package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition/Cut_form.ml.html
Source file Cut_form.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 Universally Quantified Conjunction of Clauses} *) open Logtk module Fmt = CCFormat module T = Term type var = Term.var type term = Term.t type clause = Literals.t type form = clause list type t = { vars: T.VarSet.t; cs: form; } type cut_form = t let trivial = {cs=[]; vars=T.VarSet.empty} let make cs = if cs=[] then trivial else ( let vars = Iter.of_list cs |> Iter.flat_map Literals.Seq.vars |> T.VarSet.of_seq and cs = CCList.sort_uniq ~cmp:Literals.compare cs in {cs; vars;} ) let vars t = t.vars let cs t = t.cs let hash (f:t): int = Hash.list Literals.hash f.cs let equal f1 f2: bool = CCList.equal Literals.equal f1.cs f2.cs let compare f1 f2 = CCList.compare Literals.compare f1.cs f2.cs let pp out (f:t): unit = let pp_c = Literals.pp in let pp_body out () = match f.cs with | [c] -> pp_c out c | _ -> Fmt.fprintf out "@<1>∧{@[<hv>%a@]}" (Util.pp_list ~sep:"," pp_c) f.cs in if T.VarSet.is_empty f.vars then ( pp_body out () ) else ( Fmt.fprintf out "(@[<2>forall %a.@ %a@])" (Util.pp_list ~sep:" " Type.pp_typed_var) (T.VarSet.to_list f.vars) pp_body () ) let to_string = Fmt.to_string pp let pp_tstp out (f:t): unit = let pp_c = Fmt.within "(" ")" Literals.pp_tstp in let pp_body out () = match f.cs with | [c] -> pp_c out c | _ -> Fmt.fprintf out "(@[%a@])" (Util.pp_list ~sep:" & " pp_c) f.cs in if T.VarSet.is_empty f.vars then ( pp_body out () ) else ( Fmt.fprintf out "(@[<2>![%a]:@ (%a)@])" (Util.pp_list Type.TPTP.pp_typed_var) (T.VarSet.to_list f.vars) pp_body () ) let pp_zf out (f:t): unit = let pp_c = Fmt.within "(" ")" Literals.pp_zf in let pp_body out () = match f.cs with | [c] -> pp_c out c | _ -> Fmt.fprintf out "(@[%a@])" (Util.pp_list ~sep:" && " pp_c) f.cs in if T.VarSet.is_empty f.vars then ( pp_body out () ) else ( Fmt.fprintf out "(@[<2>forall %a.@ (%a)@])" (Util.pp_list Type.ZF.pp_typed_var) (T.VarSet.to_list f.vars) pp_body () ) let ind_vars t = vars t |> T.VarSet.to_list |> List.filter (fun v -> let ty = HVar.ty v in (* only do induction on variables of infinite types *) begin match Ind_ty.as_inductive_type ty with | Some (ity,_) -> Ind_ty.is_recursive ity | None -> false end) let apply_subst renaming subst (f,sc): t = let cs = List.map (fun lits -> Literals.apply_subst renaming subst (lits,sc)) f.cs in make cs let subst1 (v:var) (t:term) (f:t): t = let renaming = Subst.Renaming.create () in let subst = Subst.FO.bind Subst.empty ((v:var:>InnerTerm.t HVar.t),0) (t,1) in apply_subst renaming subst (f,0) (* find substitutions making [f1] and [f2] variants, if possible *) let variant_ ~subst (f1,sc1)(f2,sc2): _ Iter.t = Unif.unif_list_com ~size:`Same subst ~op:(fun subst c1 c2 k -> Literals.variant ~subst c1 c2 (fun (subst,) -> k subst)) (f1.cs,sc1)(f2.cs,sc2) let are_variant f1 f2: bool = not @@ Iter.is_empty @@ variant_ ~subst:Subst.empty (f1,1)(f2,0) let normalize (f:t): t = cs f |> Test_prop.normalize_form |> make let to_s_form (f:t) = let module F = TypedSTerm.Form in (* convert all clauses with the same variable bindings *) let ctx = Term.Conv.create() in let l = List.map (Literals.Conv.to_s_form ~ctx) (cs f) in F.and_ l |> F.close_forall module Pos = struct module P = Position let bad_pos f p = Util.invalid_argf "invalid pos `%a`@ in %a" P.pp p pp f let clause_at f p = match p with | P.Stop -> bad_pos f p | P.Arg (n,p') -> let cs = cs f in if n<0 || n >= List.length cs then bad_pos f p; List.nth cs n, p' | _ -> bad_pos f p let lit_at f p = let c, p = clause_at f p in Literals.Pos.lit_at c p let at f p: term = let lit, p = lit_at f p in Literal.Pos.at lit p let replace_many f m: t = let l = cs f in P.Map.fold (fun p by l -> let n, p_c = match p with P.Arg (n,p') -> n,p' | _ -> assert false in let c = List.nth l n in let c' = Array.copy c in Literals.Pos.replace c' ~at:p_c ~by; CCList.set_at_idx n c' l) m l |> make let replace f ~at ~by = replace_many f (P.Map.singleton at by) end module Seq = struct let terms f = cs f |> Iter.of_list |> Iter.flat_map Literals.Seq.terms let terms_with_pos ?(subterms=true) f = cs f |> Iter.of_list |> Util.seq_zipi |> Iter.flat_map (fun (i,c) -> Iter.of_array_i c |> Iter.map (fun (j,lit) -> i, j, lit)) |> Iter.flat_map (fun (i,j,lit) -> let position = Position.(arg i @@ arg j @@ stop) in Literal.fold_terms lit ~position ~ord:Ordering.none ~which:`All ~vars:true ~subterms) end module FV_tbl(X : Map.OrderedType) = struct type value = X.t (* approximation here, we represent it as a clause, losing the boolean structure. monotonicity w.r.t features should still apply *) let to_lits (f:cut_form) = cs f |> Iter.of_list |> Iter.flat_map_l Literals.to_form (* index for lemmas, to ensure α-equivalent lemmas have the same lit *) module FV = FV_tree.Make(struct type t = cut_form * X.t let compare (l1,v1)(l2,v2) = let open CCOrd.Infix in compare l1 l2 <?> (X.compare, v1, v2) let to_lits (l,_) = to_lits l let labels _ = Util.Int_set.empty end) type t = { mutable fv: FV.t; } let create () = {fv=FV.empty ()} let add t k v = t.fv <- FV.add t.fv (k,v) let get t k = FV.retrieve_alpha_equiv t.fv (to_lits k) Util.Int_set.empty |> Iter.find_map (fun (k',v) -> if are_variant k k' then Some v else None) let mem t k = get t k |> CCOpt.is_some let to_seq t = FV.iter t.fv end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>