package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/induction.ml.html
Source file induction.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Induction through Cut} *) open Logtk open Libzipperposition module Lits = Literals module T = Term module Ty = Type module Fmt = CCFormat module RW = Rewrite module type S = Induction_intf.S type term = T.t type var = T.var type clause = Literals.t type form = clause list let section = Util.Section.make ~parent:Const.section "induction" let stat_lemmas = Util.mk_stat "induction.inductive_lemmas" let stat_trivial_lemmas = Util.mk_stat "induction.trivial_lemmas" let stat_absurd_lemmas = Util.mk_stat "induction.absurd_lemmas" let stat_goal_duplicate = Util.mk_stat "induction.duplicate_goal" let stat_inductions = Util.mk_stat "induction.inductions" let stat_split_goal = Util.mk_stat "induction.split_goals" let stat_generalize = Util.mk_stat "induction.generalize" let stat_generalize_vars_active_pos = Util.mk_stat "induction.generalize_vars_active_pos" let stat_generalize_terms_active_pos = Util.mk_stat "induction.generalize_terms_active_pos" let stat_assess_goal = Util.mk_stat "induction.assess_goal_calls" let stat_assess_goal_ok = Util.mk_stat "induction.assess_goal_ok" let prof_check_goal = Util.mk_profiler "induction.check_goal" let k_enable : bool Flex_state.key = Flex_state.create_key() let k_ind_depth : int Flex_state.key = Flex_state.create_key() let k_limit_to_active : bool Flex_state.key = Flex_state.create_key() let k_coverset_depth : int Flex_state.key = Flex_state.create_key() let k_goal_assess_limit : int Flex_state.key = Flex_state.create_key() let k_ind_on_subcst : bool Flex_state.key = Flex_state.create_key() let k_generalize_var : bool Flex_state.key = Flex_state.create_key() let k_generalize_term : bool Flex_state.key = Flex_state.create_key() (** {2 Formula to be Proved Inductively *) module Make_goal(E : Env_intf.S) : sig type t val trivial : t (** trivial goal *) val of_form : form -> t val of_cut_form : Cut_form.t -> t val form : t -> Cut_form.t val cs : t -> Literals.t list val vars : t -> T.VarSet.t val ind_vars : t -> var list (** the inductive variables *) val simplify : t -> t (** Apply rewrite rules to the goal *) val split : t -> t list (** Split the goal into independent goals to be proved separately (if there is a conjunction of clauses that share no variables) *) val pp : t CCFormat.printer type status = | S_trivial | S_ok | S_falsifiable of Subst.t val test : t -> status (** Testing using {!Test_prop} *) val check_not_absurd_or_trivial : t -> bool (** More thorough testing *) val is_acceptable_goal : t -> bool val add_lemma : Cut_form.t -> unit (** Signal that this cut formula is an active lemma *) val has_been_tried : t -> bool (** Is the goal already converted into a lemma? *) end = struct type status = | S_trivial | S_ok | S_falsifiable of Subst.t (* formula to be proved inductively. The clauses share some variables, they are not independent *) type t = { cut: Cut_form.t; test_res: status lazy_t; } let trivial: t = {cut=Cut_form.trivial; test_res=Lazy.from_val S_trivial} (* trivial clause? *) let trivial_c (c:Literals.t): bool = Literals.is_trivial c let test_ (cs:Literals.t list): status = (* test and save *) if List.for_all trivial_c cs then S_trivial else begin match Test_prop.check_form cs with | Test_prop.R_ok -> S_ok | Test_prop.R_fail subst -> S_falsifiable subst end let of_cut_form (f:Cut_form.t): t = let test_res = lazy (Cut_form.cs f |> test_) in {cut=f; test_res} let of_form cs: t = of_cut_form (Cut_form.make cs) let form t = t.cut let cs t : form = Cut_form.cs t.cut let vars t = Cut_form.vars t.cut let test (t:t): status = Lazy.force t.test_res let ind_vars t = Cut_form.ind_vars t.cut let pp out (f:t): unit = Cut_form.pp out f.cut let simplify (g:t): t = form g |> Cut_form.normalize |> of_cut_form (* union-find for sets of clauses *) module UF_clauses = UnionFind.Make(struct type key = T.var type value = clause list let equal = HVar.equal Type.equal let hash = HVar.hash let zero = [] let merge = List.rev_append end) let split (g:t): t list = let uf = vars g |> T.VarSet.to_list |> UF_clauses.create and ground_ = ref [] in List.iter (fun c -> let vars = Literals.vars c in List.iter (fun v -> UF_clauses.add uf v [c]) vars; begin match vars with | [] -> (* ground clause is all by itself *) ground_ := [c] :: !ground_; | v::other_vars -> (* merge together these variables *) List.iter (fun v' -> UF_clauses.union uf v v') other_vars; end) (cs g); let all_clusters = (UF_clauses.to_seq uf |> Iter.map snd |> Iter.to_rev_list) @ !ground_ in let new_goals = List.rev_map of_form all_clusters in if List.length new_goals > 1 then ( Util.incr_stat stat_split_goal; Util.debugf ~section 3 "(@[<2>split_goal@ :goal %a@ :new_goals (@[<hv>%a@])@])" (fun k->k pp g (Util.pp_list pp) new_goals); ); new_goals module C = E.C let test_goal_is_ok (g:t): bool = begin match test g with | S_ok -> true | S_trivial -> Util.incr_stat stat_trivial_lemmas; Util.debugf ~section 2 "(@[<2>lemma_trivial@ @[%a@]@@])" (fun k->k pp g); false | S_falsifiable subst -> Util.debugf ~section 2 "(@[<2>lemma_absurd@ @[%a@]@ :subst %a@])" (fun k->k pp g Subst.pp subst); Util.incr_stat stat_absurd_lemmas; false end exception Yield_false of C.t (* do only a few steps of inferences for checking if a candidate lemma is trivial/absurd *) let max_steps_ = E.flex_get k_goal_assess_limit (* TODO: if goal passes tests, can we use the demod/sup steps to infer active positions? (e.g. looking at which variables were substituted with cstor terms) *) (* check that [lemma] is not obviously absurd or trivial, by making a few steps of superposition inferences between [lemma] and the Active Set. The strategy here is set of support: no inference between clauses of [lemma] and no inferences among active clauses, just between active clauses and those derived from [lemma]. Inferences with trails are dropped because the lemma should be inconditionally true. *) let check_not_absurd_or_trivial_ (g:t): bool = Util.debugf ~section 2 "@[<2>@{<green>assess goal@}@ :goal %a@ :max-steps %d@]" (fun k->k pp g max_steps_); let module CQ = E.ProofState.CQueue in let q = CQ.almost_bfs () in (* clauses waiting *) let push_c c = CQ.add q c in let n : int ref = ref 0 in (* number of steps *) let trivial = ref true in try (* add goal's clauses to the local saturation set *) List.iter (fun lits -> let c = C.create_a ~trail:Trail.empty ~penalty:1 lits Proof.Step.trivial in let c, _ = E.unary_simplify c in if E.is_trivial c then () else if C.is_empty c then raise (Yield_false c) else ( trivial := false; push_c c )) (cs g); (* do a few steps of saturation *) while not (CQ.is_empty q) && !n < max_steps_ do incr n; let c = CQ.take_first q in let c, _ = E.unary_simplify c in assert (C.trail c |> Trail.is_empty); (* check for empty clause *) if C.comes_from_goal c then () (* ignore, a valid lemma might contradict goal *) else if C.is_empty c then raise (Yield_false c) else if E.is_trivial c then () else ( trivial := false; (* at least one clause does not simplify to [true] *) (* now make inferences with [c] and push non-trivial clauses to [q], if needed *) if !n + 2 < max_steps_ then ( let new_c = Iter.append (E.do_binary_inferences c) (E.do_unary_inferences c) in new_c |> Iter.filter_map (fun new_c -> let new_c, _ = E.unary_simplify new_c in (* discard trivial/conditional clauses, or clauses coming from goals (as they might be true lemmas but contradict the negated goal, which makes them even more useful); also scan for empty clauses *) if C.comes_from_goal new_c then None else if not (Trail.is_empty (C.trail new_c)) then None else if E.is_trivial new_c then None else if C.is_empty new_c then raise (Yield_false new_c) else Some new_c) |> Iter.iter push_c ) ) done; Util.debugf ~section 2 "@[<2>lemma @[%a@]@ apparently not absurd (after %d steps; trivial:%B)@]" (fun k->k pp g !n !trivial); if !trivial then Util.incr_stat stat_trivial_lemmas; not !trivial with Yield_false c -> assert (C.is_empty c); Util.debugf ~section 2 "@[<2>lemma @[%a@] absurd:@ leads to empty clause %a (after %d steps)@]" (fun k->k pp g C.pp c !n); Util.incr_stat stat_absurd_lemmas; false let check_not_absurd_or_trivial g = Util.with_prof prof_check_goal check_not_absurd_or_trivial_ g (* some checks that [g] should be considered as a goal *) let is_acceptable_goal (g:t) : bool = Util.incr_stat stat_assess_goal; let res = test_goal_is_ok g && check_not_absurd_or_trivial g in if res then Util.incr_stat stat_assess_goal_ok; res module FV = Cut_form.FV_tbl(struct type t = unit let compare ()()=0 end) let add_lemma, has_been_tried = let tbl = FV.create () in let add f = FV.add tbl f () and mem (g:t) = FV.mem tbl (form g) in add, mem end module T_view : sig type 'a t = | T_var of T.var | T_db of int | T_app_defined of ID.t * Rewrite.Defined_cst.t * 'a list | T_app_cstor of ID.t * 'a list | T_app_unin of ID.t * 'a list | T_app of 'a * 'a list | T_fun of Type.t * 'a | T_builtin of Builtin.t * 'a list val view : term -> term t val active_subterms : term -> term Iter.t (** Visit all active subterms in the given term. A subterm is active if it's under a cstor, uninterpreted symbol, builtin, or under a defined function at an active position *) end = struct type 'a t = | T_var of T.var | T_db of int | T_app_defined of ID.t * Rewrite.Defined_cst.t * 'a list | T_app_cstor of ID.t * 'a list | T_app_unin of ID.t * 'a list | T_app of 'a * 'a list | T_fun of Type.t * 'a | T_builtin of Builtin.t * 'a list let view (t:term): term t = match T.view t with | T.AppBuiltin (b, l) -> T_builtin (b,l) | T.Var v -> T_var v | T.Const id when Ind_ty.is_constructor id -> T_app_cstor (id, []) | T.Const id when Classify_cst.id_is_defined id -> begin match RW.as_defined_cst id with | Some c -> T_app_defined (id, c, []) | None -> T_app_unin (id, []) end | T.Const id -> T_app_unin (id, []) | T.Fun (arg,bod) -> T_fun (arg,bod) | T.App (f, l) -> begin match T.view f with | T.Const id when Ind_ty.is_constructor id -> T_app_cstor (id, l) | T.Const id when Classify_cst.id_is_defined id -> begin match RW.as_defined_cst id with | Some c -> T_app_defined (id, c, l) | None -> T_app_unin (id, l) end | T.Const id -> T_app_unin (id, l) | _ -> T_app (f,l) end | T.DB i -> T_db i let active_subterms t yield: unit = let rec aux t = yield t; begin match view t with | T_app_defined (_, c, l) -> let pos = RW.Defined_cst.defined_positions c in assert (IArray.length pos >= List.length l); (* only look under active positions *) List.iteri (fun i sub -> if IArray.get pos i = Defined_pos.P_active then aux sub) l | T_fun (_,_) -> () (* no induction under λ, we follow WHNF semantics *) | T_var _ | T_db _ -> () | T_app (f,l) -> aux f; List.iter aux l | T_app_cstor (_,l) -> List.iter aux l | T_builtin (_,l) | T_app_unin (_,l) -> List.iter aux l end in aux t end (* data flow for induction: 1) Introduce lemmas - some lemmas come directly from the input, and are directly asserted in Avatar - some other lemmas are "guessed" from regular clauses that contain inductive skolems. From these clauses (where we do not know what to do with these skolems in general), a lemma is built by negating the clauses and replacing the skolems by fresh variables. The goals obtained from this second source (given clauses) are pre-processed: - they are tested (see {!Test_prop}) to avoid trying to prove trivially false lemmas - they might be generalized using a collection of heuristics. Each generalization is also tested. Then, the surviving goals are added to Avatar using [A.introduce_cut]. 2) new lemmas from Avatar (coming from 1)) are checked for {b variables} with an inductive type. For each such variable satisfying some side condition (e.g. occurring at least once in active position), a fresh coverset of the variable's type is built, and fresh skolems are created for the other variables. Clauses of the goal (they share variables) are then instantiated to the ground with these skolems (and each case of the coverset) and then negated. We add a trail to them. The trail contains [not lemma] and the corresponding case literal. The resulting formulas are re-normalized into CNF and added to the resulting set of clauses. In addition, for each recursive case of the coverset, induction hypothesis are added (instantiating the goal with this case, keeping the other variables identical). 3) the resulting set of clauses *) (* TODO: strong induction? instead of using sub-constants of the case in the induction hypothesis, use a constraint [x < top] *) (** {2 Calculus of Induction} *) module Make (E : Env.S) (A : Avatar_intf.S with module E = E) = struct module Env = E module Ctx = E.Ctx module C = E.C module BoolBox = BBox module BoolLit = BoolBox.Lit module Goal = Make_goal(E) let max_depth = Env.flex_get k_ind_depth let cover_set_depth = Env.flex_get k_coverset_depth let is_ind_conjecture_ c = match C.distance_to_goal c with | Some (0 | 1) -> true | Some _ | None -> false let has_pos_lit_ c = CCArray.exists Literal.is_pos (C.lits c) (* fresh var generator *) let fresh_var_gen_ (): Type.t -> T.t = let r = ref 0 in fun ty -> let v = T.var_of_int ~ty !r in incr r; v (* scan terms for inductive skolems. *) let scan_terms ~mode (seq:term Iter.t) : Ind_cst.ind_skolem list = seq |> Iter.flat_map Ind_cst.find_ind_skolems |> Iter.filter (fun (id,_) -> begin match Ind_cst.id_as_cst id, mode with | None, _ -> true | Some _, `All -> true | Some c, `No_sub_cst -> (* do not generalize on sub-constants, there are induction hypothesis on them that we will need *) not (Ind_cst.is_sub c) end) |> Iter.to_rev_list |> CCList.sort_uniq ~cmp:Ind_cst.ind_skolem_compare (* scan clauses for ground terms of an inductive type, and perform induction on these terms. @return a list of ways to generalize the given clause *) let scan_clause (c:C.t) : Ind_cst.ind_skolem list list = let l1 = if E.flex_get k_ind_on_subcst then C.lits c |> Lits.Seq.terms |> scan_terms ~mode:`All else [] and l2 = C.lits c |> Lits.Seq.terms |> scan_terms ~mode:`No_sub_cst in (* remove duplicates, empty lists, etc. *) begin [l1; l2] |> CCList.sort_uniq ~cmp:(CCList.compare Ind_cst.ind_skolem_compare) |> List.filter (fun l -> not (CCList.is_empty l)) end (* goal for induction *) (* ensure the proper declarations are done for this coverset *) let decl_cst_of_set (set:Cover_set.t): unit = Util.debugf ~section 3 "@[<2>declare coverset@ `%a`@]" (fun k->k Cover_set.pp set); begin Cover_set.declarations set |> Iter.iter (fun (id,ty) -> Ctx.declare id ty) end (* induction on the given variables *) let ind_on_vars (cut:A.cut_res)(vars:T.var list): C.t list = assert (vars<>[]); let g = A.cut_form cut in let depth = A.cut_depth cut in let cut_blit = A.cut_lit cut in (* proof step *) let proof = let proof_parent = A.cut_proof_parent cut in let infos = UntypedAST.A.( [app "induction" (List.map (fun v -> quoted (HVar.to_string_tstp v)) vars)]) in Proof.Step.inference [proof_parent] ~infos ~rule:(Proof.Rule.mk "induction") ~tags:[Proof.Tag.T_ind] in (* other variables -> become skolems *) let subst_skolems: Subst.t = Cut_form.vars g |> (fun set -> T.VarSet.diff set (T.VarSet.of_list vars)) |> T.VarSet.to_list |> List.map (fun v -> let ty_v = HVar.ty v in let id = Ind_cst.make_skolem ty_v in Ctx.declare id ty_v; (v,0), (T.const ~ty:ty_v id,1)) |> Subst.FO.of_list' ?init:None in (* make cover-sets for the variables, for the {b skolemized} type *) let c_sets = List.map (fun v -> let ty = Subst.Ty.apply Subst.Renaming.none subst_skolems (HVar.ty v,0) in v, Cover_set.make ~cover_set_depth ~depth ty) vars in List.iter (fun (_,set) -> decl_cst_of_set set) c_sets; Util.debugf ~section 2 "(@[<hv2>ind_on_vars (@[%a@])@ :form %a@ :cover_sets (@[<hv>%a@])@ :subst_skolem %a@])" (fun k->k (Util.pp_list HVar.pp) vars Cut_form.pp g (Util.pp_list (Fmt.Dump.pair HVar.pp Cover_set.pp)) c_sets Subst.pp subst_skolems); (* set of boolean literal. We will add their exclusive disjonction to the SAT solver. *) let b_lits = ref [] in (* build clauses for the induction on [v] *) let clauses = Util.map_product c_sets ~f:(fun (v,set) -> Cover_set.cases ~which:`All set |> Iter.to_list |> List.map (fun case -> [v,case])) |> CCList.flat_map (fun (cases:(T.var * Cover_set.case) list) -> assert (cases<>[]); (* literal for this case *) let b_lit_case = BBox.inject_case (List.map snd cases) in CCList.Ref.push b_lits b_lit_case; (* clauses [goal[v := t'] <- b_lit(case), ¬cut.blit] for every [t'] sub-constant of [case] *) let pos_clauses = Util.seq_map_l cases ~f:(fun (v,case) -> Cover_set.Case.sub_constants case |> CCList.filter_map (fun sub_cst -> (* only keep sub-constants that have the same type as [v] *) if Type.equal (Ind_cst.ty sub_cst) (HVar.ty v) then ( let t = Ind_cst.to_term sub_cst in Some (v,t) ) else None)) |> Iter.flat_map_l (fun v_and_t_list -> let subst = v_and_t_list |> List.map (fun (v,t) -> (v,0),(t,1)) |> Subst.FO.of_list' ?init:None in let renaming = Subst.Renaming.create () in let g' = Cut_form.apply_subst renaming subst (g,0) in Cut_form.cs g' |> List.map (fun lits -> let trail = [ b_lit_case; BoolLit.neg cut_blit; ] |> Trail.of_list in C.create_a lits proof ~trail ~penalty:1)) |> Iter.to_list in (* clauses [CNF[¬goal[case]) <- b_lit(case), ¬cut.blit] with other variables being replaced by skolem symbols *) let neg_clauses = let subst = cases |> List.map (fun (v,c) -> (v,0),(Cover_set.Case.to_term c,1)) |> Subst.FO.of_list' ~init:subst_skolems in let renaming = Subst.Renaming.create () in (* for each clause, apply [subst] to it and negate its literals, obtaining a DNF of [¬ And_i ctx_i[case]]; then turn DNF into CNF *) begin Cut_form.apply_subst renaming subst (g,0) |> Cut_form.cs |> Util.map_product ~f:(fun lits -> let lits = Array.map (fun l -> [Literal.negate l]) lits in Array.to_list lits) |> CCList.map (fun l -> let lits = Array.of_list l in let trail = [ BoolLit.neg cut_blit; b_lit_case; ] |> Trail.of_list in C.create_a lits proof ~trail ~penalty:1) end in (* all new clauses *) let res = List.rev_append pos_clauses neg_clauses in Util.debugf ~section 2 "(@[<2>induction on (@[%a@])@ :form %a@ @[<2>:cases (@[%a@])@]@ \ :depth %d@ @[<2>:res [@[<hv>%a@]]@]@])" (fun k-> k (Util.pp_list HVar.pp) vars Cut_form.pp g (Util.pp_list Fmt.(pair ~sep:(return ":=@ ") HVar.pp Cover_set.Case.pp)) cases depth (Util.pp_list C.pp) res); res) in (* FIXME: should do CNF here, too *) (* boolean constraint(s) *) let b_clauses = (* [\Or_{t in cases} b_lit(t)] *) let b_at_least_one = !b_lits (* for each case t!=u, [¬b_lit(t) ∨ ¬b_lit(u)] *) and b_at_most_one = CCList.diagonal !b_lits |> List.rev_map (fun (l1,l2) -> [BoolLit.neg l1; BoolLit.neg l2]) in b_at_least_one :: b_at_most_one in A.Solver.add_clauses ~proof b_clauses; Util.debugf ~section 2 "@[<2>add boolean constraints@ @[<hv>%a@]@ :proof %a@]" (fun k->k (Util.pp_list BBox.pp_bclause) b_clauses Proof.Step.pp proof); Util.incr_stat stat_inductions; (* return the clauses *) clauses type defined_path = | P_root | P_under_cstor | P_active | P_inactive let defined_path_add (p:defined_path)(pos:Defined_pos.t): defined_path = begin match p, pos with | (P_root | P_under_cstor | P_active), Defined_pos.P_active -> P_active | (P_root | P_under_cstor | P_active), (Defined_pos.P_accumulator | Defined_pos.P_invariant) -> P_inactive | P_inactive, _ -> P_inactive end let subterms_with_pos (f:Cut_form.t) : (defined_path * Position.t * term) Iter.t = (* true if [x] occurs in active positions somewhere in [t] *) let rec aux (dp:defined_path) (p:Position.t) (t:term) : _ Iter.t = fun k -> k (dp,p,t); begin match T_view.view t with | T_view.T_app_defined (_, c, l) -> let d_pos = RW.Defined_cst.defined_positions c in let len = IArray.length d_pos in assert (len >= List.length l); (* only look under active positions *) List.iteri (fun i u -> let d = IArray.get d_pos i in aux (defined_path_add dp d) Position.(append p @@ arg (len-i-1) @@ stop) u k) l | T_view.T_var _ | T_view.T_db _ -> () | T_view.T_app (_,l) | T_view.T_app_unin (_,l) (* approx, we assume all positions are active *) | T_view.T_builtin (_,l) -> let dp = defined_path_add dp Defined_pos.P_active in let len = List.length l in List.iteri (fun i u -> aux dp Position.(append p @@ arg (len-i-1) @@ stop) u k) l | T_view.T_fun (_,u) -> let dp = defined_path_add dp Defined_pos.P_invariant in aux dp Position.(append p @@ body stop) u k | T_view.T_app_cstor (_,l) -> let dp = match dp with | P_inactive -> P_inactive | _ -> P_under_cstor in let len = List.length l in List.iteri (fun i u -> aux dp Position.(append p @@ arg (len-i-1) @@ stop) u k) l end in Cut_form.Seq.terms_with_pos ~subterms:false f |> Iter.flat_map (fun (t, pos) -> aux P_root pos t) let term_is_var x t: bool = match T.view t with | T.Var y -> HVar.equal Type.equal x y | _ -> false (* active occurrences of [x] in [f] *) let var_active_pos_seq (f:Cut_form.t)(x:T.var): _ Iter.t = subterms_with_pos f |> Iter.filter (function | P_active, _, t -> term_is_var x t | _ -> false) (* does the variable occur in an active position in [f], or under some uninterpreted position? *) let var_occurs_under_active_pos (f:Cut_form.t)(x:T.var): bool = not (Iter.is_empty @@ var_active_pos_seq f x) let var_invariant_pos_seq f x: _ Iter.t = subterms_with_pos f |> Iter.filter (function | P_inactive, _, t -> term_is_var x t | _ -> false) (* does the variable occur in a position that is invariant? *) let var_occurs_under_invariant_pos (f:Cut_form.t)(x:T.var): bool = not (Iter.is_empty @@ var_invariant_pos_seq f x) (* variable appears only naked, i.e. directly under [=] *) let var_always_naked (f:Cut_form.t)(x:T.var): bool = Cut_form.cs f |> Iter.of_list |> Iter.flat_map Iter.of_array |> Iter.for_all (function | Literal.Equation (l,r,_) -> let check_t t = T.is_var t || not (T.var_occurs ~var:x t) in check_t l && check_t r | Literal.Int _ | Literal.Rat _ -> false | Literal.True | Literal.False -> true) let active_subterms_form (f:Cut_form.t): T.t Iter.t = Cut_form.cs f |> Iter.of_list |> Iter.flat_map Iter.of_array |> Iter.flat_map Literal.Seq.terms |> Iter.flat_map T_view.active_subterms module Generalize : sig type form = Cut_form.t type generalization = form list type t = form -> generalization list val id : t (** Do nothing *) val vars_at_active_pos : t val terms_at_active_pos : t val all : t end = struct type form = Cut_form.t type generalization = form list type t = form -> generalization list let id _ = [] (* generalize on variables that occur both (several times) in active positions, and which also occur (several times) in passive position. The idea is that induction on the variable would work in active positions, but applying induction hypothesis would fail because of the occurrences in passive positions. This should generalize [forall x. x + (x + x) = (x + x) + x] into [forall x y. y + (x + x) = (y + x) + x] *) let vars_at_active_pos (f:form): generalization list = let vars = Cut_form.vars f |> T.VarSet.to_list |> List.filter (fun v -> not (Type.is_tType (HVar.ty v)) && (Iter.length @@ var_active_pos_seq f v >= 2) && (Iter.length @@ var_invariant_pos_seq f v >= 2)) in begin match vars with | [] -> [] | _ -> (* build a map to replace active occurrences of these variables by fresh variables *) let m = let offset = Cut_form.vars f |> T.VarSet.to_seq |> Iter.map HVar.id |> Iter.max |> CCOpt.get_or ~default:0 |> succ in CCList.foldi (fun m i v -> let v' = HVar.make ~ty:(HVar.ty v) (i+offset) in subterms_with_pos f |> Iter.filter_map (function | P_active, pos, t when term_is_var v t -> Some (pos, T.var v') | _ -> None) |> Position.Map.add_seq m) Position.Map.empty vars in let f' = Cut_form.Pos.replace_many f m in Util.debugf ~section 5 "(@[<2>candidate_generalize@ :of %a@ :gen_to %a@ \ :by vars_active_pos :on (@[%a@])@ :map {@[%a@]}@])" (fun k->k Cut_form.pp f Cut_form.pp f' (Util.pp_list HVar.pp) vars (Position.Map.pp Position.pp Term.pp) m); if Goal.is_acceptable_goal @@ Goal.of_cut_form f' then ( Util.incr_stat stat_generalize_vars_active_pos; [[f']] ) else [] end (* generalize non-variable subterms occurring several times at active positions *) let terms_at_active_pos (f:form): generalization list = let relevant_subterms = subterms_with_pos f |> Iter.filter_map (function | P_active, pos, t -> begin match T_view.view t with | T_view.T_app_unin (id,[]) when Ind_cst.id_is_sub id -> None (* probably there because there are induction hyp. on it *) | _ when Type.is_tType (T.ty t |> Type.returns) -> None (* do not generalize on type or type constructors *) | (T_view.T_app_unin _ | T_view.T_app_defined _) when T.is_ground t -> Some (pos,t) | _ -> None end | _ -> None) in let subterms = relevant_subterms |> Iter.map snd |> Iter.group_by ~hash:T.hash ~eq:T.equal |> Iter.filter_map (function | t :: _ :: _ -> Some t (* at least 2 *) | _ -> None) |> Iter.to_rev_list in begin subterms |> CCList.filter_map (fun t -> (* introduce variable for [t] *) let v = Cut_form.vars f |> T.VarSet.to_seq |> Iter.map HVar.id |> Iter.max |> CCOpt.get_or ~default:0 |> succ |> HVar.make ~ty:(T.ty t) in let m = relevant_subterms |> Iter.filter_map (function | pos, u when T.equal t u -> Some (pos, T.var v) | _ -> None) |> Position.Map.of_seq in let f' = Cut_form.Pos.replace_many f m in Util.debugf ~section 4 "(@[<2>candidate_generalize@ :of %a@ :gen_to %a@ \ :by terms_active_pos@ :on %a@])" (fun k->k Cut_form.pp f Cut_form.pp f' T.pp t); if Goal.is_acceptable_goal @@ Goal.of_cut_form f' then ( Util.incr_stat stat_generalize_terms_active_pos; Some [f'] ) else None) end let all = let g1 = if Env.flex_get k_generalize_var then vars_at_active_pos else id and g2 = if Env.flex_get k_generalize_term then terms_at_active_pos else id and (<++>) o (f,x) = match o with | [] -> f x | l -> l in fun f -> g1 f <++> (g2, f) end (* should we do induction on [x] in [c]? *) let should_do_ind_on_var (f:Cut_form.t) (x:T.var): bool = not (E.flex_get k_limit_to_active) || var_occurs_under_active_pos f x || var_always_naked f x module UF_vars = UnionFind.Make(struct type key = T.var type value = T.var list let equal = HVar.equal Type.equal let hash = HVar.hash let zero = [] let merge = List.rev_append end) let eq_var = HVar.equal Type.equal (* group together variables that occur at active positions under the same subterm *) let find_var_clusters (f:Cut_form.t) (vars:T.var list): T.var list list = let uf = UF_vars.create [] in (* add all variables of [f] *) T.VarSet.iter (fun v -> UF_vars.add uf v [v]) (Cut_form.vars f); (* naked variables together *) begin match CCList.find_pred (var_always_naked f) vars with | None -> () | Some v -> assert (UF_vars.mem uf v); List.iter (fun v' -> assert (UF_vars.mem uf v'); if not (HVar.equal Type.equal v v') && var_always_naked f v' then ( UF_vars.union uf v v'; )) vars; end; (* group variables naked in same (dis)equations *) begin Cut_form.cs f |> Iter.of_list |> Iter.flat_map Iter.of_array |> Iter.iter (function | Literal.Equation (l,r,_) -> begin match T.view l, T.view r with | T.Var x, T.Var y -> UF_vars.union uf x y | _ -> () end | _ -> ()) end; (* other variables grouped by occurring at active pos in same subterm *) begin active_subterms_form f |> Iter.iter (fun t -> match T_view.view t with | T_view.T_app_defined (_,c,l) -> let pos = RW.Defined_cst.defined_positions c in Iter.of_list l |> Util.seq_zipi |> Iter.diagonal |> Iter.filter_map (fun ((i1,t1),(i2,t2)) -> match T.as_var t1, T.as_var t2 with | Some x, Some y when i1 < i2 && IArray.get pos i1 = Defined_pos.P_active && IArray.get pos i2 = Defined_pos.P_active && not (eq_var x y) && CCList.mem ~eq:eq_var x vars && CCList.mem ~eq:eq_var y vars -> Some (x,y) | _ -> None) |> Iter.iter (fun (x,y) -> assert (not (eq_var x y)); UF_vars.union uf x y) | _ -> ()) end; let res = UF_vars.to_seq uf |> Iter.map snd |> Iter.filter_map (fun vars -> (* eliminate non-inductive variables *) let vars = List.filter (fun v -> Ind_ty.is_inductive_type @@ HVar.ty v) vars in if vars=[] then None else Some vars) |> Iter.to_rev_list in Util.debugf ~section 3 "(@[<hv2>induction_clusters@ :in %a@ :clusters (@[<hv>%a@])@])" (fun k->k Cut_form.pp f (Util.pp_list Fmt.(within "{" "}" @@ hvbox @@ Util.pp_list HVar.pp)) res); res (* proof by direct induction *) let prove_cut_by_ind (cut:A.cut_res): C.t list = let g = A.cut_form cut in begin match Cut_form.ind_vars g with | [] -> [] | ivars -> (* filter on which variables we do induction *) let ivars = List.filter (fun v -> let ok = should_do_ind_on_var g v in if not ok then ( Util.debugf ~section 3 "(@[<hv>ind: inactive variable `%a`@ :in %a@])" (fun k->k HVar.pp v Cut_form.pp g); ); ok) ivars in let clusters = find_var_clusters g ivars in (* for each variable, build a coverset of its type, and do a case distinction on the [top] constant of this coverset. *) CCList.flat_map (ind_on_vars cut) clusters end let new_lemma_ = let n = ref 0 in fun () -> let s = Printf.sprintf "zip_lemma_%d" (CCRef.incr_then_get n) in UntypedAST.(A_app ("name", [A_quoted s])) (* prove any lemma that has inductive variables. First we try to generalize it, otherwise we prove it by induction *) let inductions_on_lemma (cut:A.cut_res): C.t list = let g = A.cut_form cut in Util.debugf ~section 4 "(@[<hv>prove_lemma_by_induction@ %a@])" (fun k->k Cut_form.pp g); begin match Generalize.all g with | [] -> prove_cut_by_ind cut | new_goals_l -> (* try each generalization in turn *) List.iter (fun new_goals -> assert (new_goals <> []); let g0 = g in let new_cuts = List.map (fun g -> A.introduce_cut ~depth:(A.cut_depth cut) g (Proof.Step.lemma @@ Proof.Src.internal [new_lemma_()]) ~reason:Fmt.(fun out ()-> fprintf out "generalizing %a" Cut_form.pp g0)) new_goals in Util.debugf ~section 4 "(@[<2>@{<Yellow>generalize@}@ :lemma %a@ :into (@[<hv>%a@])@])" (fun k->k Cut_form.pp g (Util.pp_list Cut_form.pp) new_goals); Util.incr_stat stat_generalize; (* assert that the new goals imply the old one *) let proof = Proof.Step.trivial in A.add_imply new_cuts cut proof; (* now prove the lemmas in Avatar *) List.iter A.add_lemma new_cuts) new_goals_l; [] end (* replace the constants by fresh variables in the given clauses, returning a goal. *) let generalize_clauses (cs:Lits.t list) ~(generalize_on:Ind_cst.ind_skolem list) : Goal.t = if generalize_on=[] then Goal.trivial else ( (* offset to allocate new variables *) let offset = Iter.of_list cs |> Iter.flat_map Lits.Seq.vars |> T.Seq.max_var |> succ in (* (constant -> variable) list *) let pairs = List.mapi (fun i (id,ty) -> assert (not (Type.is_tType @@ ty)); T.const ~ty id, T.var (HVar.make ~ty (i+offset))) generalize_on |> T.Map.of_list in Util.debugf ~section 5 "@[<hv2>generalize_lits@ :in `@[<hv>%a@]`@ :subst (@[%a@])@]" (fun k->k (Util.pp_list ~sep:"∧" Lits.pp) cs (T.Map.pp T.pp T.pp) pairs); (* replace skolems by the new variables, then negate the formula and re-CNF the negation. Purification constraints are kept as hypotheses in each resulting clause. *) begin cs |> Util.map_product ~f:(fun lits -> let lits_l = Array.to_list lits in (* separate the guard (constraints) from other literals *) let guard, other_lits = List.partition Literal.is_constraint lits_l in let replace_lits = List.map (Literal.map (fun t -> T.replace_m t pairs)) in let guard = replace_lits guard in let other_lits = replace_lits other_lits in List.map (fun other_lit -> Literal.negate other_lit :: guard) other_lits) |> List.map Array.of_list |> Goal.of_form end ) (* try to prove these clauses by turning the given constants into variables, negating the clauses, and introducing the result as a lemma to be proved by induction. @param generalize_on the set of (skolem) constants that are replaced by free variables in the negation of [clauses] *) let prove_by_ind (clauses:C.t list) ~ignore_depth ~generalize_on : unit = let pp_csts = Util.pp_list Fmt.(pair ~sep:(return ":@ ") ID.pp Type.pp) in (* remove trivial clauses *) let clauses = List.filter (fun c -> not @@ Literals.is_trivial @@ C.lits c) clauses in Util.debugf ~section 5 "(@[<2>consider_proving_by_induction@ \ :clauses [@[%a@]]@ :generalize_on (@[%a@])@]" (fun k->k (Util.pp_list C.pp) clauses pp_csts generalize_on); let depth = Iter.of_list generalize_on |> Iter.map (fun (id,_) -> Ind_cst.ind_skolem_depth id) |> Iter.max |> CCOpt.get_or ~default:0 (* the trail should not contain a positive "lemma" atom. We accept negative lemma atoms because the induction can be used to prove the lemma *) and no_pos_lemma_in_trail () = Iter.of_list clauses |> Iter.map C.trail |> Iter.flat_map Trail.to_seq |> Iter.for_all (fun lit -> not (BoolLit.sign lit && BBox.is_lemma lit)) in if (ignore_depth || depth < max_depth) && no_pos_lemma_in_trail () then ( let goal = generalize_clauses (List.map C.lits clauses) ~generalize_on |> Goal.simplify in let goals = Goal.split goal in List.iter (fun goal -> (* check if goal is worth the effort and if it's new *) if Goal.has_been_tried goal then ( Util.debugf ~section 1 "(@[<2>goal_already_active@ %a@])" (fun k->k Goal.pp goal); Util.incr_stat stat_goal_duplicate; () ) else if Goal.is_acceptable_goal goal then ( Util.debugf ~section 1 "(@[<2>@{<green>prove_by_induction@}@ :clauses (@[%a@])@ :goal %a@])" (fun k->k (Util.pp_list C.pp) clauses Goal.pp goal); let proof = Proof.Step.lemma @@ Proof.Src.internal [new_lemma_()] in (* new lemma has same penalty as the clauses *) let penalty = List.fold_left (fun n c -> n+C.penalty c) 0 clauses in let cut = A.introduce_cut ~penalty ~depth (Goal.form goal) proof ~reason:Fmt.(fun out () -> fprintf out "(@[prove_ind@ :clauses (@[%a@])@ :on (@[%a@])@])" (Util.pp_list C.pp) clauses pp_csts generalize_on) in A.add_lemma cut )) goals ); () (* Try to prove the given clause by introducing an inductive lemma. *) let inf_prove_by_ind (c:C.t): C.t list = List.iter (fun consts -> assert (consts<>[]); prove_by_ind [c] ~ignore_depth:false ~generalize_on:consts) (scan_clause c); [] (* hook for converting some statements to clauses. It check if [Negated_goal l] contains clauses with inductive skolems, in which case it tries to prove these clauses by induction in a lemma. *) let convert_statement st = begin match Statement.view st with | Statement.NegatedGoal (skolems, _) -> (* find inductive skolems in there *) let ind_skolems = List.filter (fun (id,ty) -> Ind_cst.id_is_ind_skolem id ty) skolems in begin match ind_skolems with | [] -> E.CR_skip | consts -> (* introduce one lemma where all the skolems are replaced by variables. But first, simplify these clauses because otherwise the inductive subgoals (which are simplified) will not match the inductive hypothesis. NOTE: do not use {!all_simplify} as it interacts badly with avatar splitting. *) let clauses = C.of_statement st |> List.map (fun c -> fst (E.basic_simplify c)) in prove_by_ind clauses ~ignore_depth:true ~generalize_on:consts; (* "skip" in any case, because the proof is done in a cut anyway *) E.CR_skip end | _ -> E.cr_skip end (* checks whether the trail is trivial, that is, it contains two literals [i = t1] and [i = t2] with [t1], [t2] distinct cover set cases *) let trail_is_trivial_cases trail = let seq = Trail.to_seq trail in (* all boolean literals that express paths *) let relevant_cases = Iter.filter_map BoolBox.as_case seq in (* are there two distinct incompatible cases in the trail? *) Iter.diagonal relevant_cases |> Iter.exists (fun (c1, c2) -> let res = not (List.length c1 = List.length c2) || not (CCList.equal Cover_set.Case.equal c1 c2) in if res then ( Util.debugf ~section 4 "(@[<2>trail@ @[%a@]@ is trivial because of@ \ {@[(@[%a@]),@,(@[%a@])}@]@])" (fun k->k C.pp_trail trail (Util.pp_list Cover_set.Case.pp) c1 (Util.pp_list Cover_set.Case.pp )c2) ); res) (* make trails with several lemmas in them trivial, so that we have to wait for a lemma to be proved before we can use it to prove another lemma *) let trail_is_trivial_lemmas trail = let seq = Trail.to_seq trail in (* all boolean literals that express paths *) let relevant_cases = seq |> Iter.filter_map (fun lit -> BoolBox.as_lemma lit |> CCOpt.map (fun lemma -> lemma, BoolLit.sign lit)) in (* are there two distinct positive lemma literals in the trail? *) Iter.diagonal relevant_cases |> Iter.exists (fun ((c1,sign1), (c2,sign2)) -> let res = sign1 && sign2 && not (Cut_form.equal c1 c2) in if res then ( Util.debugf ~section 4 "(@[<2>trail@ @[%a@]@ is trivial because of lemmas@ \ {@[(@[%a@]),@,(@[%a@])}@]@])" (fun k->k C.pp_trail trail Cut_form.pp c1 Cut_form.pp c2); ); res) (* look whether, to prove the lemma, we need induction *) let prove_lemma_by_ind cut = let l = inductions_on_lemma cut in if l<>[] then ( Util.incr_stat stat_lemmas; E.CR_return l ) else E.CR_skip let register () = Util.debug ~section 2 "register induction"; let d = Env.flex_get k_ind_depth in Util.debugf ~section 2 "maximum induction depth: %d" (fun k->k d); Env.add_unary_inf "induction.ind" inf_prove_by_ind; Env.add_clause_conversion convert_statement; Env.add_is_trivial_trail trail_is_trivial_cases; if E.flex_get Avatar.k_simplify_trail then ( Env.add_is_trivial_trail trail_is_trivial_lemmas; ); (* try to prove lemmas by induction *) A.add_prove_lemma prove_lemma_by_ind; () end let enabled_ = ref true let depth_ = ref 4 (* NOTE: should be 3? *) let limit_to_active = ref true let coverset_depth = ref 1 let goal_assess_limit = ref 8 let ind_sub_cst = ref true let gen_var = ref true let gen_term = ref true (* if induction is enabled AND there are some inductive types, then perform some setup after typing, including setting the key [k_enable]. It will update the parameters. *) let post_typing_hook stmts state = (* only enable if there are inductive types *) let should_enable = CCVector.exists (fun st -> match Statement.view st with | Statement.Data _ -> true | _ -> false) stmts in if !enabled_ && should_enable then ( Util.debug ~section 1 "Enable induction"; state |> Flex_state.add k_enable true |> Flex_state.add k_ind_depth !depth_ |> Flex_state.add k_limit_to_active !limit_to_active |> Flex_state.add k_coverset_depth !coverset_depth |> Flex_state.add k_goal_assess_limit !goal_assess_limit |> Flex_state.add k_ind_on_subcst !ind_sub_cst |> Flex_state.add k_generalize_var !gen_var |> Flex_state.add k_generalize_term !gen_term |> Flex_state.add Ctx.Key.lost_completeness true ) else Flex_state.add k_enable false state (* if enabled: register the main functor, with inference rules, etc. *) let env_action (module E : Env.S) = let is_enabled = E.flex_get k_enable in if is_enabled then ( let (module A) = Avatar.get_env (module E) in (* XXX here we do not use E anymore, because we do not know that A.E = E. Therefore, it is simpler to use A.E. *) let module E = A.E in E.Ctx.lost_completeness (); E.Ctx.set_selection_fun Selection.no_select; let module M = Make(A.E)(A) in M.register (); ) let extension = Extensions.( {default with name="induction_simple"; post_typing_actions=[post_typing_hook]; env_actions=[env_action]; }) let () = Params.add_opts [ "--induction", Options.switch_set true enabled_, " enable induction" ; "--no-induction", Options.switch_set false enabled_, " disable induction" ; "--induction-depth", Arg.Set_int depth_, " maximum depth of nested induction" ; "--ind-only-active-pos", Arg.Set limit_to_active, " limit induction to active positions" ; "--no-ind-only-active-pos", Arg.Clear limit_to_active, " limit induction to active positions" ; "--ind-coverset-depth", Arg.Set_int coverset_depth, " coverset depth in induction" ; "--ind-goal-assess", Arg.Set_int goal_assess_limit, " number of steps for assessing potential lemmas" ; "--ind-sub-cst", Arg.Set ind_sub_cst, " do induction on sub-constants" ; "--no-ind-sub-cst", Arg.Clear ind_sub_cst, " do not do induction on sub-constants" ; "--ind-gen-var", Arg.Set gen_var, " generalize on variables" ; "--ind-gen-term", Arg.Set gen_term, " generalize on terms" ; "--no-ind-gen-var", Arg.Clear gen_var, " do not generalize on variables" ; "--no-ind-gen-term", Arg.Clear gen_term, " do not generalize on terms" ]; Params.add_to_mode "ho-complete-basic" (fun () -> enabled_ := false ); Params.add_to_mode "ho-pragmatic" (fun () -> enabled_ := false ); Params.add_to_mode "ho-competitive" (fun () -> enabled_ := false ); Params.add_to_mode "fo-complete-basic" (fun () -> enabled_ := false );
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>