package libzipperposition

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Rewriting.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Rewriting} *)

open Logtk
open Libzipperposition

module T = Term
module RW = Rewrite
module P = Position

let section = RW.section

let stat_narrowing_lit = Util.mk_stat "narrow.lit_steps"
let stat_narrowing_term = Util.mk_stat "narrow.term_steps"
let stat_ctx_narrowing = Util.mk_stat "narrow.ctx_narrow_steps"

let prof_narrowing_term = ZProf.make "narrow.term"
let prof_narrowing_lit = ZProf.make "narrow.lit"
let prof_ctx_narrowing = ZProf.make "narrow.ctx_narrow"

let max_steps = 500
let rewrite_before_cnf = ref false


module Key = struct
  let has_rw = Flex_state.create_key()
  let ctx_narrow = Flex_state.create_key()
  let narrow = Flex_state.create_key()
end

let simpl_term t =
  let t', rules = RW.Term.normalize_term ~max_steps t in
  if T.equal t t' then (
    assert (RW.Term.Rule_inst_set.is_empty rules);
    None
  ) else (
    let proof =
      RW.Rule.set_as_proof_parents rules
    in

    Util.debugf ~section 3
      "@[<2>@{<green> simpl rewrite@} `@[%a@]`@ :into `@[%a@]`@ :using %a@]"
      (fun k->k T.pp t T.pp t' RW.Term.Rule_inst_set.pp rules);
    Some (t',proof)
  )

module Make(E : Env_intf.S) = struct
  module Env = E
  module C = E.C

  (* simplification rule *)
  (* perform term narrowing in [c] *)
  let narrow_term_passive_ c: C.t list =
    let eligible = C.Eligible.(res c) in
    let sc_rule = 1 in
    let sc_c = 0 in
    Literals.fold_terms ~vars:false ~subterms:true ~ty_args:false ~ord:(C.Ctx.ord())
      ~which:`All ~eligible (C.lits c)
    |> Iter.flat_map
      (fun (u_p, passive_pos) ->
         RW.Term.narrow_term ~scope_rules:sc_rule (u_p,sc_c)
         |> Iter.filter_map
           (fun (rule,us) ->
              let renaming = Subst.Renaming.create() in
              let subst = Unif_subst.subst us in
              let c_guard = Literal.of_unif_subst renaming us in
              (* side literals *)
              let lits_passive = C.lits c in
              let lits' =
                Literals.apply_subst renaming subst (lits_passive,sc_c) in
              (* substitute in rule *)
              let rhs =
                Subst.FO.apply renaming subst (RW.Term.Rule.rhs rule, sc_rule)
              in
              (* literal in which narrowing took place: replace lhs by rhs *)
              Literals.Pos.replace lits' ~at:passive_pos ~by:rhs;
              (* make new clause *)
              Util.incr_stat stat_narrowing_term;
              let proof =
                Proof.Step.inference
                  [C.proof_parent_subst renaming (c,sc_c) subst;
                   Proof.Parent.from_subst renaming
                     (RW.Rule.as_proof (RW.T_rule rule),sc_rule) subst]
                  ~rule:(Proof.Rule.mk "narrow") in
              let c' =
                C.create ~trail:(C.trail c) ~penalty:(C.penalty c)
                  (c_guard @ CCArray.to_list lits') proof
              in
              
              Util.debugf ~section 3
                "@[<2>term narrowing:@ from `@[%a@]`@ to `@[%a@]`@ \
                 using rule `%a`@ and subst @[%a@]@]"
                (fun k->k C.pp c C.pp c' RW.Term.Rule.pp rule Unif_subst.pp us);
              Some c'
           )
      )
    |> Iter.to_rev_list

  let narrow_term_passive = ZProf.with_prof prof_narrowing_term narrow_term_passive_

  (* XXX: for now, we only do one step, and let Env.multi_simplify
     manage the fixpoint *)
  let simpl_clause c =
    let lits = C.lits c in
    match RW.Lit.normalize_clause lits with
    | None -> None
    | Some (clauses,r,subst,sc_r,renaming,tags) ->
      let proof =
        Proof.Step.simp ~rule:(Proof.Rule.mk "rw_clause") ~tags
          [C.proof_parent_subst renaming (c,0) subst;
           RW.Rule.lit_as_proof_parent_subst renaming subst (r,sc_r)]
      in
      let clauses =
        List.map
          (fun c' -> C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) c' proof)
          clauses
      in
      Util.debugf ~section 2
        "@[<2>@{<green>rewrite@} `@[%a@]`@ into `@[<v>%a@]`@]"
        (fun k->k C.pp c (Util.pp_list C.pp) clauses);
      Some clauses

  (* narrowing on literals of given clause, using lits rewrite rules *)
  let narrow_lits_ c =
    let eligible = C.Eligible.res c in
    let lits = C.lits c in
    Literals.fold_lits ~eligible lits
    |> Iter.fold
      (fun acc (lit,i) ->
         RW.Lit.narrow_lit ~scope_rules:1 (lit,0)
         |> Iter.fold
           (fun acc (rule,us,tags) ->
              let subst = Unif_subst.subst us in
              let renaming = Subst.Renaming.create () in
              let c_guard = Literal.of_unif_subst renaming us in
              let proof =
                Proof.Step.inference
                  [C.proof_parent_subst renaming (c,0) subst;
                   Proof.Parent.from_subst renaming
                     (RW.Rule.as_proof (RW.L_rule rule),1) subst]
                  ~rule:(Proof.Rule.mk "narrow_clause") ~tags in
              let lits' = CCArray.except_idx lits i in
              (* create new clauses that correspond to replacing [lit]
                 by [rule.rhs] *)
              let clauses =
                List.map
                  (fun c' ->
                     let new_lits =
                       c_guard
                       @ Literal.apply_subst_list renaming subst (lits',0)
                       @ Literal.apply_subst_list renaming subst (c',1)
                     in
                     C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof)
                  (RW.Lit.Rule.rhs rule)
              in
              Util.debugf ~section 3
                "@[<2>narrowing of `@[%a@]`@ using `@[%a@]`@ with @[%a@]@ yields @[%a@]@]"
                (fun k->k C.pp c RW.Lit.Rule.pp rule Unif_subst.pp us
                    CCFormat.(list (hovbox C.pp)) clauses);
              Util.incr_stat stat_narrowing_lit;
              List.rev_append clauses acc)
           acc)
      []

  let narrow_lits lits =
    ZProf.with_prof prof_narrowing_lit narrow_lits_ lits

  (* find positions in rules' LHS *)
  let ctx_narrow_find (s,sc_a) sc_p : (RW.Rule.t * Position.t * Unif_subst.t) Iter.t =
    let find_term (r:RW.Term.rule) =
      let t = RW.Term.Rule.lhs r in
      T.all_positions ~vars:false ~pos:P.stop ~ty_args:false t
      |> Iter.filter (fun (_,p) -> not (P.equal p P.stop)) (* not root *)
      |> Iter.filter
        (fun (t,_) -> match T.Classic.view t with
           | T.Classic.App (id,_) -> not (Ind_ty.is_constructor id)
           | T.Classic.Var _ | T.Classic.DB _
           | T.Classic.AppBuiltin (_,_) | T.Classic.NonFO -> false)
      |> Iter.filter_map
        (fun (t,p) ->
           try
             let subst = Unif.FO.unify_full (s,sc_a) (t,sc_p) in
             Some (RW.T_rule r, p, subst)
           with Unif.Fail -> None)
    and find_lit (r:RW.Lit.rule) =
      let lit = RW.Lit.Rule.lhs r in
      Literal.fold_terms lit
        ~position:P.stop ~vars:false ~ty_args:false
        ~which:`All ~ord:(E.Ctx.ord()) ~subterms:true
      |> Iter.filter_map
        (fun (t,p) -> match p with
           | P.Left P.Stop -> None (* not root *)
           | _ ->
             try
               let subst = Unif.FO.unify_full (s,sc_a) (t,sc_p) in
               Some (RW.L_rule r, p, subst)
             with Unif.Fail -> None)
    in
    Rewrite.all_rules
    |> Iter.flat_map
      (function
        | RW.T_rule r -> find_term r
        | RW.L_rule r -> find_lit r)

  (* do narrowing with [s=t], a literal in [c], and add results to [acc] *)
  let ctx_narrow_with ~ord s t s_pos c acc : C.t list =
    let sc_a = 1 and sc_p = 0 in
    (* do narrowing inside this rule? *)
    let do_narrowing rule rule_pos (us:Unif_subst.t) =
      let rule_clauses = match rule with
        | RW.T_rule r -> [ [| RW.Term.Rule.as_lit r |] ]
        | RW.L_rule r -> RW.Lit.Rule.as_clauses r
      in
      let renaming = Subst.Renaming.create() in
      let subst = Unif_subst.subst us in
      let c_guard = Literal.of_unif_subst renaming us in
      let s' = Subst.FO.apply renaming subst (s,sc_a) in
      let t' = Subst.FO.apply renaming subst (t,sc_a) in
      if Ordering.compare ord s' t' <> Comparison.Lt then (
        Util.incr_stat stat_ctx_narrowing;
        rule_clauses
        |> List.map
          (fun rule_clause ->
             (* instantiate rule and replace [s'] by [t'] now *)
             let new_lits =
               Literals.apply_subst renaming subst (rule_clause,sc_p)
               |> Literals.map (T.replace ~old:s' ~by:t')
               |> Array.to_list
             in
             (* also instantiate context literals in [c] *)
             let idx_active = match s_pos with
               | P.Arg (n,_) -> n | _ -> assert false
             in
             let ctx =
               Literal.apply_subst_list renaming subst
                 (CCArray.except_idx (C.lits c) idx_active, sc_a)
             in
             (* build new clause *)
             let proof =
               Proof.Step.inference
                 ~rule:(Proof.Rule.mk "contextual_narrowing")
                 [C.proof_parent_subst renaming (c,sc_a) subst;
                  Proof.Parent.from_subst renaming
                    (RW.Rule.as_proof rule,sc_p) subst]
             in
             (* add some penalty on every inference *)
             let penalty = Array.length (C.lits c) + C.penalty c in
             let new_c =
               C.create (c_guard @ new_lits @ ctx) proof
                 ~trail:(C.trail c) ~penalty
             in
             Util.debugf ~section 4
               "(@[<2>ctx_narrow@ :rule %a[%d]@ :clause %a[%d]@ :pos %a@ :subst %a@ :yield %a@])"
               (fun k->k RW.Rule.pp rule sc_p C.pp c sc_a P.pp rule_pos Subst.pp subst C.pp new_c);
             new_c)
        |> CCOpt.return
      ) else None
    in
    ctx_narrow_find (s,sc_a) sc_p
    |> Iter.fold
      (fun acc (rule,rule_pos,subst) ->
         match do_narrowing rule rule_pos subst with
         | None -> acc
         | Some cs -> cs @ acc)
      acc

  let contextual_narrowing_ c : C.t list =
    (* no literal can be eligible for paramodulation if some are selected.
       This checks if inferences with i-th literal are needed? *)
    let eligible = C.Eligible.param c in
    let ord = E.Ctx.ord() in
    (* do the inferences where clause is active; for this,
       we try to rewrite conditionally other clauses using
       non-minimal sides of every positive literal *)
    let new_clauses =
      Literals.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits c)
      |> Iter.fold
        (fun acc (s, t, _, s_pos) ->
           (* rewrite clauses using s *)
           ctx_narrow_with ~ord s t s_pos c acc)
        []
    in
    new_clauses

  let contextual_narrowing c =
    ZProf.with_prof prof_ctx_narrowing contextual_narrowing_ c

  let setup ?(ctx_narrow=true) ~narrowing ~has_rw () =
    Util.debug ~section 1 "register Rewriting to Env...";
    E.add_rewrite_rule "rewrite_defs" simpl_term;
    if narrowing then (
      E.add_binary_inf "narrow_term_defs" narrow_term_passive;
      E.add_unary_inf "narrow_lit_defs" narrow_lits);
    if ctx_narrow then (
      E.add_binary_inf "ctx_narrow" contextual_narrowing;
    );
    if has_rw then  E.Ctx.lost_completeness ();
    E.add_multi_simpl_rule ~priority:5 simpl_clause;
    ()
end

let ctx_narrow_ = ref true
let narrowing = ref true

let post_cnf stmts st =
  CCVector.iter Statement.scan_stmt_for_defined_cst 
    (if not !rewrite_before_cnf then stmts
     else (
       CCVector.filter (fun st -> match Statement.view st with
           | Statement.Rewrite _ -> false
           | _ -> true) stmts));
  (* check if there are rewrite rules *)
  let has_rw =
    CCVector.to_iter stmts
    |> Iter.exists
      (fun st -> match Statement.view st with
         | Statement.Rewrite _
         | Statement.Def _ -> true
         | _ -> false)  in
  st
  |> Flex_state.add Key.has_rw has_rw

(* let post_typing stmts state = 
*)

let rewrite_tst_stmt stmt = 
  let aux f =
    let ctx = Type.Conv.create () in
    let t = Term.Conv.of_simple_term_exn ctx f in
    let snf = Lambda.snf in
    CCOpt.map (fun (t',p) ->  (Term.Conv.to_simple_term ctx (snf t'), p)) (simpl_term t) in

  let aux_l fs =
    let ts = List.map aux fs in
    if List.for_all CCOpt.is_none ts then None
    else (
      let proof = ref [] in
      let combined = CCList.combine fs ts in
      let res = 
        List.map (fun (f,res) -> 
            let f', p_list = CCOpt.get_or ~default:(f,[]) res in
            proof := p_list @ !proof;
            f') combined in
      Some (res, !proof)) in

  let mk_proof ~stmt_parents f_opt orig =
    CCOpt.map (fun (f', parent_list) -> 
        let rule = Proof.Rule.mk "definition expansion" in
        f', Proof.S.mk_f_simp ~rule orig (parent_list @ stmt_parents)) f_opt in

  let stmt_parents = [Proof.Parent.from @@ Statement.as_proof_i stmt] in
  match Statement.view stmt with
  | Assert f -> 
    (match mk_proof ~stmt_parents (aux f) f with
     | Some (f', proof) -> Statement.assert_ ~proof:(Proof.S.step proof) f'
     | None -> stmt)
  | Lemma fs -> 
    begin match aux_l fs with 
      | Some (fs', parents) ->
        let rule = Proof.Rule.mk "definition expansion" in
        let fs_parents = (List.map (fun f -> Proof.Parent.from (Proof.S.mk_f_esa ~rule f stmt_parents)) fs)
                         @ parents in
        let proof = Proof.Step.simp ~rule fs_parents in
        Statement.lemma ~proof fs'
      | None -> stmt end
  | Goal g ->
    (match mk_proof ~stmt_parents (aux g) g with
     | Some (g', proof) -> Statement.goal ~proof:(Proof.S.step proof) g'
     | None -> stmt)
  | NegatedGoal (skolems, ngs) -> 
    begin match aux_l ngs with 
      | Some (ng', parents) ->
        let rule = Proof.Rule.mk "definition expansion" in
        let ng_parents = (List.map (fun f -> Proof.Parent.from (Proof.S.mk_f_esa ~rule f stmt_parents)) ngs)
                         @ parents in
        let proof = Proof.Step.simp ~rule ng_parents in
        Statement.neg_goal ~skolems ~proof ng'
      | None -> stmt end
  | _ -> stmt

let unfold_def_before_cnf stmts =
  if !rewrite_before_cnf then (
    let cnt = ref 0 in
    CCVector.map (fun stmt ->
        incr cnt;
        try  
          rewrite_tst_stmt stmt
        with Type.Conv.Error t ->
          Util.debugf ~section 1 "@[%a@] cannot be converted because it uses unsupported features (such as ite, let and others)" 
            (fun k -> k Statement.pp_input stmt);
          stmt
      ) stmts
  ) else stmts

let post_tying stmts st =
  if !rewrite_before_cnf then (
    CCVector.iter Statement.scan_tst_rewrite stmts;
    let has_rw =
      CCVector.to_iter stmts
      |> Iter.exists
        (fun st -> match Statement.view st with
           | Statement.Rewrite _ -> true
           | _ -> false)  in
    Flex_state.add Key.has_rw has_rw st
  ) else st

(* add a term simplification that normalizes terms w.r.t the set of rules *)
let normalize_simpl (module E : Env_intf.S) =
  let module M = Make(E) in
  let has_rw = E.flex_get Key.has_rw in
  E.flex_add Key.ctx_narrow !ctx_narrow_;
  E.flex_add Key.narrow !narrowing;

  M.setup ~has_rw ~narrowing:!narrowing 
                  ~ctx_narrow:!ctx_narrow_ ()

let extension =
  let open Extensions in
  { default with
    name = "rewriting";
    post_typing_actions=[post_tying];
    post_cnf_actions=[post_cnf];
    env_actions=[normalize_simpl];
  }

let () = Options.add_opts
    [ "--rw-ctx-narrow", Arg.Set ctx_narrow_, " enable contextual narrowing";
      "--no-rw-ctx-narrow", Arg.Clear ctx_narrow_, " disable contextual narrowing";
      "--rewrite-before-cnf", Arg.Bool (fun v -> rewrite_before_cnf := v), " enable/disable rewriting before CNF"
    ];
    Params.add_to_modes 
    [ "ho-complete-basic"
    ; "ho-pragmatic"
    ; "ho-competitive"
    ; "fo-complete-basic"
    ; "lambda-free-intensional"
    ; "lambda-free-extensional"
    ; "ho-comb-complete"
    ; "lambda-free-purify-intensional"
    ; "lambda-free-purify-extensional"] 
    (fun () ->
      narrowing := false;
      ctx_narrow_ := false;
    );
OCaml

Innovation. Community. Security.