We have to get all sections and their names, * because section names need not be unique. *)let (( : elf_range_tag list), (all_section_ranges : element_range list)) = (elf_memory_image_section_ranges img2) in Lem_list.map (fun tag -> (match tag with FileFeature(ElfSection(idx1, i)) -> (i, idx1) | _ -> failwith "impossible: non-section in list of sections" )) all_section_tags) (*val elf_memory_image_sections : elf_memory_image -> list elf64_interpreted_section*) let elf_memory_image_sections img2:(elf64_interpreted_section)list= (let (secs, _) = (List.split (elf_memory_image_sections_with_indices img2)) in secs) (*val elf_memory_image_sections_with_name : string -> elf_memory_image -> list elf64_interpreted_section*) let elf_memory_image_sections_with_name name1 img2:(elf64_interpreted_section)list= (let all_interpreted_sections = (elf_memory_image_sections img2) in let maybe_shstrtab = (elf_memory_image_section_by_index (Uint32_wrapper.to_bigint ((elf_memory_image_header img2).elf64_shstrndx)) img2) in let shstrtab = ((match maybe_shstrtab with None -> failwith "no shtstrtab" | Some x -> x )) in let all_section_names = (Lem_list.map (fun i -> let (stringtab : string_table) = (string_table_of_byte_sequence (shstrtab.elf64_section_body)) in (match get_string_at i.elf64_section_name stringtab with Fail _ -> None | Success x -> Some x )) all_interpreted_sections) in mapMaybe (fun (n, i) -> if (Lem.option_equal (=) (Some(name1)) n) then Some i else None) (list_combine all_section_names all_interpreted_sections)) (* val elf_memory_image_unique_section_with_name : string -> elf_memory_image -> elf64_interpreted_section let elf_memory_image_unique_section_with_name name img = match Map.lookup name img.image with Just el -> match el with FileFeature(ElfSection(_, x)) -> x | _ -> failwith "impossible: section name does not name a section" end | | Nothing -> failwith ("no section named '" ^ name ^ "' but asserted unique") end *) (* FIXME: delete these symbol functions, because Memory_image_orderings * has generic ones. *) (*val elf_memory_image_symbol_def_ranges : elf_memory_image -> (list elf_range_tag * list (maybe element_range))*) let elf_memory_image_symbol_def_ranges img2:((Abis.any_abi_feature)range_tag)list*((element_range)option)list= ( (* find all element ranges labelled as ELF symbols *)let (, maybe_ranges) = (List.split ( tagged_ranges_matching_tag Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict (SymbolDef(null_symbol_definition)) img2 )) in (* some symbols, specifically ABS symbols, needn't label a range. *) (tags, maybe_ranges)) (*val name_of_symbol_def : symbol_definition -> string*) let name_of_symbol_def0 sym1:string= (sym1.def_symname) (*val elf_memory_image_defined_symbols_and_ranges : elf_memory_image -> list ((maybe element_range) * symbol_definition)*) let elf_memory_image_defined_symbols_and_ranges img2:((element_range)option*symbol_definition)list= (Memory_image_orderings.defined_symbols_and_ranges Abis.instance_Basic_classes_Ord_Abis_any_abi_feature_dict Abis.instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict img2) (*val elf_memory_image_defined_symbols : elf_memory_image -> list symbol_definition*) let elf_memory_image_defined_symbols img2:(symbol_definition)list= (let (( : elf_range_tag list), (all_symbol_ranges : ( element_range option) list)) = (elf_memory_image_symbol_def_ranges img2) in Lem_list.mapMaybe (fun tag -> (match tag with SymbolDef(ent) -> Some ent | _ -> failwith "impossible: non-symbol def in list of symbol defs" )) all_symbol_tags) (* val elf_memory_image_symbols_with_name : string -> elf_memory_image -> list symbol_definition let elf_memory_image_symbols_with_name name img = let all_interpreted_sections = elf_memory_image_sections img in let maybe_shstrtab = elf_memory_image_section_by_index (natural_of_elf64_half ((elf_memory_image_header img).elf64_shstrndx)) img in let shstrtab = match maybe_shstrtab with Nothing -> failwith "no shtstrtab" | Just x -> x end in let all_section_names = List.map (fun i -> let (stringtab : string_table) = string_table_of_byte_sequence (shstrtab.elf64_section_body) in match get_string_at i.elf64_section_name stringtab with Fail _ -> Nothing | Success x -> Just x end) all_interpreted_sections in mapMaybe (fun (n, i) -> if Just(name) = n then Just i else Nothing) (zip all_section_names all_interpreted_sections) *) (* val elf_memory_image_unique_symbol_with_name : string -> elf_memory_image -> symbol_def let elf_memory_image_unique_symbol_with_name name img = match Map.lookup name img.image with Just el -> match el with FileFeature(ElfSection(_, x)) -> x | _ -> failwith "impossible: section name does not name a section" end | | Nothing -> failwith ("no section named '" ^ name ^ "' but asserted unique") end *) (*val name_of_elf_section : elf64_interpreted_section -> elf_memory_image -> maybe string*) let name_of_elf_section sec img2:(string)option= ( (* let shstrndx = natural_of_elf64_half ((elf_memory_image_header img).elf64_shstrndx) in match elf_memory_image_section_by_index shstrndx img with Nothing -> Nothing | Just shstrtab -> name_of_elf_interpreted_section sec shstrtab end *)Some sec.elf64_section_name_as_string) (*val name_of_elf_element : elf_file_feature -> elf_memory_image -> maybe string*) let name_of_elf_element feature img2:(string)option= ((match feature with ElfSection(_, sec) -> name_of_elf_section sec img2 | _ -> None (* FIXME *) )) (*val get_unique_name_for_section_from_index : natural -> elf64_interpreted_section -> elf_memory_image -> string*) let get_unique_name_for_section_from_index idx1 isec1 img2:string= ( (* Don't call gensym just to retrieve the name *)(match elf_memory_image_element_coextensive_with_section idx1 img2 with Some n -> n | None -> failwith "section does not have an element name" ))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>