package linksem
A formalisation of the core ELF and DWARF file formats written in Lem
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.tar.gz
md5=2075c56715539b3b8f54ae65cc808b8c
sha512=f7c16e4036a1440a6a8d13707a43f0f9f9db0c68489215f948cc300b6a164dba5bf852e58f89503e9d9f38180ee658d9478156ca1a1ef64d6861eec5f9cf43d2
doc/src/linksem_zarith/abis.ml.html
Source file abis.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
(*Generated by Lem from abis/abis.lem.*) (** The [abis] module is the top-level module for all ABI related code, including * some generic functionality that works across all ABIs, and a primitive attempt * at abstracting over ABIs for purposes of linking. *) open Lem_basic_classes open Lem_bool open Lem_num open Lem_maybe open Lem_list open Lem_set (*import Map*) open Lem_string open Show open Lem_assert_extra open Error open Missing_pervasives open Elf_file open Elf_header open Elf_interpreted_section open Elf_relocation open Elf_symbol_table open Elf_program_header_table open Elf_section_header_table open Memory_image open Abi_amd64 open Abi_amd64_relocation open Abi_aarch64_le open Abi_aarch64_relocation open Abi_power64 open Abi_power64_relocation open Abi_mips64 open Abi_mips64_elf_header open Abi_mips64_relocation open Abi_cheri_mips64 open Abi_cheri_mips64_elf_header open Abi_cheri_mips64_relocation open Gnu_ext_abi open Abi_classes open Abi_utilities open Elf_types_native_uint open Memory_image_orderings (** Relocation operators and their validity on a given platform *) (*val is_valid_abi_aarch64_relocation_operator : relocation_operator -> bool*) let is_valid_abi_aarch64_relocation_operator op:bool= ((match op with | Page -> true | G -> true | GDat -> true | GLDM -> true | DTPRel -> true | GTPRel -> true | TPRel -> true | GTLSDesc -> true | Delta -> true | LDM -> true | TLSDesc -> true | Indirect -> true | _ -> false )) (*val is_valid_abi_aarch64_relocation_operator2 : relocation_operator2 -> bool*) let is_valid_abi_aarch64_relocation_operator2 op:bool= ((match op with | GTLSIdx -> true )) (*val is_valid_abi_amd64_relocation_operator : relocation_operator -> bool*) let is_valid_abi_amd64_relocation_operator op:bool= ((match op with | Indirect -> true | _ -> false (* XXX: not sure about this? *) )) (*val is_valid_abi_amd64_relocation_operator2 : relocation_operator2 -> bool*) let is_valid_abi_amd64_relocation_operator2 op:bool= ((match op with | _ -> false )) (*val is_valid_abi_power64_relocation_operator : relocation_operator -> bool*) let is_valid_abi_power64_relocation_operator op:bool= false (* TODO *) (*val is_valid_abi_power64_relocation_operator2 : relocation_operator2 -> bool*) let is_valid_abi_power64_relocation_operator2 op:bool= ((match op with | _ -> false )) (** Misc. ABI related stuff *) type any_abi_feature = Amd64AbiFeature of any_abi_feature amd64_abi_feature | Aarch64LeAbiFeature of aarch64_le_abi_feature (*val anyAbiFeatureCompare : any_abi_feature -> any_abi_feature -> Basic_classes.ordering*) let anyAbiFeatureCompare f1 f2:int= ((match (f1, f2) with (Amd64AbiFeature(af1), Amd64AbiFeature(af2)) -> Abi_amd64.abiFeatureCompare0 af1 af2 |(Amd64AbiFeature(_), _) -> (-1) |(Aarch64LeAbiFeature(af1), Amd64AbiFeature(af2)) -> 1 |(Aarch64LeAbiFeature(af1), Aarch64LeAbiFeature(af2)) -> Abi_aarch64_le.abiFeatureCompare af1 af2 )) (*val anyAbiFeatureTagEquiv : any_abi_feature -> any_abi_feature -> bool*) let anyAbiFeatureTagEquiv f1 f2:bool= ((match (f1, f2) with (Amd64AbiFeature(af1), Amd64AbiFeature(af2)) -> Abi_amd64.abiFeatureTagEq0 af1 af2 |(Amd64AbiFeature(_), _) -> false |(Aarch64LeAbiFeature(af1), Amd64AbiFeature(af2)) -> false |(Aarch64LeAbiFeature(af1), Aarch64LeAbiFeature(af2)) -> Abi_aarch64_le.abiFeatureTagEq af1 af2 )) let instance_Basic_classes_Ord_Abis_any_abi_feature_dict:(any_abi_feature)ord_class= ({ compare_method = anyAbiFeatureCompare; isLess_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(anyAbiFeatureCompare f1 f2) (-1)))); isLessEqual_method = (fun f1 -> (fun f2 -> Pset.mem (anyAbiFeatureCompare f1 f2)(Pset.from_list compare [(-1); 0]))); isGreater_method = (fun f1 -> (fun f2 -> ( Lem.orderingEqual(anyAbiFeatureCompare f1 f2) 1))); isGreaterEqual_method = (fun f1 -> (fun f2 -> Pset.mem (anyAbiFeatureCompare f1 f2)(Pset.from_list compare [1; 0])))}) let instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict:(any_abi_feature)abiFeatureTagEquiv_class= ({ abiFeatureTagEquiv_method = anyAbiFeatureTagEquiv}) let make_elf64_header data osabi abiv ma t entry shoff phoff phnum shnum shstrndx:elf64_header= ({ elf64_ident = ([elf_mn_mag0; elf_mn_mag1; elf_mn_mag2; elf_mn_mag3; Uint32_wrapper.of_bigint elf_class_64; Uint32_wrapper.of_bigint data; Uint32_wrapper.of_bigint elf_ev_current; Uint32_wrapper.of_bigint osabi; Uint32_wrapper.of_bigint abiv; Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0)); Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0))]) ; elf64_type = (Uint32_wrapper.of_bigint t) ; elf64_machine = (Uint32_wrapper.of_bigint ma) ; elf64_version = (Uint32_wrapper.of_bigint elf_ev_current) ; elf64_entry = (Uint64_wrapper.of_bigint entry) ; elf64_phoff = (Uint64_wrapper.of_bigint phoff) ; elf64_shoff = (Uint64_wrapper.of_bigint shoff) ; elf64_flags = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0))) ; elf64_ehsize = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 64))) ; elf64_phentsize= (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 56))) ; elf64_phnum = (Uint32_wrapper.of_bigint phnum) ; elf64_shentsize= (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 64))) ; elf64_shnum = (Uint32_wrapper.of_bigint shnum) ; elf64_shstrndx = (Uint32_wrapper.of_bigint shstrndx) }) (*val phdr_flags_from_section_flags : natural -> string -> natural*) let phdr_flags_from_section_flags section_flags sec_name:Nat_big_num.num= (let flags = (Nat_big_num.bitwise_or elf_pf_r (Nat_big_num.bitwise_or (if flag_is_set shf_write section_flags then elf_pf_w else (Nat_big_num.of_int 0)) (if flag_is_set shf_execinstr section_flags then elf_pf_x else (Nat_big_num.of_int 0)))) in (*let _ = errln ("Phdr flags of section " ^ sec_name ^ "(ELF section flags 0x " ^ (hex_string_of_natural section_flags) ^ ") are 0x" ^ (hex_string_of_natural flags)) in*) flags) (*val phdr_is_writable : natural -> bool*) let phdr_is_writable flags:bool= (Nat_big_num.equal (Nat_big_num.bitwise_and flags elf_pf_w) elf_pf_w) type can_combine_flags_fn = Nat_big_num.num Pset.set -> Nat_big_num.num option (* FIXME: lift this to a personality function of the GNU linker? * Not sure really... need to try some other linkers. *) (*val load_can_combine_flags : can_combine_flags_fn*) let load_can_combine_flags flagsets:(Nat_big_num.num)option= ( (* The GNU linker happily adds a .rodata section to a RX segment, * but not to a RW segment. So the only clear rule is: if any is writable, * all must be writable. *)let flagslist = (Pset.elements flagsets) in let union_flags = (List.fold_left Nat_big_num.bitwise_or( (Nat_big_num.of_int 0)) flagslist) in if List.exists phdr_is_writable flagslist then if List.for_all phdr_is_writable flagslist then Some union_flags else None else Some union_flags) (*val tls_can_combine_flags : can_combine_flags_fn*) let tls_can_combine_flags flagsets:(Nat_big_num.num)option= (Some (List.fold_left Nat_big_num.bitwise_or( (Nat_big_num.of_int 0)) (Pset.elements flagsets))) let maybe_extend_phdr phdr isec1 can_combine_flags:(elf64_program_header_table_entry)option= (let new_p_type = (Uint32_wrapper.to_bigint phdr.elf64_p_type) in let this_section_phdr_flags = (phdr_flags_from_section_flags isec1.elf64_section_flags isec1.elf64_section_name_as_string) in let maybe_extended_flags = (can_combine_flags(Pset.from_list Nat_big_num.compare [ this_section_phdr_flags; Uint32_wrapper.to_bigint phdr.elf64_p_flags ])) in if (Lem.option_equal Nat_big_num.equal maybe_extended_flags None) then (*let _ = errln "flag mismatch" in*) None else let new_p_flags = ((match maybe_extended_flags with Some flags -> flags | _ -> failwith "impossible" )) in (* The new filesz is the file end offset of this section, * minus the existing file start offset of the phdr. * Check that the new section begins after the old offset+filesz. *) if Nat_big_num.less isec1.elf64_section_offset (Nat_big_num.add (Uint64_wrapper.to_bigint phdr.elf64_p_offset) (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_filesz)) then (*let _ = errln "offset went backwards" in*) None else let new_p_filesz = (Nat_big_num.add (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_filesz) (if Nat_big_num.equal isec1.elf64_section_type sht_progbits then isec1.elf64_section_size else (Nat_big_num.of_int 0))) in (* The new memsz is the virtual address end address of this section, * minus the existing start vaddr of the phdr. * Check that the new section begins after the old vaddr+memsz. *) if Nat_big_num.less isec1.elf64_section_addr (Nat_big_num.add (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_vaddr) (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_memsz)) then (*let _ = errln "vaddr went backwards" in*) None else let new_p_memsz = (Nat_big_num.add (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_memsz) isec1.elf64_section_size) in let (one_if_zero : Nat_big_num.num -> Nat_big_num.num) = (fun n -> if Nat_big_num.equal n( (Nat_big_num.of_int 0)) then (Nat_big_num.of_int 1) else n) in let new_p_align = (lcm (one_if_zero (Ml_bindings.nat_big_num_of_uint64 phdr.elf64_p_align)) (one_if_zero isec1.elf64_section_align)) in Some { elf64_p_type = (Uint32_wrapper.of_bigint new_p_type) ; elf64_p_flags = (Uint32_wrapper.of_bigint new_p_flags) ; elf64_p_offset = (phdr.elf64_p_offset) ; elf64_p_vaddr = (phdr.elf64_p_vaddr) ; elf64_p_paddr = (phdr.elf64_p_paddr) ; elf64_p_filesz = (Uint64_wrapper.of_bigint new_p_filesz) ; elf64_p_memsz = (Uint64_wrapper.of_bigint new_p_memsz) ; elf64_p_align = (Uint64_wrapper.of_bigint new_p_align) }) let make_new_phdr isec1 t maxpagesize1 commonpagesize1:elf64_program_header_table_entry= (let rounded_down_offset = (fun isec1 -> round_down_to commonpagesize1 isec1.elf64_section_offset) in let offset_round_down_amount = (fun isec1 -> Nat_big_num.sub_nat isec1.elf64_section_offset (rounded_down_offset isec1)) in let rounded_down_vaddr = (fun isec1 -> round_down_to commonpagesize1 isec1.elf64_section_addr) in let vaddr_round_down_amount = (fun isec1 -> Nat_big_num.sub_nat isec1.elf64_section_addr (rounded_down_vaddr isec1)) in { elf64_p_type = (Uint32_wrapper.of_bigint t) (** Type of the segment *) ; elf64_p_flags = (Uint32_wrapper.of_bigint (phdr_flags_from_section_flags isec1.elf64_section_flags isec1.elf64_section_name_as_string)) (** Segment flags *) ; elf64_p_offset = (Uint64_wrapper.of_bigint (rounded_down_offset isec1)) (** Offset from beginning of file for segment *) ; elf64_p_vaddr = (Uint64_wrapper.of_bigint (rounded_down_vaddr isec1)) (** Virtual address for segment in memory *) ; elf64_p_paddr = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0))) (** Physical address for segment *) ; elf64_p_filesz = (Uint64_wrapper.of_bigint (if Nat_big_num.equal isec1.elf64_section_type sht_nobits then (Nat_big_num.of_int 0) else Nat_big_num.add isec1.elf64_section_size (offset_round_down_amount isec1))) (** Size of segment in file, in bytes *) ; elf64_p_memsz = (Uint64_wrapper.of_bigint ( Nat_big_num.add isec1.elf64_section_size (vaddr_round_down_amount isec1))) (** Size of segment in memory image, in bytes *) ; elf64_p_align = (Uint64_wrapper.of_bigint (* isec.elf64_section_align *) maxpagesize1) (** Segment alignment memory for memory and file *) }) (*val make_load_phdrs : forall 'abifeature. natural -> natural -> annotated_memory_image 'abifeature -> list elf64_interpreted_section -> list elf64_program_header_table_entry*) let make_load_phdrs maxpagesize1 commonpagesize1 img2 section_pairs_bare_sorted_by_address:(elf64_program_header_table_entry)list= ( (* accumulate sections into the phdr *)let rev_list = (List.fold_left (fun accum_phdr_list -> (fun isec1 -> ( (* Do we have a current phdr? *) (match accum_phdr_list with [] -> (* no, so make one *) (*let _ = errln ("Starting the first LOAD phdr for section " ^ isec.elf64_section_name_as_string) in*) [make_new_phdr isec1 elf_pt_load maxpagesize1 commonpagesize1] | current_phdr :: more -> (* can we extend it with the current section? *) (match maybe_extend_phdr current_phdr isec1 load_can_combine_flags with None -> (*let _ = errln ("Starting new LOAD phdr for section " ^ isec.elf64_section_name_as_string) in*) (make_new_phdr isec1 elf_pt_load maxpagesize1 commonpagesize1) :: (current_phdr :: more) | Some phdr -> phdr :: more ) ) ))) [] (List.filter (fun isec1 -> flag_is_set shf_alloc isec1.elf64_section_flags && not (flag_is_set shf_tls isec1.elf64_section_flags)) section_pairs_bare_sorted_by_address)) in (*let _ = errln "Successfully made phdrs" in*) List.rev rev_list) (*val tls_extend: forall 'abifeature. abi 'abifeature -> abi 'abifeature*) let tls_extend a:'abifeature abi= ({ is_valid_elf_header = (a.is_valid_elf_header) ; make_elf_header = (a.make_elf_header) ; reloc = (a.reloc) ; section_is_special = (a.section_is_special) ; section_is_large = (a.section_is_large) ; maxpagesize = (a.maxpagesize) ; minpagesize = (a.minpagesize) ; commonpagesize = (a.commonpagesize) ; symbol_is_generated_by_linker = (a.symbol_is_generated_by_linker) ; make_phdrs = (fun maxpagesize1 -> fun commonpagesize1 -> fun file_type -> fun img2 -> fun section_pairs_bare_sorted_by_address -> ( let rev_list = (List.fold_left (fun accum_phdr_list -> (fun isec1 -> ( (match accum_phdr_list with [] -> (*let _ = errln "Making a new TLS program header" in*) [make_new_phdr isec1 elf_pt_tls maxpagesize1 commonpagesize1] | current_phdr :: more -> (match maybe_extend_phdr current_phdr isec1 tls_can_combine_flags with None -> (make_new_phdr isec1 elf_pt_tls maxpagesize1 commonpagesize1) :: (current_phdr :: more) | Some phdr -> phdr :: more ) ) ))) [] (List.filter (fun isec1 -> flag_is_set shf_alloc isec1.elf64_section_flags && flag_is_set shf_tls isec1.elf64_section_flags) section_pairs_bare_sorted_by_address)) in List.rev_append (List.rev (a.make_phdrs maxpagesize1 commonpagesize1 file_type img2 section_pairs_bare_sorted_by_address)) (List.rev rev_list) )) ; max_phnum = (Nat_big_num.add( (Nat_big_num.of_int 1)) a.max_phnum) ; guess_entry_point = (a.guess_entry_point) ; pad_data = (a.pad_data) ; pad_code = (a.pad_code) ; generate_support = (a.generate_support) ; concretise_support = (a.concretise_support) ; get_reloc_symaddr = (a.get_reloc_symaddr) ; parse_reloc_info = (a.parse_reloc_info) }) (* We use these snappily-named functions in relocation calculations. *) (*val make_default_phdrs : forall 'abifeature. natural -> natural -> natural (* file type *) -> annotated_memory_image 'abifeature -> list elf64_interpreted_section -> list elf64_program_header_table_entry*) let make_default_phdrs maxpagesize1 commonpagesize1 t img2 section_pairs_bare_sorted_by_address:(elf64_program_header_table_entry)list= ( (* FIXME: do the shared object and dyn. exec. stuff too *)make_load_phdrs maxpagesize1 commonpagesize1 img2 section_pairs_bare_sorted_by_address) (*val find_start_symbol_address : forall 'abifeature. Ord 'abifeature, AbiFeatureTagEquiv 'abifeature => annotated_memory_image 'abifeature -> maybe natural*) let find_start_symbol_address dict_Basic_classes_Ord_abifeature dict_Abi_classes_AbiFeatureTagEquiv_abifeature img2:(Nat_big_num.num)option= ( (* Do we have a symbol called "_start"? *)let all_defs = (Memory_image_orderings.defined_symbols_and_ranges dict_Basic_classes_Ord_abifeature dict_Abi_classes_AbiFeatureTagEquiv_abifeature img2) in let get_entry_point = (fun (maybe_range, symbol_def) -> if symbol_def.def_symname = "_start" then Some (maybe_range, symbol_def) else None ) in let all_entry_points = (Lem_list.mapMaybe get_entry_point all_defs) in (match all_entry_points with [(maybe_range, symbol_def)] -> (match maybe_range with Some (el_name, (el_off, len)) -> (match Pmap.lookup el_name img2.elements with None -> failwith ("_start symbol defined in nonexistent element `" ^ (el_name ^ "'")) | Some el_rec -> (match el_rec.startpos with None -> (*let _ = Missing_pervasives.errln "warning: saw `_start' in element with no assigned address" in *)None | Some x -> (* success! *) Some ( Nat_big_num.add x el_off) ) ) | _ -> (*let _ = Missing_pervasives.errln "warning: `_start' symbol with no range" in*) None ) | [] -> (* no _start symbol *) None | _ -> (*let _ = Missing_pervasives.errln ("warning: saw multiple `_start' symbols: " ^ (let (ranges, defs) = unzip all_entry_points in show ranges)) in *)None )) (*val pad_zeroes : natural -> list byte*) let pad_zeroes n:(char)list= (replicate0 n (Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 0))))) (*val pad_0x90 : natural -> list byte*) let pad_0x90 n:(char)list= (replicate0 n (Char.chr (Nat_big_num.to_int ( Nat_big_num.mul( (Nat_big_num.of_int 9))( (Nat_big_num.of_int 16)))))) (* null_abi captures ABI details common to all ELF-based, System V-based systems. * HACK: for now, specialise to 64-bit ABIs. *) (*val null_abi : abi any_abi_feature*) let null_abi:(any_abi_feature)abi= ({ is_valid_elf_header = is_valid_elf64_header ; make_elf_header = (make_elf64_header elf_data_2lsb elf_osabi_none( (Nat_big_num.of_int 0)) elf_ma_none) ; reloc = noop_reloc ; section_is_special = elf_section_is_special ; section_is_large = (fun s -> (fun f -> false)) ; maxpagesize = (Nat_big_num.mul (Nat_big_num.mul( (Nat_big_num.of_int 2))( (Nat_big_num.of_int 256)))( (Nat_big_num.of_int 4096))) (* 2MB; bit of a guess, based on gdb and prelink code *) ; minpagesize =( (Nat_big_num.of_int 1024)) (* bit of a guess again *) ; commonpagesize =( (Nat_big_num.of_int 4096)) ; symbol_is_generated_by_linker = (fun symname -> symname = "_GLOBAL_OFFSET_TABLE_") ; make_phdrs = make_default_phdrs ; max_phnum =( (Nat_big_num.of_int 2)) ; guess_entry_point = (find_start_symbol_address instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; pad_data = pad_zeroes ; pad_code = pad_zeroes ; generate_support = ( (* fun _ -> *)fun _ -> get_empty_memory_image ()) ; concretise_support = (fun img2 -> img2) ; get_reloc_symaddr = (default_get_reloc_symaddr instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; parse_reloc_info = parse_elf64_relocation_info }) (*val got_entry_ordering : (string * maybe symbol_definition) -> (string * maybe symbol_definition) -> Basic_classes.ordering*) let got_entry_ordering (s1, md1) (s2, md2):int= (compare s1 s2) (* FIXME *) let is_ifunc_def:(symbol_definition)option ->bool= (fun maybe_def -> (match maybe_def with None -> false | Some d -> Nat_big_num.equal (get_elf64_symbol_type d.def_syment) stt_gnu_ifunc )) let amd64_reloc_needs_got_slot:'a ->reloc_site ->(symbol_definition)option ->bool= (fun symref -> fun rr -> fun maybe_def -> let (rel_type1, _) = (parse_elf64_relocation_info rr.ref_relent.elf64_ra_info) in if ( Pset.mem rel_type1(Pset.from_list Nat_big_num.compare [ r_x86_64_got32; r_x86_64_gotpcrel; r_x86_64_gottpoff; r_x86_64_gotoff64; r_x86_64_gotpc32 (* ; r_x86_64_gotpc32_tlsdesc *) ])) then true else if is_ifunc_def maybe_def then (* This reference is bound to a STT_GNU_IFUNC definition. * What now needs to happen is as follows. * - we ensure that a GOT entry is generated for this symbol (we do this here); * - we ensure that a PLT entry (specifically .iplt) is generated for the symbol (Below); * - on making the GOT, we also generate a .rela.plt relocation record covering the GOT slot; * - when applying the relocation, of whatever kind, the address of the PLT slot * is the address input to the calculation * - the code marked by the STT_GNU_IFUNC symbol definition is not the function * to call; it's the function that calculates the address of the function to call! * this becomes the addend of the R_X86_64_IRELATIVE Elf64_Rela marking the GOT slot * - note that for static linking, the GOT is usually pre-filled (cf. dynamically when it is filled by JUMP_SLOT relocs). * ... but our GOT entries *must* have corresponding R_X86_64_IRELATIVEs generated *) true else false) let amd64_reloc_needs_plt_slot (symref : symbol_reference_and_reloc_site) rr maybe_def ref_is_statically_linked:bool= (let (rel_type1, _) = (parse_elf64_relocation_info rr.ref_relent.elf64_ra_info) in if ( Pset.mem rel_type1(Pset.from_list Nat_big_num.compare [ r_x86_64_plt32 (* NOTE: when generating shared libs, it starts to matter * where the definition is -- anything that is locally interposable * or undefined will need a slot. See amd64_get_reloc_symaddr. *) ])) then not (ref_is_statically_linked rr) else if is_ifunc_def maybe_def then true else (* not a PLT ref *) false) let amd64_find_got_label_and_element img2:((string*(symbol_definition)option)list*element)option= ((match Pmap.lookup ".got" img2.elements with None -> (* got no GOT? okay... *) None | Some got_el -> (* Find the GOT tag. *) let = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0([])))) img2.by_tag) in (match tags_and_ranges with [] -> failwith "error: GOT element but no ABI feature GOT tag" | [(AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(l))), _)] -> Some (l, got_el) | _ -> failwith ("multiple GOT elements/tags") ) )) let amd64_find_plt_label_and_element img2:((string*(symbol_definition)option*(any_abi_feature)plt_entry_content_fn)list*element)option= ((match Pmap.lookup ".plt" img2.elements with None -> (* got no PLT? okay... *) None | Some plt_el -> (* Find the PLT tag. *) let = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (AbiFeature(Amd64AbiFeature(Abi_amd64.PLT0([])))) img2.by_tag) in (match tags_and_ranges with [] -> failwith "error: PLT element but no ABI feature PLT tag" | [(AbiFeature(Amd64AbiFeature(Abi_amd64.PLT0(l))), _)] -> Some (l, plt_el) | _ -> failwith ("multiple PLT elements/tags") ) )) let got_slot_index_for_symname dict_Basic_classes_Eq_a symname got_label:(int)option= (Lem_list.find_index (fun (s, _) -> dict_Basic_classes_Eq_a.isEqual_method s symname) got_label) (*val amd64_get_reloc_symaddr : symbol_definition -> annotated_memory_image any_abi_feature -> list (maybe element_range * symbol_definition) -> maybe reloc_site -> natural*) let amd64_get_reloc_symaddr the_input_def output_img ranges_and_defs maybe_reloc1:Nat_big_num.num= ( (* The default implementation simply looks up a "matching" symbol in the output image * and calculates its address. * * That's normally fine, even for via-GOT references since their calculations don't * use the symaddr. For via-PLT references, we need to use the PLT slot address. * HMM. Isn't this duplicating the role of functions like amd64_plt_slot_addr? * Recall that we created this get_reloc_symaddr mechanism to deal with IFUNC symbols. * With an IFUNC symbol, we reference it simply using a PC32 relocation, but the address * that gets filled in isn't the IFUNC address; it's the corresponding PLT slot. * HMM: does this happen for other PC32 references? If so, we'll need this mechanism * there. And it certainly does, because relocatable object code never uses PLT32 * relocs. * * I had previously tried to handle this issue in mark_fate_of_relocs, using the * 1-argument ApplyReloc(_) and MakePIC to encode the "replacement". But at that stage, * which is ABI-independent and happens before address assignment?, we can't know enough. *) (* match bound_def_in_input with Nothing -> 0 | Just the_input_def -> *)if is_ifunc_def (Some(the_input_def)) then (* We need to return the address of the "matching" PLT slot. * PLT label entries are (symname, maybe_def, content_fn). *) (match amd64_find_plt_label_and_element output_img with None -> failwith "error: ifunc but no PLT" | Some (l, plt_el) -> (match Lem_list.find_index (fun (symname, _, _) -> symname = the_input_def.def_symname) l with (* FIXME: using symnames seems wrong *) Some idx1 -> (match plt_el.startpos with Some addr -> Nat_big_num.add addr (Nat_big_num.mul (Nat_big_num.of_int idx1)( (Nat_big_num.of_int 16))) (* size of a PLT entry *) | None -> failwith "error: PLT has no address assigned" ) | None -> (Nat_big_num.of_int 0) ) ) else default_get_reloc_symaddr instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict the_input_def output_img ranges_and_defs maybe_reloc1) (* end *) (* *) (*val amd64_generate_support : (* list (list reloc_site_resolution) -> *) list (string * annotated_memory_image any_abi_feature) -> annotated_memory_image any_abi_feature*) let amd64_generate_support (* reloc_resolution_lists *) input_fnames_and_imgs:(any_abi_feature)annotated_memory_image= ( (* We generate a basic GOT. At the moment we can only describe the GOT * contents abstractly, not as its binary content, because addresses * have not yet been fixed. * * To do this, we create a set of Abi_amd64.GOTEntry records, one for * each distinct symbol that is referenced by one or more GOT-based relocations. * To enumerate these, we look at all the symbol refs in the image. *)let ref_is_statically_linked = (fun _ -> true) in let (fnames, input_imgs) = (List.split input_fnames_and_imgs) in let = (Lem_list.mapi (fun i -> fun (fname1, img2) -> (i, fname1, Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (SymbolRef(null_symbol_reference_and_reloc_site)) img2.by_tag) ) input_fnames_and_imgs) in let refs_via_got = (list_concat_map (fun (i, fname1, ) -> Lem_list.mapMaybe (fun (tag, maybe_range) -> (match tag with SymbolRef(symref) -> (* Is this ref a relocation we're going to apply, and does it reference the GOT? *) (match (symref.maybe_reloc, symref.maybe_def_bound_to) with (None, _) -> None | (Some rr, Some(ApplyReloc, maybe_def)) -> if amd64_reloc_needs_got_slot symref rr maybe_def then (*let _ = errln ("Saw a via-GOT symbol reference: to `" ^ symref.ref.ref_symname ^ "' coming from linkable " ^ (show i) ^ " (" ^ fname ^ "), logically from section " ^ (show rr.ref_src_scn)) in *) Some (symref.ref.ref_symname, maybe_def) else None | (Some rr, Some(makePIC0, maybe_def)) -> failwith "FIXME: PIC support please" ) | _ -> failwith "impossible: reloc site tag is not a SymbolRef" )) tags_and_ranges) tags_and_ranges_by_image) in let (symnames, maybe_defs) = (List.split refs_via_got) in (*let _ = errln ("GOT includes defs with names: " ^ (show (Set_extra.toList (Set.fromList symnames)))) in*) let got_pairs_set = (Pset.from_list (pairCompare compare (maybeCompare compare)) refs_via_got) in let got_defs_set = (Pset.from_list (maybeCompare compare) maybe_defs) in (* This is where we fix the order of the GOT entries. *) let got_pairs_list = (Pset.elements got_pairs_set) in let got_idx_and_maybe_def_by_symname_map = (Lem_map.fromList (Lem_map.instance_Map_MapKeyType_var_dict instance_Basic_classes_SetType_var_dict) (mapi (fun slot_idx -> fun (symname, maybe_def) -> (symname, (slot_idx, maybe_def))) got_pairs_list)) in let got_ifunc_set = (let x2 =(Pset.from_list (maybeCompare compare) []) in Pset.fold (fun maybe_d x2 -> if is_ifunc_def maybe_d then Pset.add maybe_d x2 else x2) got_defs_set x2) in (* Quirk: what if we have the same def appearing under two different symnames? * This shouldn't happen, at present. * What if we have the same symname related to two different defs? This also * shouldn't happen, because only global symbols go in the GOT, so we don't have * to worry about local symbols with the same name as another symbol. But still, it * could plausibly happen in some situations with weird symbol visibilities or binding. *) (* if Set.size pairs_set <> Set.size defs_set then failwith "something quirky going on with GOT symbol defs and their names" else *) (* let name_def_pairs = List.foldl (fun acc -> fun (idx, symname, (maybe_range, rr)) -> Set.insert ( symname, (match rr.maybe_def_bound_to with Map.lookup symname acc with Nothing -> [item] | Just l -> item :: l end) acc) {} refs_via_got in *) let got_nentries = (Nat_big_num.of_int (Pset.cardinal got_pairs_set)) in let got_entrysize =( (Nat_big_num.of_int 8)) in (* We also need a PLT... sort of. We need a way to resolve via-PLT relocs. * But we might do so without actually creating a (non-zero-length) PLT. * Again, this is to accommodate the sorts of optimisations the GNU linker does. * * Note that every PLT entry has a corresponding GOT entry. Here we are simply * enumerating the via-PLT relocs that imply a PLT entry. We look their GOT * slots up later, by symbol name. *) let refs_via_plt = (list_concat_map (fun (i, fname1, ) -> Lem_list.mapMaybe (fun (tag, maybe_range) -> (match tag with SymbolRef(symref) -> (* Is this ref a relocation we're going to apply, and does it reference the GOT? *) (match (symref.maybe_reloc, symref.maybe_def_bound_to) with (None, _) -> None | (Some rr, Some(ApplyReloc, maybe_def)) -> if amd64_reloc_needs_plt_slot symref rr maybe_def ref_is_statically_linked then (*let _ = if is_ifunc_def maybe_def then (* we ensure that a PLT entry (specifically .iplt) is generated for the symbol *) errln ("Saw a reference to IFUNC symbol `" ^ symref.ref.ref_symname ^ "'; ref is coming from linkable " ^ (show i) ^ " (" ^ fname ^ "), relent idx " ^ (show rr.ref_rel_idx) ^ " logically from section " ^ (show rr.ref_src_scn) ) else errln ("Saw a via-PLT symbol reference: to `" ^ symref.ref.ref_symname ^ "' coming from linkable " ^ (show i) ^ " (" ^ fname ^ "), relent idx " ^ (show rr.ref_rel_idx) ^ " logically from section " ^ (show rr.ref_src_scn) ^ match maybe_def with Just _ -> ", with definition" | Nothing -> ", not bound to anything" end ) in*) Some(symref.ref.ref_symname, maybe_def) else None | (Some rr, Some(makePIC0, maybe_def)) -> failwith "FIXME: PIC support please" ) | _ -> failwith "impossible: reloc site tag is not a SymbolRef" )) tags_and_ranges) tags_and_ranges_by_image) in (*let _ = errln ("Saw " ^ (show (length refs_via_plt)) ^ " relocations of a via-PLT type") in*) (* account for the optimisations we did on GOT slots *) let refs_via_plt_having_got_slot = (Lem_list.mapMaybe (fun (symname, _) -> (match Pmap.lookup symname got_idx_and_maybe_def_by_symname_map with Some(idx1, maybe_d) -> Some (symname, idx1, maybe_d) | None -> None ) ) refs_via_plt) in (*let _ = errln ("Saw " ^ (show (length refs_via_plt_having_got_slot)) ^ " relocations of a via-PLT type where we instantiated a GOT slot for the symbol") in*) let (plt_symnames, plt_got_idxs, plt_ref_bound_to_maybe_defs) = (unzip3 refs_via_plt_having_got_slot) in let plt_symnames_excluding_header = (Pset.elements ((Pset.from_list compare plt_symnames))) in (*let _ = errln ("PLT symnames: " ^ (show plt_symnames_excluding_header)) in*) let n_iplt_entries = (Pset.cardinal got_ifunc_set) (* The content of the IPLT entries depends on the address assignment of GOT slots * and the IFUNCs that they reference. We need to reserve space for them here, though. *) in (*let _ = errln ("We think there should be " ^ (show n_iplt_entries) ^ " PLT entries due to references to IFUNC symbols") in*) (* let got_entries_referencing_functions = (List.filter (fun (symname, maybe_def) -> match def with Just d -> d.def_syment | Nothing -> false end) refs_via_got) in *) let plt_needs_header_entry = ((List.length plt_symnames_excluding_header) > n_iplt_entries) in (*let _ = errln ("PLT needs header entry? " ^ (show plt_needs_header_entry)) in*) let total_n_plt_entries = (Nat_big_num.add (if plt_needs_header_entry then (Nat_big_num.of_int 1) else (Nat_big_num.of_int 0)) (Missing_pervasives.length plt_symnames_excluding_header)) in (*let _ = errln ("PLT total entry count: " ^ (show total_n_plt_entries)) in*) let new_by_range =(Pset.from_list (pairCompare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare))) compare) [ (Some(".plt", ( (Nat_big_num.of_int 0), Nat_big_num.mul( (Nat_big_num.of_int 16)) total_n_plt_entries)), AbiFeature(Amd64AbiFeature(Abi_amd64.PLT0( (* header content fn *) (* the header entry is required only for dynamic linking, which is not supported yet *) (* (if plt_needs_header_entry then ("", Nothing, (((fun (got_base_addr : natural) -> fun (plt_base_addr : natural) -> (0, [byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0; byte_of_natural 0]))) : plt_entry_content_fn any_abi_feature)) else ("", Nothing, (((fun (got_base_addr : natural) -> fun (plt_base_addr : natural) -> (0, []))) : plt_entry_content_fn any_abi_feature)) ) ++ *) ( mapi (fun plt_entry_idx_not_counting_header -> (fun symname -> (* We want to label the PLT entry with a function that * - accepts the PLT base address, the GOT base address and the GOT slot number; * - closure-captures whatever else it needs (whether we're inserting a PLT header); * - yields the *full contents of the PLT entry* before relocation. * - recall that PLT entries might be "header" (the special one at the start), * "normal" (to be relocated with R_X86_64_JUMP_SLOT) * or "irelative" (to be relocated with R_X86_64_IRELATIVE). * Q. Why are R_X86_64_JUMP_SLOT necessary? * The PLT entries are doing relative addressing, and * the offset to the GOT entry is known at link time, * so the linker should be able to fill them in. In * fact, it does. HMM. Understand this better. *) (* What is the GOT slot number? *) let (got_slot_idx, maybe_def) = ((match Pmap.lookup symname got_idx_and_maybe_def_by_symname_map with Some(idx1, maybe_d) -> (Nat_big_num.of_int idx1, maybe_d) | None -> failwith ("GOT does not contain symbol `" ^ (symname ^ "' required by PLT entry")) )) in (symname, maybe_def, ((fun (got_base_addr : Nat_big_num.num) -> fun (plt_base_addr : Nat_big_num.num) -> (* Okay, now we can generate the entry. NOTE that we're lexically still in generate_support, * but we'll be called from concretise_support. The code that generates the header * entry is actually in concretise_support. * * If the entry is a normal entry, it looks like * 0x0000000000400410 <+0>: ff 25 02 0c 20 00 jmpq *0x200c02(%rip) # 0x601018 <puts@got.plt> 0x0000000000400416 <+6>: 68 00 00 00 00 pushq $0x0 0x000000000040041b <+11>: e9 e0 ff ff ff jmpq 0x400400 * * If the entry is an irelative entry, it looks like * 400350: ff 25 02 fd 2b 00 jmpq *0x2bfd02(%rip) # 6c0058 <_GLOBAL_OFFSET_TABLE_+0x58> 400356: 68 00 00 00 00 pushq $0x0 40035b: e9 00 00 00 00 jmpq 400360 <check_one_fd.part.0> * ... i.e. basically the same but the pushq and jmpq have literal-zero args (they're not used). *) let this_plt_slot_base_addr = (Nat_big_num.add plt_base_addr (Nat_big_num.mul( (Nat_big_num.of_int 16)) ( Nat_big_num.add(Nat_big_num.of_int plt_entry_idx_not_counting_header) (if plt_needs_header_entry then (Nat_big_num.of_int 1) else (Nat_big_num.of_int 0))))) in (*let _ = Missing_pervasives.errln ("PLT slot base address for symname `" ^ symname ^ "': 0x" ^ (hex_string_of_natural this_plt_slot_base_addr)) in*) let got_slot_addr = (Nat_big_num.add got_base_addr (Nat_big_num.mul( (Nat_big_num.of_int 8)) got_slot_idx)) in (*let _ = Missing_pervasives.errln ("GOT slot address for symname `" ^ symname ^ "' (idx " ^ (show got_slot_idx) ^ "): 0x" ^ (hex_string_of_natural got_slot_addr)) in*) let maybe_header_entry_address = (if plt_needs_header_entry then Some(plt_base_addr) else None) in let offset_to_got_slot = (Nat_big_num.sub ( got_slot_addr) (( Nat_big_num.add this_plt_slot_base_addr( (Nat_big_num.of_int 6))))) in (*let _ = Missing_pervasives.errln ("PLT's PC-relative index to GOT slot for symname `" ^ symname ^ "' (GOT idx " ^ (show got_slot_idx) ^ ") is (decimal)" ^ (show offset_to_got_slot)) in*) let content_bytes = (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev (List.rev_append (List.rev [Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 255))); Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 37)))]) (* offset to the GOT entry, from the *next* instruction start, signed 32-bit LE *) (to_le_signed_bytes( (Nat_big_num.of_int 4)) offset_to_got_slot))) [Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 104)))])) (* plt slot number not including header, 32-bit LE *) (to_le_unsigned_bytes( (Nat_big_num.of_int 4)) ((Nat_big_num.of_int plt_entry_idx_not_counting_header))))) [Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 233)))])) (to_le_signed_bytes( (Nat_big_num.of_int 4)) ( if is_ifunc_def maybe_def then (Nat_big_num.of_int 0) else (match maybe_header_entry_address with None -> failwith "normal PLT entry but no PLT header!" | Some header_entry_address -> Nat_big_num.sub ( header_entry_address) (( Nat_big_num.add this_plt_slot_base_addr( (Nat_big_num.of_int 16)))) ) ))) in (*let _ = errln ("Created a PLT entry consisting of " ^ (show (length content_bytes)) ^ " bytes.") in*) (this_plt_slot_base_addr, content_bytes) (* match maybe_def with Nothing -> 0 | Just sd -> match Memory_image_orderings.find_defs_matching sd img with [] -> failwith ("no matching definitions for PLT entry named " ^ symname) | [(Just(def_el_name, (def_start, def_len)), d)] -> match element_and_offset_to_address (def_el_name, def_start) img with Nothing -> failwith ("PLT: no address for definition offset in element " ^ def_el_name) | Just x -> let _ = errln ("PLT slot for symbol `" ^ symname ^ "' calculated at (non-PLT) address 0x" ^ (hex_string_of_natural x) ^ " (offset 0x" ^ (hex_string_of_natural def_start) ^ " in element " ^ def_el_name ^ ")") in x end | _ -> failwith ("multiple matching definitions for PLT entry named " ^ symname) end end *) ) : any_abi_feature plt_entry_content_fn)) )) plt_symnames) ))) ) ; (Some(".plt", ( (Nat_big_num.of_int 0), Nat_big_num.mul( (Nat_big_num.of_int 16)) total_n_plt_entries)), FileFeature(ElfSection( (Nat_big_num.of_int 1), { elf64_section_name =( (Nat_big_num.of_int 0)) (* ignored *) ; elf64_section_type = sht_progbits ; elf64_section_flags = shf_alloc ; elf64_section_addr =( (Nat_big_num.of_int 0)) (* ignored -- covered by element *) ; elf64_section_offset =( (Nat_big_num.of_int 0)) (* ignored -- will be replaced when file offsets are assigned *) ; elf64_section_size = (Nat_big_num.mul( (Nat_big_num.of_int 16)) total_n_plt_entries) (* ignored? NO, we use it in linker_script to avoid plumbing through the element record *) ; elf64_section_link =( (Nat_big_num.of_int 0)) ; elf64_section_info =( (Nat_big_num.of_int 0)) ; elf64_section_align =( (Nat_big_num.of_int 16)) ; elf64_section_entsize =( (Nat_big_num.of_int 16)) ; elf64_section_body = Byte_sequence.empty (* ignored *) ; elf64_section_name_as_string = ".plt" } ))) (* For each GOT entry that corresponds to a thread-local symbol, we also need to * generate a relocation record. HMM. These new relocation records are ones we don't * yet have decisions for. That might be a problem. * * In fact, this approach is not appropriate for static linking. Just put the offsets * in there when we concretise the GOT. Something like this will be good for * dynamic linking, though. At the moment, creating a SymbolRef at this stage * is problematic because it's not in the bindings list. When we generate shared * objects, we'll have to revisit that code. *) (* (Just(".got", (i * got_entrysize, 8)), SymbolRef( <| ref = <| ref_symname = symname ; ref_syment = sd.def_syment ; ref_sym_scn = 0 ; ref_sym_idx = 0 |> ; maybe_def_bound_to = Just(ApplyReloc, Just sd) ; maybe_reloc = Just( <| ref_relent = <| elf64_ra_offset = elf64_addr_of_natural 0 ; elf64_ra_info = elf64_xword_of_natural r_x86_64_tpoff64 ; elf64_ra_addend = elf64_sxword_of_integer 0 |> ; ref_rel_scn = 0 ; ref_rel_idx = 0 ; ref_src_scn = 0 |> ) |>)) | forall ((i, symname, sd) IN (Set.fromList (mapMaybei (fun i -> fun (symname, maybe_def) -> match maybe_def with Nothing -> Nothing | Just sd -> Just(i, symname, sd) end) refs_via_got))) | get_elf64_symbol_type sd.def_syment = stt_tls *) ; (Some(".got", ( (Nat_big_num.of_int 0), Nat_big_num.mul got_nentries got_entrysize)), AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(got_pairs_list)))) ; (Some(".got", ( (Nat_big_num.of_int 0), Nat_big_num.mul got_nentries got_entrysize)), FileFeature(ElfSection( (Nat_big_num.of_int 2), { elf64_section_name =( (Nat_big_num.of_int 0)) (* ignored *) ; elf64_section_type = sht_progbits ; elf64_section_flags = (Nat_big_num.bitwise_or shf_write shf_alloc) ; elf64_section_addr =( (Nat_big_num.of_int 0)) (* ignored -- covered by element *) ; elf64_section_offset =( (Nat_big_num.of_int 0)) (* ignored -- will be replaced when file offsets are assigned *) ; elf64_section_size = (Nat_big_num.mul got_nentries got_entrysize) (* ignored? NO, we use it in linker_script to avoid plumbing through the element record *) ; elf64_section_link =( (Nat_big_num.of_int 0)) ; elf64_section_info =( (Nat_big_num.of_int 0)) ; elf64_section_align =( (Nat_big_num.of_int 8)) ; elf64_section_entsize = got_entrysize ; elf64_section_body = Byte_sequence.empty (* ignored *) ; elf64_section_name_as_string = ".got" } ))) ; (* FIXME: I've a feeling _GLOBAL_OFFSET_TABLE_ generally doesn't mark the *start* of the GOT; * it's some distance in. What about .got.plt? *) (Some(".got", ( (Nat_big_num.of_int 0), Nat_big_num.mul got_nentries got_entrysize)), SymbolDef({ def_symname = "_GLOBAL_OFFSET_TABLE_" ; def_syment = ({ elf64_st_name = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0))) (* ignored *) ; elf64_st_info = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0))) (* FIXME *) ; elf64_st_other = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 0))) (* FIXME *) ; elf64_st_shndx = (Uint32_wrapper.of_bigint( (Nat_big_num.of_int 1))) ; elf64_st_value = (Uint64_wrapper.of_bigint( (Nat_big_num.of_int 0))) (* ignored *) ; elf64_st_size = (Uint64_wrapper.of_bigint ( Nat_big_num.mul got_nentries got_entrysize)) (* FIXME: start later, smaller size? zero size? *) }) ; def_sym_scn =( (Nat_big_num.of_int 1)) ; def_sym_idx =( (Nat_big_num.of_int 1)) ; def_linkable_idx =( (Nat_big_num.of_int 0)) })) ; (Some(".rela.iplt", ( (Nat_big_num.of_int 0), (* size of an Elf64_Rela *) Nat_big_num.mul( (Nat_big_num.of_int 24)) (Nat_big_num.of_int n_iplt_entries))), FileFeature(ElfSection( (Nat_big_num.of_int 3), { elf64_section_name =( (Nat_big_num.of_int 0)) (* ignored *) ; elf64_section_type = sht_rela ; elf64_section_flags = (Nat_big_num.bitwise_or shf_alloc shf_info_link) ; elf64_section_addr =( (Nat_big_num.of_int 0)) (* ignored -- covered by element *) ; elf64_section_offset =( (Nat_big_num.of_int 0)) (* ignored -- will be replaced when file offsets are assigned *) ; elf64_section_size = ( (* size of an Elf64_Rela *)Nat_big_num.mul( (Nat_big_num.of_int 24)) (Nat_big_num.of_int n_iplt_entries)) (* ignored? NO, we use it in linker_script to avoid plumbing through the element record *) ; elf64_section_link =( (Nat_big_num.of_int 0)) ; elf64_section_info =( (* FIXME: want this to be the PLT section shndx *) (Nat_big_num.of_int 0)) ; elf64_section_align =( (Nat_big_num.of_int 8)) ; elf64_section_entsize =( (Nat_big_num.of_int 24)) ; elf64_section_body = Byte_sequence.empty (* ignored *) ; elf64_section_name_as_string = ".rela.iplt" } ))) ]) in { elements = (Pmap.add ".got" { startpos = None ; length1 = (Some ( Nat_big_num.mul got_nentries got_entrysize)) ; contents = ([]) } (Pmap.add ".plt" { startpos = None ; length1 = (let len = (Nat_big_num.mul( (Nat_big_num.of_int 16)) total_n_plt_entries) in (*let _ = errln ("PLT length in element: " ^ (show len) ^ " bytes") in *) Some ( Nat_big_num.mul( (Nat_big_num.of_int 16)) total_n_plt_entries)) ; contents = ([]) } (Pmap.add ".rela.iplt" { startpos = None ; length1 = (Some ( (* size of an Elf64_Rela *) Nat_big_num.mul( (Nat_big_num.of_int 24)) (Nat_big_num.of_int n_iplt_entries))) ; contents = ([]) } (Pmap.empty compare) ))) ; by_tag = (by_tag_from_by_range (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) instance_Basic_classes_SetType_var_dict new_by_range) ; by_range = new_by_range }) (*val amd64_concretise_support : annotated_memory_image any_abi_feature -> annotated_memory_image any_abi_feature*) let amd64_concretise_support orig_img:(any_abi_feature)annotated_memory_image= ( (*let _ = errln "Concretising amd64 ABI support structures" in*) (* Fill in the GOT contents. *)(match amd64_find_got_label_and_element orig_img with None -> orig_img (* no GOT, but that's okay *) | Some (got_l, got_el) -> let got_base_addr = ((match got_el.startpos with Some a -> a | None -> failwith "GOT has no address assigned" )) in let (ranges_and_defs : ( element_range option * symbol_definition) list) = (Memory_image_orderings.defined_symbols_and_ranges instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict orig_img) in let got_entry_bytes_for = (fun img2 -> fun symname -> fun maybe_def -> fun plt_l -> fun maybe_plt_el -> (match maybe_def with None -> replicate0( (Nat_big_num.of_int 8)) (Char.chr (Nat_big_num.to_int ( (Nat_big_num.of_int 0)))) | Some sd -> (* What should the GOT slot be initialized to point to? * If there's a PLT entry, we should point to that + 6, * i.e. the second instruction. * * If there's not, then it might be a thread-local. *) (match Lem_list.find_index (fun (plt_symname, _, _) -> symname = plt_symname) plt_l with Some plt_slot_idx -> (match maybe_plt_el with None -> failwith "GOT slot with PLT entry but no PLT element" | Some plt_el -> (match plt_el.startpos with Some addr -> natural_to_le_byte_list_padded_to( (Nat_big_num.of_int 8)) ( Nat_big_num.add (Nat_big_num.add addr ( Nat_big_num.mul(Nat_big_num.of_int plt_slot_idx)( (Nat_big_num.of_int 16))))( (Nat_big_num.of_int 6))) | None -> failwith ("no PLT!") ) ) | None -> (* Just look for a definition. *) (match Memory_image_orderings.find_defs_matching sd ranges_and_defs with [] -> failwith ("no matching definitions for GOT entry named " ^ symname) | [(Some(def_el_name, (def_start, def_len)), d)] -> (match element_and_offset_to_address (def_el_name, def_start) img2 with None -> failwith ("no address for definition offset in element " ^ def_el_name) | Some x -> (* If sd is a TLS symbol, we want its offset from the *end* of the * TLS segment. *) (* FIXME: factor out this logic so that it lives in the TLS ABI spec. *) if Nat_big_num.equal (get_elf64_symbol_type sd.def_syment) stt_tls then (* FIXME: the right way to do this is to mark the segments in the image * *first*. They can't have ranges, because they span many elements, * but they can have vaddr ranges as arguments. *) let offs = (i2n_signed 64 (Nat_big_num.sub( (Nat_big_num.of_int 0))( (Nat_big_num.of_int 8)))) in (*let _ = errln ("GOT slot for TLS symbol `" ^ symname ^ "' created containing offset 0x" ^ (hex_string_of_natural offs)) in*) natural_to_le_byte_list offs else (*let _ = errln ("GOT slot for symbol `" ^ symname ^ "' created pointing to address 0x" ^ (hex_string_of_natural x) ^ " (offset 0x" ^ (hex_string_of_natural def_start) ^ " in element " ^ def_el_name ^ ")") in*) natural_to_le_byte_list_padded_to( (Nat_big_num.of_int 8)) x ) | [(None, _)] -> failwith ("matching definition for GOT entry named " ^ (symname ^ " has no range")) | _ -> failwith ("multiple matching definitions for GOT entry named " ^ symname) ) ) )) in let concretise_got = (fun img2 -> fun plt_l -> fun maybe_plt_el -> let l = got_l (* Just(got_el_name, (got_start_off, got_len)))] -> *) in (*let _ = errln ("Concretising a GOT of " ^ (show (length l)) ^ " entries.") in*) let got_entry_contents = (Lem_list.map (fun (symname, maybe_def) -> Lem_list.map (fun b -> Some b) (got_entry_bytes_for img2 symname maybe_def plt_l maybe_plt_el)) l) in (* We replace the GOT element's contents with the concrete addresses * of the symbols it should contain. We leave the metadata label in there, * for the relocation logic to find. If we change the order of entries, * change it there too. *) let got_content = (List.concat got_entry_contents) in let new_got_el = ({ contents = got_content ; startpos = (got_el.startpos) ; length1 = (got_el.length1) }) in let new_got_tag = (AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(l)))) in let got_range = (Some(".got", ( (Nat_big_num.of_int 0), Nat_big_num.mul( (Nat_big_num.of_int 8)) (length l)))) in let new_by_tag = (Pset.(union)( Pset.diff(img2.by_tag : (( any_abi_feature range_tag) * ( element_range option)) Pset.set)(Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) [(AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(l))), got_range)]))(Pset.from_list (pairCompare compare (maybeCompare (pairCompare compare (pairCompare Nat_big_num.compare Nat_big_num.compare)))) [(new_got_tag, got_range)])) in let new_elements_map = (Pmap.add ".got" new_got_el ( Pmap.remove ".got" img2.elements )) in { elements = new_elements_map ; by_tag = new_by_tag ; by_range = (by_range_from_by_tag instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) new_by_tag) }) in (match amd64_find_plt_label_and_element orig_img with None -> concretise_got orig_img [] None (* no PLT, but possibly a GOT *) | Some (plt_l, plt_el) -> let plt_base_addr = ((match plt_el.startpos with Some a -> a | None -> failwith "PLT has no address assigned" )) in let concretise_plt = (fun img2 -> let l = plt_l in (* We replace the PLT element's contents with the concrete entries * for each of the symbols in the table. We leave the metadata label in there, * for the relocation logic to find. If we change the order of entries, * change it there too. *) let all_content = (List.concat (Lem_list.map (fun (_, _, plt_content_fn) -> let (_, content) = (plt_content_fn got_base_addr plt_base_addr) in content ) l)) in (*let _ = errln ("Got " ^ (show (length all_content)) ^ " bytes of PLT content") in let _ = errln ("Generated PLT reserved " ^ (show (match plt_el.length with Just n -> n | Nothing -> failwith "PLT has no length" end)) ^ " bytes of PLT content") in*) let new_plt_el = ({ contents = (Lem_list.map (fun b -> Some b) all_content) ; startpos = (plt_el.startpos) ; length1 = (Some(length all_content)) }) in let new_elements_map = (Pmap.add ".plt" new_plt_el ( Pmap.remove ".plt" img2.elements )) in { elements = new_elements_map ; by_tag = (img2.by_tag) ; by_range = (img2.by_range) }) in let concretise_rela_plt = (fun img2 -> let maybe_rela_plt_el = (Pmap.lookup ".rela.plt" img2.elements) in let maybe_new_rela_plt_el = ((match maybe_rela_plt_el with None -> (* got no .rela.plt? okay... *) (*let _ = errln "No .rela.plt found" in*) None | Some rela_plt_el -> let got_entry_iplt_widget_for = (fun symname -> fun maybe_def -> (match maybe_def with None -> None | Some sd -> if not (Nat_big_num.equal (get_elf64_symbol_type sd.def_syment) stt_gnu_ifunc) then None else Some(fun index_in_got -> (* This is a 24-byte Elf64_Rela. *) let (r_offset : Nat_big_num.num) (* GOT *slot* address! *) = ((match got_el.startpos with None -> failwith "internal error: GOT has no assigned address" | Some addr -> Nat_big_num.add addr ( Nat_big_num.mul( (Nat_big_num.of_int 8)) index_in_got) )) in let (r_info : Nat_big_num.num) = r_x86_64_irelative in ( List.rev_append (List.rev (List.rev_append (List.rev (natural_to_le_byte_list_padded_to( (Nat_big_num.of_int 8)) r_offset)) (natural_to_le_byte_list_padded_to( (Nat_big_num.of_int 8)) r_info))) (* r_addend -- address of the ifunc definition. * NOTE that this is NOT the same as the GOT entry bytes. * It's the actual address of the ifunc, whereas * the GOT entry is initialized to point back into the PLT entry. *) (match Memory_image_orderings.find_defs_matching sd ranges_and_defs with [] -> failwith ("impossible: IPLT entry widget found matching ifunc definition for " ^ symname) | [(Some(def_el_name, (def_start, def_len)), d)] -> (match element_and_offset_to_address (def_el_name, def_start) img2 with None -> failwith ("no address for ifunc definition offset in element " ^ def_el_name) | Some x -> (* If sd is a TLS symbol, we want its offset from the *end* of the * TLS segment. *) (* FIXME: factor out this logic so that it lives in the TLS ABI spec. *) if not (Nat_big_num.equal (get_elf64_symbol_type sd.def_syment) stt_gnu_ifunc) then failwith "impossible: found ifunc definition that is not an ifunc" else natural_to_le_byte_list_padded_to( (Nat_big_num.of_int 8)) x ) | _ -> failwith "impossible: more than one ifunc definition" ) )) (* end Just sd *) )) in let rela_iplt_widgets = (Lem_list.map (fun (symname, maybe_def) -> got_entry_iplt_widget_for symname maybe_def) got_l) in let new_content_bytelists = (mapi (fun i -> fun rela_widget -> (match rela_widget with Some f -> f (Nat_big_num.of_int i) | None -> [] ) ) rela_iplt_widgets) in let new_contents = (Lem_list.map (fun b -> Some b) (List.concat new_content_bytelists)) in (*let _ = errln ("Concretised .rela.plt; first 24 bytes: " ^ (show (take 24 new_contents))) in*) Some( { contents = new_contents ; startpos = (rela_plt_el.startpos) ; length1 = (rela_plt_el.length1) } ) )) in let new_elements_map = ((match maybe_new_rela_plt_el with Some new_rela_plt_el -> Pmap.add ".rela.plt" new_rela_plt_el ( Pmap.remove ".rela.plt" img2.elements ) | None -> img2.elements )) in { elements = new_elements_map ; by_tag = (img2.by_tag) ; by_range = (img2.by_range) }) in concretise_rela_plt (concretise_plt (concretise_got orig_img plt_l (Some plt_el))) ) )) (*val amd64_got_slot_idx : annotated_memory_image any_abi_feature -> symbol_reference_and_reloc_site -> natural*) let amd64_got_slot_idx img2 rr:Nat_big_num.num= ( (*let _ = errln ("Looking up GOT slot for symbol " ^ rr.ref.ref_symname) in*)(match Pmap.lookup ".got" img2.elements with None -> (* got no GOT? okay... *) failwith "got no GOT" | Some got_el -> (* Find the GOT tag. *) let = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0([])))) img2.by_tag) in (match tags_and_ranges with [] -> failwith "error: GOT element but no ABI feature GOT tag" | [(AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(l))), Some(got_el_name, (got_start_off, got_len)))] -> (* Find the slot corresponding to rr, if we have one. *) let got_addr = ((match got_el.startpos with Some addr -> addr | None -> failwith "GOT has no addr at reloc time" )) in (match rr.maybe_def_bound_to with Some (_, Some(d)) -> (match Lem_list.find_index (fun (symname, maybe_def) -> (Lem.option_equal (=) (Some(d)) maybe_def)) l with Some idx1 -> Nat_big_num.of_int idx1 | None -> failwith ("no GOT slot for reloc against `" ^ (rr.ref.ref_symname ^ "'")) ) | Some(_, None) -> (* HACK: look for the weak symname. Really want more (ref-based) labelling. *) (match Lem_list.find_index (fun (symname, _) -> symname = rr.ref.ref_symname) l with Some idx1 -> Nat_big_num.of_int idx1 | None -> failwith ("no GOT slot for reloc against undefined symbol `" ^ (rr.ref.ref_symname ^ "'")) ) | _ -> failwith "GOT: unbound def" ) | _ -> failwith "got bad GOT" ) )) (*val amd64_got_slot_addr : annotated_memory_image any_abi_feature -> symbol_reference_and_reloc_site -> natural*) let amd64_got_slot_addr img2 rr:Nat_big_num.num= ((match Pmap.lookup ".got" img2.elements with None -> (* got no GOT? okay... *) failwith "got no GOT" | Some got_el -> (* Find the GOT tag. *) let = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0([])))) img2.by_tag) in (match tags_and_ranges with [] -> failwith "error: GOT element but no ABI feature GOT tag" | [(AbiFeature(Amd64AbiFeature(Abi_amd64.GOT0(l))), Some(got_el_name, (got_start_off, got_len)))] -> (* Find the slot corresponding to rr, if we have one. *) let got_addr = ((match got_el.startpos with Some addr -> addr | None -> failwith "GOT has no addr at reloc time" )) in Nat_big_num.add (Nat_big_num.mul( (Nat_big_num.of_int 8)) (amd64_got_slot_idx img2 rr)) got_addr | _ -> failwith "got bad GOT" ) )) (*val amd64_plt_slot_addr : annotated_memory_image any_abi_feature -> symbol_reference_and_reloc_site -> natural -> natural*) let amd64_plt_slot_addr img2 rr raw_addr:Nat_big_num.num= ((match Pmap.lookup ".plt" img2.elements with None -> (* got no PLT? okay... under static linking this can happen. We use the actual symbol address of the *) (*let _ = errln "Warning: no PLT, so attempting to use actual symbol address as PLT slot address" in*) (* if raw_addr = 0 then failwith "bailing rather than resolving PLT slot to null address (perhaps conservatively)" else *) raw_addr | Some plt_el -> (* Find the PLT tag. *) let = (Multimap.lookupBy0 (instance_Basic_classes_Ord_Memory_image_range_tag_dict instance_Basic_classes_Ord_Abis_any_abi_feature_dict) (instance_Basic_classes_Ord_Maybe_maybe_dict (instance_Basic_classes_Ord_tup2_dict Lem_string_extra.instance_Basic_classes_Ord_string_dict (instance_Basic_classes_Ord_tup2_dict instance_Basic_classes_Ord_Num_natural_dict instance_Basic_classes_Ord_Num_natural_dict))) instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_Maybe_maybe_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_var_dict (instance_Basic_classes_SetType_tup2_dict instance_Basic_classes_SetType_Num_natural_dict instance_Basic_classes_SetType_Num_natural_dict))) (Memory_image_orderings.tagEquiv instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (AbiFeature(Amd64AbiFeature(Abi_amd64.PLT0([])))) img2.by_tag) in (match tags_and_ranges with [] -> failwith "error: PLT element but no ABI feature PLT tag" | [(AbiFeature(Amd64AbiFeature(Abi_amd64.PLT0(l))), Some(plt_el_name, (plt_start_off, plt_len)))] -> let plt_addr = ((match plt_el.startpos with Some addr -> addr | None -> failwith "PLT has no addr at reloc time" )) in (* Find the slot corresponding to rr, if we have one. *) (match rr.maybe_def_bound_to with Some (_, Some(d)) -> (match Lem_list.mapMaybe (fun (symname, maybe_def, fn) -> if (Lem.option_equal (=) (Some(d)) maybe_def) then Some fn else None) l with [fn] -> let got_addr = ((match Pmap.lookup ".got" img2.elements with None -> (* got no GOT? okay... *) failwith "got no GOT (applying PLT calculation)" | Some got_el -> (match got_el.startpos with Some addr -> addr | None -> failwith "concrete GOT has no addr" ) )) in let (addr, content) = (fn got_addr plt_addr) in (*let _ = errln ("Calculated PLT slot for `" ^ d.def_symname ^ "', from PLT addr " ^ (hex_string_of_natural plt_addr) ^ " and GOT addr " ^ (hex_string_of_natural got_addr) ^ ", as " ^ (hex_string_of_natural addr)) in*) addr | [] -> (* failwith ("internal error: no PLT entry for reloc against `" ^ rr.ref.ref_symname ^ "'") *) (* If we got no PLT slot, we assume it's because the PLT entry was optimised out. * So we just return the address of the symbol itself. *) (*let _ = errln ("No PLT entry for reloc against `" ^ rr.ref.ref_symname ^ "', which we assume was optimised to avoid the GOT") in*) let (ranges_and_defs : ( element_range option * symbol_definition) list) = (defined_symbols_and_ranges instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict img2) in (match Memory_image_orderings.find_defs_matching d ranges_and_defs with [] -> (Nat_big_num.of_int 0) (* HMM -- should be an error? *) | [(Some(el_name, (start_off, len)), matching_d)] -> (match element_and_offset_to_address (el_name, start_off) img2 with Some a -> a | None -> failwith ("internal error: could not get address for PLT-short-circuited symbol `" ^ (rr.ref.ref_symname ^ "'")) ) | _ -> failwith ("output image has multiple and/or no-location definitions to which via-PLT ref to `" ^ (rr.ref.ref_symname ^ "' could resolve")) ) | _ -> failwith ("internal error: multiple PLT entries for reloc against `" ^ (rr.ref.ref_symname ^ "'")) ) | Some(_, None) -> (* weak, so 0 *) (Nat_big_num.of_int 0) | _ -> failwith "PLT: unbound def" ) | _ -> failwith "got bad PLT" ) )) (** [amd64_base_addr rr site_addr] computes back the base address at which a * shared object has been loaded into memory during execution. It's kind of * lame to have this function because the linker will do the opposite operation * when relocating, but I don't want to add a new argument to the reloc * function. *) (*val amd64_base_addr : symbol_reference_and_reloc_site -> natural -> natural*) let amd64_base_addr rr site_addr:Nat_big_num.num= (let reloc_site1 = ((match rr.maybe_reloc with | None -> failwith "amd64_base_addr: no reloc site during relocation" | Some rs -> rs )) in let offset = (Ml_bindings.nat_big_num_of_uint64 reloc_site1.ref_relent.elf64_ra_offset) in Nat_big_num.sub_nat site_addr offset) (** [amd64_reloc r] yields a function that applies relocations of type [r]. *) (*val amd64_reloc : reloc_fn any_abi_feature*) let amd64_reloc r:bool*((any_abi_feature)annotated_memory_image ->Nat_big_num.num ->symbol_reference_and_reloc_site ->Nat_big_num.num*(Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num))= ( (* See AMD64 ABI Draft 0.99.7 Table 4.10 (page 71) *)(match (string_of_amd64_relocation_type r) with | "R_X86_64_NONE" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 0), (fun s -> fun a -> fun e -> failwith "amd64_reloc: tried to apply a R_X86_64_NONE relocation")))))) | "R_X86_64_64" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> i2n ( Nat_big_num.add(n2i s) a))))))) | "R_X86_64_PC32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.sub( Nat_big_num.add(n2i s) a) (n2i site_addr)))))))) | "R_X86_64_GOT32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.add(n2i (amd64_got_slot_idx img2 rr)) a))))))) | "R_X86_64_PLT32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.sub (Nat_big_num.add(n2i (amd64_plt_slot_addr img2 rr s)) a) (n2i site_addr))) )))) ) | "R_X86_64_COPY" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> (size_of_copy_reloc img2 rr, (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_COPY") (* FIXME *)))))) | "R_X86_64_GLOB_DAT" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> s)))))) | "R_X86_64_JUMP_SLOT" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> s)))))) | "R_X86_64_RELATIVE" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> i2n ( Nat_big_num.add(n2i (amd64_base_addr rr site_addr)) a))))))) | "R_X86_64_GOTPCREL" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.sub (Nat_big_num.add(n2i (amd64_got_slot_addr img2 rr)) a) (n2i site_addr))) )))) ) | "R_X86_64_32" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n ( Nat_big_num.add(n2i s) a))))))) | "R_X86_64_32S" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.add(n2i s) a))))))) | "R_X86_64_16" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 2), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_16") (* FIXME *)))))) | "R_X86_64_PC16" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 2), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_PC16") (* FIXME *)))))) | "R_X86_64_8" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 1), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_8") (* FIXME *)))))) | "R_X86_64_PC8" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 1), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_PC8") (* FIXME *)))))) | "R_X86_64_DTPMOD64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_DTPMOD64") (* FIXME *)))))) | "R_X86_64_DTPOFF64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_DTPOFF64") (* FIXME *)))))) | "R_X86_64_TPOFF64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> i2n_signed 64 (Nat_big_num.sub( (Nat_big_num.of_int 0))( (Nat_big_num.of_int 8)))) (* FIXME *)))))) | "R_X86_64_TLSGD" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_TLSGD") (* FIXME *)))))) | "R_X86_64_TLSLD" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_TLSLD") (* FIXME *)))))) | "R_X86_64_DTPOFF32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_DTPOFF32") (* FIXME *)))))) | "R_X86_64_GOTTPOFF" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> i2n_signed 32 ( Nat_big_num.sub (Nat_big_num.add(n2i (amd64_got_slot_addr img2 rr)) a) (n2i site_addr)))))))) | "R_X86_64_TPOFF32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_TPOFF32") (* FIXME *)))))) | "R_X86_64_PC64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_PC64") (* FIXME *)))))) | "R_X86_64_GOTOFF64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_GOTOFF64") (* FIXME *)))))) | "R_X86_64_GOTPC32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_GOTPC32") (* FIXME *)))))) | "R_X86_64_SIZE32" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_SIZE32") (* FIXME *)))))) | "R_X86_64_SIZE64" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_SIZE64") (* FIXME *)))))) | "R_X86_64_GOTPC32_TLSDESC" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 4), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_GOTPC32_TLSDESC") (* FIXME *)))))) | "R_X86_64_TLSDESC_CALL" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 0) (* FIXME *), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_TLSDESC_CALL") (* FIXME *)))))) | "R_X86_64_TLSDESC" -> (false, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 16), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_TLSDESC") (* FIXME *)))))) | "R_X86_64_IRELATIVE" -> (true, (fun img2 -> (fun site_addr -> (fun rr -> ( (Nat_big_num.of_int 8), (fun s -> fun a -> fun e -> failwith "amd64_reloc: unimplemented R_X86_64_IRELATIVE") (* FIXME *)))))) | _ -> failwith ("unrecognised relocation " ^ (string_of_amd64_relocation_type r)) )) (*val sysv_amd64_std_abi : abi any_abi_feature*) let sysv_amd64_std_abi:(any_abi_feature)abi= ({ is_valid_elf_header = header_is_amd64 ; make_elf_header = (make_elf64_header elf_data_2lsb elf_osabi_none( (Nat_big_num.of_int 0)) elf_ma_x86_64) ; reloc = amd64_reloc ; section_is_special = section_is_special2 ; section_is_large = (fun s -> (fun f -> flag_is_set shf_x86_64_large s.elf64_section_flags)) ; maxpagesize =( (Nat_big_num.of_int 65536)) ; minpagesize =( (Nat_big_num.of_int 4096)) ; commonpagesize =( (Nat_big_num.of_int 4096)) (* XXX: DPM, changed from explicit reference to null_abi field due to problems in HOL4. *) ; symbol_is_generated_by_linker = (fun symname -> symname = "_GLOBAL_OFFSET_TABLE_") ; make_phdrs = make_default_phdrs ; max_phnum =( (Nat_big_num.of_int 2)) (* incremented by extensions *) ; guess_entry_point = (find_start_symbol_address instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; pad_data = pad_zeroes ; pad_code = pad_0x90 ; generate_support = amd64_generate_support ; concretise_support = amd64_concretise_support ; get_reloc_symaddr = amd64_get_reloc_symaddr ; parse_reloc_info = parse_elf64_relocation_info }) (*val sysv_aarch64_le_std_abi : abi any_abi_feature*) let sysv_aarch64_le_std_abi:(any_abi_feature)abi= ({ is_valid_elf_header = header_is_aarch64_le ; make_elf_header = (make_elf64_header elf_data_2lsb elf_osabi_none( (Nat_big_num.of_int 0)) elf_ma_aarch64) ; reloc = aarch64_le_reloc ; section_is_special = section_is_special2 ; section_is_large = (fun _ -> (fun _ -> false)) ; maxpagesize = (Nat_big_num.mul (Nat_big_num.mul( (Nat_big_num.of_int 2))( (Nat_big_num.of_int 256)))( (Nat_big_num.of_int 4096))) (* 2MB; bit of a guess, based on gdb and prelink code *) ; minpagesize =( (Nat_big_num.of_int 1024)) (* bit of a guess again *) ; commonpagesize =( (Nat_big_num.of_int 4096)) ; symbol_is_generated_by_linker = (fun symname -> symname = "_GLOBAL_OFFSET_TABLE_") ; make_phdrs = make_default_phdrs ; max_phnum =( (Nat_big_num.of_int 2)) (* incremented by extensions *) ; guess_entry_point = (find_start_symbol_address instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; pad_data = pad_zeroes ; pad_code = pad_zeroes ; generate_support = ( (* fun _ -> *)fun _ -> get_empty_memory_image ()) ; concretise_support = (fun img2 -> img2) ; get_reloc_symaddr = (default_get_reloc_symaddr instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; parse_reloc_info = parse_elf64_relocation_info }) (*val sysv_mips64_std_abi : abi any_abi_feature*) let sysv_mips64_std_abi:(any_abi_feature)abi= ({ is_valid_elf_header = header_is_mips64 ; make_elf_header = (make_elf64_header abi_mips64_data_encoding elf_osabi_none( (Nat_big_num.of_int 0)) elf_ma_mips) ; reloc = mips64_reloc ; section_is_special = elf_section_is_special ; section_is_large = (fun s -> (fun f -> false)) ; maxpagesize = abi_mips64_page_size_max ; minpagesize = abi_mips64_page_size_min ; commonpagesize =( (Nat_big_num.of_int 4096)) ; symbol_is_generated_by_linker = (fun symname -> symname = "_GLOBAL_OFFSET_TABLE_") ; make_phdrs = make_default_phdrs ; max_phnum =( (Nat_big_num.of_int 2)) ; guess_entry_point = (find_start_symbol_address instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (* TODO: on MIPS it's __start, not _start *) ; pad_data = pad_zeroes ; pad_code = pad_zeroes ; generate_support = ( (* fun _ -> *)fun _ -> get_empty_memory_image ()) ; concretise_support = (fun img2 -> img2) ; get_reloc_symaddr = (default_get_reloc_symaddr instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; parse_reloc_info = abi_mips_parse_elf64_relocation_info }) (*val sysv_cheri_mips64_std_abi : abi any_abi_feature*) let sysv_cheri_mips64_std_abi:(any_abi_feature)abi= ({ is_valid_elf_header = header_is_cheri_mips64 ; make_elf_header = (make_elf64_header abi_cheri_mips64_data_encoding elf_osabi_none( (Nat_big_num.of_int 0)) elf_ma_mips) ; reloc = cheri_mips64_reloc ; section_is_special = elf_section_is_special ; section_is_large = (fun s -> (fun f -> false)) ; maxpagesize = abi_cheri_mips64_page_size_max ; minpagesize = abi_cheri_mips64_page_size_min ; commonpagesize =( (Nat_big_num.of_int 4096)) ; symbol_is_generated_by_linker = (fun symname -> symname = "_GLOBAL_OFFSET_TABLE_") ; make_phdrs = make_default_phdrs ; max_phnum =( (Nat_big_num.of_int 2)) ; guess_entry_point = (find_start_symbol_address instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) (* TODO: on MIPS it's __start, not _start *) ; pad_data = pad_zeroes ; pad_code = pad_zeroes ; generate_support = ( (* fun _ -> *)fun _ -> get_empty_memory_image ()) ; concretise_support = (fun img2 -> img2) ; get_reloc_symaddr = (default_get_reloc_symaddr instance_Basic_classes_Ord_Abis_any_abi_feature_dict instance_Abi_classes_AbiFeatureTagEquiv_Abis_any_abi_feature_dict) ; parse_reloc_info = parse_elf64_relocation_info }) (*val all_abis : list (abi any_abi_feature)*) let all_abis:((any_abi_feature)abi)list= ([ sysv_amd64_std_abi; sysv_aarch64_le_std_abi; sysv_mips64_std_abi; sysv_cheri_mips64_std_abi; null_abi ])
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>