Source file state.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
module Big_int = Nat_big_num
open Initial_check
open Type_check
open Ast
open Ast_defs
open Ast_util
open PPrint
open Pretty_print_common
open Pretty_print_sail
let opt_type_grouped_regstate = ref false
let is_defined defs name = IdSet.mem (mk_id name) (ids_of_defs defs)
let get_bitfield_typ_id env typ =
match unaux_typ (Env.expand_synonyms env typ) with Typ_id id when Env.is_bitfield id env -> Some id | _ -> None
let is_bitfield_typ env typ = Option.is_some (get_bitfield_typ_id env typ)
let regval_base_typ env typ =
match get_bitfield_typ_id env typ with Some id -> fst (Env.get_bitfield id env) | _ -> typ
let has_default_order defs =
List.exists (function DEF_aux (DEF_default (DT_aux (DT_order _, _)), _) -> true | _ -> false) defs
let find_registers defs =
List.fold_left
(fun acc def ->
match def with
| DEF_aux (DEF_register (DEC_aux (DEC_reg (typ, id, opt_exp), (_, tannot))), _) ->
let env = match destruct_tannot tannot with Some (env, _) -> env | _ -> Env.empty in
(Env.expand_synonyms env typ, id, Option.is_some opt_exp) :: acc
| _ -> acc
)
[] defs
let generate_register_id_enum = function
| [] -> ["type register_id = unit"]
| registers ->
let reg (typ, id) = string_of_id id in
["type register_id = " ^ String.concat " | " (List.map reg registers)]
let rec id_of_regtyp builtins (Typ_aux (t, l) as typ) =
match t with
| Typ_id id -> id
| Typ_app (id, args) ->
let name_arg (A_aux (targ, _)) =
match targ with
| A_typ targ -> string_of_id (id_of_regtyp builtins targ)
| A_nexp nexp when is_nexp_constant (nexp_simp nexp) -> string_of_nexp (nexp_simp nexp)
| _ -> raise (Reporting.err_typ l "Unsupported register type")
in
if IdSet.mem id builtins && not (is_bitvector_typ typ) then id
else append_id id (String.concat "_" ("" :: List.map name_arg args))
| _ -> raise (Reporting.err_typ l "Unsupported register type")
let regstate_field typ = append_id (id_of_regtyp IdSet.empty typ) "_reg"
let generate_regstate env registers =
let regstate_def =
if registers = [] then TD_abbrev (mk_id "regstate", mk_typquant [], mk_typ_arg (A_typ unit_typ))
else (
let fields =
if !opt_type_grouped_regstate then (
let type_field (typ, id, has_init) =
let base_typ = regval_base_typ env typ in
(function_typ [string_typ] base_typ, regstate_field base_typ)
in
let cmp_id (_, id1) (_, id2) = Id.compare id1 id2 in
List.map type_field registers |> List.sort_uniq cmp_id
)
else List.map (fun (t, i, _) -> (t, i)) registers
in
TD_record (mk_id "regstate", mk_typquant [], fields, false)
)
in
[
DEF_aux
( DEF_type (TD_aux (regstate_def, (Unknown, empty_uannot))),
add_def_attribute Unknown "undefined_gen" (Some (AD_aux (AD_string "forbid", Unknown))) (mk_def_annot Unknown ())
);
]
let generate_initial_regstate ctx env ast =
let initial_values =
try
let _, initial_state =
Interpreter.initial_state ~registers:true ~undef_registers:false ast env Constant_fold.safe_primops
in
initial_state.Interpreter.registers
with e ->
Reporting.warn ~force_show:true "Unable to evaluate initial state, using default values only" Parse_ast.Unknown
(Printexc.to_string e);
Bindings.empty
in
let defs = ast.defs in
let registers = find_registers defs in
if registers = [] then []
else (
try
let rec lookup_init_val vals typ =
match unaux_typ typ with
| Typ_id id ->
if string_of_id id = "bool" then "false"
else if string_of_id id = "bit" then "bitzero"
else if string_of_id id = "int" then "0"
else if string_of_id id = "nat" then "0"
else if string_of_id id = "real" then "0"
else if string_of_id id = "string" then "\"\""
else if string_of_id id = "unit" then "()"
else Bindings.find id vals []
| Typ_app (id, _) when string_of_id id = "list" -> "[||]"
| Typ_app (id, [A_aux (A_nexp nexp, _)]) when string_of_id id = "atom" -> string_of_nexp nexp
| Typ_app (id, [A_aux (A_nexp nexp, _); _]) when string_of_id id = "range" -> string_of_nexp nexp
| Typ_app (id, [A_aux (A_nexp len, _)]) when string_of_id id = "bitvector" ->
let len = Type_check.solve_unique env len |> Option.get in
let literal_bitvec = has_default_order defs in
let init_elem = if literal_bitvec then "0" else lookup_init_val vals bit_typ in
let rec elems len =
if Nat_big_num.less_equal len Nat_big_num.zero then [] else init_elem :: elems (Nat_big_num.pred len)
in
if literal_bitvec then "0b" ^ String.concat "" (elems len) else "[" ^ String.concat ", " (elems len) ^ "]"
| Typ_app (id, [A_aux (A_nexp len, _); A_aux (A_typ etyp, _)]) when string_of_id id = "vector" ->
let len = Type_check.solve_unique env len |> Option.get in
let init_elem = lookup_init_val vals etyp in
let rec elems len =
if Nat_big_num.less_equal len Nat_big_num.zero then [] else init_elem :: elems (Nat_big_num.pred len)
in
"[" ^ String.concat ", " (elems len) ^ "]"
| Typ_app (id, args) -> Bindings.find id vals args
| Typ_tuple typs -> "(" ^ String.concat ", " (List.map (lookup_init_val vals) typs) ^ ")"
| Typ_exist
( [k],
NC_aux (NC_set (Nexp_aux (Nexp_var k', _), h :: _), _),
Typ_aux (Typ_app (id, [A_aux (A_nexp (Nexp_aux (Nexp_var k'', _)), _)]), _)
)
when Kid.compare (kopt_kid k) k' == 0 && Kid.compare k' k'' == 0 && string_of_id id = "atom" ->
Big_int.to_string h
| Typ_exist (_, _, typ) -> lookup_init_val vals typ
| _ -> raise Not_found
in
let typ_subst_quant_item typ (QI_aux (qi, _)) arg =
match qi with QI_id (KOpt_aux (KOpt_kind (_, kid), _)) -> typ_subst kid arg typ | _ -> typ
in
let typ_subst_typquant tq args typ = List.fold_left2 typ_subst_quant_item typ (quant_items tq) args in
let add_typ_init_val (defs', vals) = function
| TD_enum (id, id1 :: _, _) ->
(defs', Bindings.add id (fun _ -> string_of_id id1) vals)
| TD_variant (id, tq, Tu_aux (Tu_ty_id (typ1, id1), _) :: _, _) ->
let init_val args =
let typ1 = typ_subst_typquant tq args typ1 in
string_of_id id1 ^ " (" ^ lookup_init_val vals typ1 ^ ")"
in
(defs', Bindings.add id init_val vals)
| TD_abbrev (id, tq, A_aux (A_typ typ, _)) ->
let init_val args = lookup_init_val vals (typ_subst_typquant tq args typ) in
(defs', Bindings.add id init_val vals)
| TD_record (id, tq, fields, _) ->
let init_val args =
let init_field (typ, id) =
let typ = typ_subst_typquant tq args typ in
string_of_id id ^ " = " ^ lookup_init_val vals typ
in
"struct { " ^ String.concat ", " (List.map init_field fields) ^ " }"
in
let def_name = "initial_" ^ string_of_id id in
if quant_items tq = [] && not (is_defined defs def_name) then
( defs' @ ["let " ^ def_name ^ " : " ^ string_of_id id ^ " = " ^ init_val []],
Bindings.add id (fun _ -> def_name) vals
)
else (defs', Bindings.add id init_val vals)
| TD_bitfield (id, typ, _) -> (defs', Bindings.add id (fun _ -> lookup_init_val vals typ) vals)
| _ -> (defs', vals)
in
let init_defs, init_vals =
List.fold_left
(fun inits def ->
match def with DEF_aux (DEF_type (TD_aux (td, _)), _) -> add_typ_init_val inits td | _ -> inits
)
([], Bindings.empty) defs
in
let init_reg (typ, id, has_init) =
let init_val =
match Bindings.find_opt id initial_values with
| Some v when has_init -> Value.string_of_value v
| _ -> lookup_init_val init_vals typ
in
string_of_id id ^ " = " ^ init_val
in
List.map
(fun s -> fst (defs_of_string __POS__ ctx s))
(init_defs
@ ["let initial_regstate : regstate = struct { " ^ String.concat ", " (List.map init_reg registers) ^ " }"]
)
with _ -> []
)
let regval_constr_id =
id_of_regtyp
(IdSet.of_list (List.map mk_id ["bool"; "int"; "real"; "string"; "vector"; "bitvector"; "list"; "option"]))
let register_base_types env typs =
let rec add_base_typs typs (Typ_aux (t, _) as typ) =
let builtins =
IdSet.of_list (List.map mk_id ["bool"; "atom_bool"; "atom"; "int"; "real"; "string"; "vector"; "list"; "option"])
in
match t with
| Typ_app (id, args) when IdSet.mem id builtins && not (is_bitvector_typ typ) ->
let add_typ_arg base_typs (A_aux (targ, _)) =
match targ with A_typ typ -> add_base_typs base_typs typ | _ -> base_typs
in
List.fold_left add_typ_arg typs args
| Typ_id id when IdSet.mem id builtins -> typs
| Typ_id id when Env.is_bitfield id env -> add_base_typs typs (fst (Env.get_bitfield id env))
| _ -> Bindings.add (regval_constr_id typ) typ typs
in
List.fold_left add_base_typs Bindings.empty (bit_typ :: typs)
let register_bitfield_types env typs =
let rec add_bitfield_typs typs typ =
match unaux_typ typ with
| Typ_id id when Env.is_bitfield id env -> Bindings.add id typ typs
| Typ_app (id, args) when List.mem (string_of_id id) ["vector"; "list"; "option"] ->
let add_typ_arg typs (A_aux (targ, _)) =
match targ with A_typ typ -> add_bitfield_typs typs typ | _ -> typs
in
List.fold_left add_typ_arg typs args
| _ -> typs
in
List.fold_left add_bitfield_typs Bindings.empty typs
let generate_regval_typ ctx env typs =
let constr (constr_id, typ) =
Printf.sprintf "Regval_%s : %s" (string_of_id constr_id) (Document.to_string (doc_typ typ))
in
let builtins =
"Regval_vector : list(register_value), " ^ "Regval_list : list(register_value), "
^ "Regval_option : option(register_value), " ^ "Regval_bool : bool, " ^ "Regval_int : int, "
^ "Regval_real : real, " ^ "Regval_string : string"
in
defs_of_string __POS__ ctx
("union register_value = { " ^ String.concat ", " (builtins :: List.map constr (Bindings.bindings typs)) ^ " }")
let regval_class_typs_lem = [("bool", "bool"); ("int", "integer"); ("real", "real"); ("string", "string")]
let regval_instance_lem =
let conv_def (name, typ) =
[
"val " ^ name ^ "_of_register_value : register_value -> maybe " ^ typ;
"let " ^ name ^ "_of_register_value rv = match rv with Regval_" ^ name ^ " v -> Just v | _ -> Nothing end";
"val register_value_of_" ^ name ^ " : " ^ typ ^ " -> register_value";
"let register_value_of_" ^ name ^ " v = Regval_" ^ name ^ " v";
]
in
let conv_inst (name, typ) =
[
"let " ^ name ^ "_of_regval = " ^ name ^ "_of_register_value";
"let regval_of_" ^ name ^ " = register_value_of_" ^ name;
]
in
separate_map hardline string
(List.concat (List.map conv_def regval_class_typs_lem)
@ [""; "instance (Register_Value register_value)"]
@ List.concat (List.map conv_inst regval_class_typs_lem)
@ ["end"]
)
let regval_base_convs typ =
let id = string_of_id (regval_constr_id typ) in
if List.mem id (List.map fst regval_class_typs_lem) then (id ^ "_of_register_value", "register_value_of_" ^ id)
else (id ^ "_of_regval", "regval_of_" ^ id)
let add_regval_conv ctx env id typ defs =
let typ_str = Document.to_string (doc_typ typ) in
let v_exp = mk_exp (E_id (mk_id "v")) in
let base_typ = regval_base_typ env typ in
let from_name, to_name = regval_base_convs typ in
let from_base, to_base = regval_base_convs base_typ in
let constr_name = string_of_id (regval_constr_id base_typ) in
let from_val = Printf.sprintf "val %s : register_value -> option(%s)" from_name typ_str in
let from_function =
match get_bitfield_typ_id env typ with
| Some id ->
let base_exp = mk_exp (E_app (mk_id from_base, [v_exp])) in
let result_exp = Bitfield.construct_bitfield_struct id v_exp in
let some_clause = "Some(v) => Some(" ^ string_of_exp result_exp ^ ")" in
let clauses = " { " ^ some_clause ^ ", None() => None() }" in
"function " ^ from_name ^ " v = match " ^ string_of_exp base_exp ^ clauses
| _ ->
String.concat "\n"
[
Printf.sprintf "function %s Regval_%s(v) = Some(v)" from_name constr_name;
Printf.sprintf "and %s _ = None()" from_name;
]
in
let from_defs = if is_defined defs from_name then [] else [from_val; from_function] in
let to_val = Printf.sprintf "val %s : %s -> register_value" to_name typ_str in
let to_exp =
if is_bitfield_typ env typ then mk_exp (E_app (mk_id to_base, [Bitfield.get_bits_field v_exp]))
else mk_exp (E_app (mk_id ("Regval_" ^ constr_name), [v_exp]))
in
let to_function = Printf.sprintf "function %s v = %s" to_name (string_of_exp to_exp) in
let to_defs = if is_defined defs to_name then [] else [to_val; to_function] in
let cdefs = List.concat (List.map (fun s -> fst (defs_of_string __POS__ ctx s)) (from_defs @ to_defs)) in
defs @ cdefs
let rec regval_convs wrap_fun (Typ_aux (t, _) as typ) =
match t with
| Typ_app _ when (is_vector_typ typ || is_bitvector_typ typ) && not (is_bitvector_typ typ) ->
let size, etyp = vector_typ_args_of typ in
let etyp_of, of_etyp = regval_convs wrap_fun etyp in
("vector_of_regval " ^ wrap_fun etyp_of, "regval_of_vector " ^ wrap_fun of_etyp)
| Typ_app (id, [A_aux (A_typ etyp, _)]) when string_of_id id = "list" ->
let etyp_of, of_etyp = regval_convs wrap_fun etyp in
("list_of_regval " ^ wrap_fun etyp_of, "regval_of_list " ^ wrap_fun of_etyp)
| Typ_app (id, [A_aux (A_typ etyp, _)]) when string_of_id id = "option" ->
let etyp_of, of_etyp = regval_convs wrap_fun etyp in
("option_of_regval " ^ wrap_fun etyp_of, "regval_of_option " ^ wrap_fun of_etyp)
| _ -> regval_base_convs typ
let regval_convs_lem = regval_convs (fun conv -> "(fun v -> " ^ conv ^ " v)")
let regval_convs_isa = regval_convs (fun conv -> "(\\<lambda>v. " ^ conv ^ " v)")
let register_refs_lem pp_tannot env registers =
let generic_convs =
separate_map hardline string
[
"val vector_of_regval : forall 'a. (register_value -> maybe 'a) -> register_value -> maybe (list 'a)";
"let vector_of_regval of_regval rv = match rv with";
" | Regval_vector v -> just_list (List.map of_regval v)";
" | _ -> Nothing";
"end";
"";
"val regval_of_vector : forall 'a. ('a -> register_value) -> list 'a -> register_value";
"let regval_of_vector regval_of xs = Regval_vector (List.map regval_of xs)";
"";
"val list_of_regval : forall 'a. (register_value -> maybe 'a) -> register_value -> maybe (list 'a)";
"let list_of_regval of_regval rv = match rv with";
" | Regval_list v -> just_list (List.map of_regval v)";
" | _ -> Nothing";
"end";
"";
"val regval_of_list : forall 'a. ('a -> register_value) -> list 'a -> register_value";
"let regval_of_list regval_of xs = Regval_list (List.map regval_of xs)";
"";
"val option_of_regval : forall 'a. (register_value -> maybe 'a) -> register_value -> maybe (maybe 'a)";
"let option_of_regval of_regval rv = match rv with";
" | Regval_option v -> Just (Maybe.bind v of_regval)";
" | _ -> Nothing";
"end";
"";
"val regval_of_option : forall 'a. ('a -> register_value) -> maybe 'a -> register_value";
"let regval_of_option regval_of v = Regval_option (Maybe.map regval_of v)";
"";
"";
]
in
let register_ref (typ, id, _) =
let idd = string (string_of_id id) in
let read_from, write_to =
if !opt_type_grouped_regstate then (
match get_bitfield_typ_id env typ with
| Some bitfield_id ->
let base_typ, _ = Env.get_bitfield bitfield_id env in
let field_idd = string (string_of_id (regstate_field base_typ)) in
let bits_idd = string (string_of_id bitfield_id ^ "_bits") in
( string "<| " ^^ bits_idd ^^ string " = s." ^^ field_idd ^^ space ^^ dquotes idd ^^ string " |>",
doc_op equals field_idd
(string "(fun reg -> if reg = \"" ^^ idd ^^ string "\" then v." ^^ bits_idd ^^ string " else s."
^^ field_idd ^^ string " reg)"
)
)
| _ ->
let field_idd = string (string_of_id (regstate_field typ)) in
( string "s." ^^ field_idd ^^ space ^^ dquotes idd,
doc_op equals field_idd
(string "(fun reg -> if reg = \"" ^^ idd ^^ string "\" then v else s." ^^ field_idd ^^ string " reg)")
)
)
else (string "s." ^^ idd, doc_op equals idd (string "v"))
in
let of_regval, regval_of = regval_convs_lem typ in
let tannot = pp_tannot typ in
concat
[
string "let ";
idd;
string "_ref ";
tannot;
string " = <|";
hardline;
string " name = \"";
idd;
string "\";";
hardline;
string " read_from = (fun s -> ";
read_from;
string ");";
hardline;
string " write_to = (fun v s -> (<| s with ";
write_to;
string " |>));";
hardline;
string " of_regval = (fun v -> ";
string of_regval;
string " v);";
hardline;
string " regval_of = (fun v -> ";
string regval_of;
string " v) |>";
hardline;
]
in
let refs = separate_map hardline register_ref registers in
let mk_reg_assoc (_, id, _) =
let idd = string_of_id id in
let qidd = "\"" ^ idd ^ "\"" in
string (" (" ^ qidd ^ ", register_ops_of " ^ idd ^ "_ref)")
in
let reg_assocs =
separate hardline
[
string "val registers : list (string * register_ops regstate register_value)";
string "let registers = [";
separate (string ";" ^^ hardline) (List.map mk_reg_assoc registers);
string " ]";
]
^^ hardline
in
let getters_setters =
string "let register_accessors = mk_accessors (fun nm -> List.lookup nm registers)"
^^ hardline ^^ hardline
^^ string "val get_regval : string -> regstate -> maybe register_value"
^^ hardline
^^ string "let get_regval = fst register_accessors"
^^ hardline ^^ hardline
^^ string "val set_regval : string -> register_value -> regstate -> maybe regstate"
^^ hardline
^^ string "let set_regval = snd register_accessors"
^^ hardline ^^ hardline
in
separate hardline [generic_convs; refs; reg_assocs; getters_setters]
let generate_isa_lemmas env defs =
let rec drop_while f = function x :: xs when f x -> drop_while f xs | xs -> xs in
let remove_leading_underscores str = String.concat "_" (drop_while (fun s -> s = "") (Util.split_on_char '_' str)) in
let remove_trailing_underscores str =
Util.split_on_char '_' str |> List.rev |> drop_while (fun s -> s = "") |> List.rev |> String.concat "_"
in
let remove_underscores str = remove_leading_underscores (remove_trailing_underscores str) in
let registers = find_registers defs in
let regtyp_ids =
register_base_types env (List.map (fun (x, _, _) -> x) registers) |> Bindings.bindings |> List.map fst
in
let bitfield_ids =
register_bitfield_types env (List.map (fun (x, _, _) -> x) registers) |> Bindings.bindings |> List.map fst
in
let regval_class_typ_ids = List.map (fun (t, _) -> mk_id t) regval_class_typs_lem in
let register_defs =
let reg_id id = remove_leading_underscores (string_of_id id) in
hang 2
(flow_map (break 1) string
(["lemmas register_defs"; "="; "get_regval_unfold"; "set_regval_unfold"]
@ List.map (fun (typ, id, _) -> reg_id id ^ "_ref_def") registers
)
)
in
let conv_lemma typ_id =
let typ_id = remove_trailing_underscores (string_of_id typ_id) in
let typ_id' = remove_leading_underscores typ_id in
let of_rv, rv_of =
if List.mem typ_id (List.map fst regval_class_typs_lem) then
(typ_id' ^ "_of_register_value", "register_value_of_" ^ typ_id)
else (typ_id' ^ "_of_regval", "regval_of_" ^ typ_id)
in
string ("lemma " ^ of_rv ^ "_eq_Some_iff[simp]:")
^^ hardline
^^ string (" \"" ^ of_rv ^ " rv = Some v \\<longleftrightarrow> rv = Regval_" ^ typ_id ^ " v\"")
^^ hardline ^^ string " by (cases rv; auto)" ^^ hardline ^^ hardline
^^ string ("declare " ^ rv_of ^ "_def[simp]")
^^ hardline ^^ hardline
^^ string ("lemma regval_" ^ typ_id ^ "[simp]:")
^^ hardline
^^ string (" \"" ^ of_rv ^ " (" ^ rv_of ^ " v) = Some v\"")
^^ hardline ^^ string " by auto"
in
let bitfield_conv_lemma typ_id =
let typ_id = remove_trailing_underscores (string_of_id typ_id) in
let typ_id' = remove_leading_underscores typ_id in
let of_rv, rv_of = (typ_id' ^ "_of_regval", "regval_of_" ^ typ_id) in
string ("lemma regval_" ^ typ_id ^ "[simp]:")
^^ hardline
^^ string (" \"" ^ of_rv ^ " (" ^ rv_of ^ " v) = Some v\"")
^^ hardline
^^ string (" by (auto simp: " ^ of_rv ^ "_def " ^ rv_of ^ "_def)")
in
let registers_eqs =
separate hardline
(List.map string
[
"lemma registers_distinct:";
" \"distinct (map fst registers)\"";
" unfolding registers_def list.simps fst_conv";
" by (distinct_string; simp)";
"";
"lemma registers_eqs_setup:";
" \"!x : set registers. map_of registers (fst x) = Some (snd x)\"";
" using registers_distinct";
" by simp";
"";
"lemmas map_of_registers_eqs[simp] =";
" registers_eqs_setup[simplified arg_cong[where f=set, OF registers_def]";
" list.simps ball_simps fst_conv snd_conv]";
"";
"lemmas get_regval_unfold = get_regval_def[THEN fun_cong,";
" unfolded register_accessors_def mk_accessors_def fst_conv snd_conv]";
"lemmas set_regval_unfold = set_regval_def[THEN fun_cong,";
" unfolded register_accessors_def mk_accessors_def fst_conv snd_conv]";
]
)
in
let module StringMap = Map.Make (String) in
let field_id typ = remove_leading_underscores (string_of_id (id_of_regtyp IdSet.empty typ)) in
let field_id_stripped typ = remove_trailing_underscores (field_id typ) in
let set_regval_type_cases =
let add_reg_case cases (typ, id, _) =
let of_regval = remove_underscores (fst (regval_convs_isa typ)) in
let case =
"(" ^ field_id_stripped typ ^ ") v where " ^ "\"" ^ of_regval ^ " rv = Some v\" and " ^ "\"s' = s\\<lparr>"
^ field_id typ ^ "_reg := (" ^ field_id typ ^ "_reg s)(r := v)\\<rparr>\""
in
StringMap.add (field_id typ) case cases
in
let cases = List.fold_left add_reg_case StringMap.empty registers |> StringMap.bindings |> List.map snd in
let prove_case (typ, id, _) =
" subgoal using " ^ field_id_stripped typ ^ " by (auto simp: register_defs fun_upd_def)"
in
if List.length cases > 0 && !opt_type_grouped_regstate then
string "lemma set_regval_Some_type_cases:"
^^ hardline
^^ string " assumes \"set_regval r rv s = Some s'\""
^^ hardline ^^ string " obtains "
^^ separate_map (hardline ^^ string " | ") string cases
^^ hardline ^^ string "proof -" ^^ hardline ^^ string " from assms show ?thesis" ^^ hardline
^^ string " unfolding set_regval_unfold registers_def"
^^ hardline
^^ string " apply (elim option_bind_SomeE map_of_Cons_SomeE)"
^^ hardline
^^ separate_map hardline string (List.map prove_case registers)
^^ hardline ^^ string " by auto" ^^ hardline ^^ string "qed"
else string ""
in
let get_regval_type_cases =
let add_reg_case cases (typ, id, _) =
let regval_of = remove_underscores (snd (regval_convs_isa typ)) in
let case =
"(" ^ field_id_stripped typ ^ ") \"get_regval r = (\\<lambda>s. Some (" ^ regval_of ^ " (" ^ field_id typ
^ "_reg s r)))\""
in
StringMap.add (field_id typ) case cases
in
let cases = List.fold_left add_reg_case StringMap.empty registers in
let fail_case = "(None) \"get_regval r = (\\<lambda>s. None)\"" in
let cases = (StringMap.bindings cases |> List.map snd) @ [fail_case] in
let prove_case (typ, id, _) = " subgoal using " ^ field_id_stripped typ ^ " by (auto simp: register_defs)" in
if !opt_type_grouped_regstate then
string "lemma get_regval_type_cases:" ^^ hardline ^^ string " fixes r :: string" ^^ hardline
^^ string " obtains "
^^ separate_map (hardline ^^ string " | ") string cases
^^ hardline
^^ string "proof (cases \"map_of registers r\")"
^^ hardline ^^ string " case (Some ops)" ^^ hardline ^^ string " then show ?thesis" ^^ hardline
^^ string " unfolding registers_def" ^^ hardline
^^ string " apply (elim map_of_Cons_SomeE)"
^^ hardline
^^ separate_map hardline string (List.map prove_case registers)
^^ hardline ^^ string " by auto" ^^ hardline
^^ string "qed (auto simp: get_regval_unfold)"
else string ""
in
registers_eqs ^^ hardline ^^ hardline
^^ hardline
^^ hardline ^^ register_defs ^^ hardline ^^ hardline
^^ separate_map (hardline ^^ hardline) conv_lemma (regval_class_typ_ids @ regtyp_ids)
^^ hardline ^^ hardline
^^ separate_map (hardline ^^ hardline) bitfield_conv_lemma bitfield_ids
^^ hardline ^^ hardline
^^ separate_map hardline string
[
"lemma vector_of_rv_rv_of_vector[simp]:";
" assumes \"\\<And>v. of_rv (rv_of v) = Some v\"";
" shows \"vector_of_regval of_rv (regval_of_vector rv_of v) = Some v\"";
"proof -";
" from assms have \"of_rv \\<circ> rv_of = Some\" by auto";
" then show ?thesis by (auto simp: regval_of_vector_def)";
"qed";
"";
"lemma option_of_rv_rv_of_option[simp]:";
" assumes \"\\<And>v. of_rv (rv_of v) = Some v\"";
" shows \"option_of_regval of_rv (regval_of_option rv_of v) = Some v\"";
" using assms by (cases v) (auto simp: regval_of_option_def)";
"";
"lemma list_of_rv_rv_of_list[simp]:";
" assumes \"\\<And>v. of_rv (rv_of v) = Some v\"";
" shows \"list_of_regval of_rv (regval_of_list rv_of v) = Some v\"";
"proof -";
" from assms have \"of_rv \\<circ> rv_of = Some\" by auto";
" with assms show ?thesis by (induction v) (auto simp: regval_of_list_def)";
"qed";
]
^^ hardline ^^ hardline
^^ hardline
^^ hardline ^^ set_regval_type_cases ^^ hardline ^^ hardline ^^ get_regval_type_cases
let rec regval_convs_coq env (Typ_aux (t, _) as typ) =
match t with
| Typ_app _ when is_vector_typ typ && not (is_bitvector_typ typ) ->
let size, etyp = vector_typ_args_of typ in
let size = string_of_nexp (nexp_simp size) in
let etyp_of, of_etyp = regval_convs_coq env etyp in
("(fun v => vector_of_regval " ^ size ^ " " ^ etyp_of ^ " v)", "(fun v => regval_of_vector " ^ of_etyp ^ " v)")
| Typ_app (id, [A_aux (A_typ etyp, _)]) when string_of_id id = "list" ->
let etyp_of, of_etyp = regval_convs_coq env etyp in
("(fun v => list_of_regval " ^ etyp_of ^ " v)", "(fun v => regval_of_list " ^ of_etyp ^ " v)")
| Typ_app (id, [A_aux (A_typ etyp, _)]) when string_of_id id = "option" ->
let etyp_of, of_etyp = regval_convs_coq env etyp in
("(fun v => option_of_regval " ^ etyp_of ^ " v)", "(fun v => regval_of_option " ^ of_etyp ^ " v)")
| _ ->
let id = string_of_id (regval_constr_id typ) in
("(fun v => " ^ id ^ "_of_regval v)", "(fun v => regval_of_" ^ id ^ " v)")
let register_refs_coq doc_id coq_record_update env registers =
let generic_convs =
separate_map hardline string
[
"Definition bool_of_regval (merge_var : register_value) : option bool :=";
" match merge_var with | Regval_bool v => Some v | _ => None end.";
"";
"Definition regval_of_bool (v : bool) : register_value := Regval_bool v.";
"";
"Definition int_of_regval (merge_var : register_value) : option Z :=";
" match merge_var with | Regval_int v => Some v | _ => None end.";
"";
"Definition regval_of_int (v : Z) : register_value := Regval_int v.";
"";
"Definition real_of_regval (merge_var : register_value) : option R :=";
" match merge_var with | Regval_real v => Some v | _ => None end.";
"";
"Definition regval_of_real (v : R) : register_value := Regval_real v.";
"";
"Definition string_of_regval (merge_var : register_value) : option string :=";
" match merge_var with | Regval_string v => Some v | _ => None end.";
"";
"Definition regval_of_string (v : string) : register_value := Regval_string v.";
"";
"Definition vector_of_regval {a} n (of_regval : register_value -> option a) (rv : register_value) : option \
(vec a n) := match rv with";
" | Regval_vector v => if n =? length_list v then map_bind (vec_of_list n) (just_list (List.map of_regval v)) \
else None";
" | _ => None";
"end.";
"";
"Definition regval_of_vector {a size} (regval_of : a -> register_value) (xs : vec a size) : register_value := \
Regval_vector (List.map regval_of (list_of_vec xs)).";
"";
"Definition list_of_regval {a} (of_regval : register_value -> option a) (rv : register_value) : option (list \
a) := match rv with";
" | Regval_list v => just_list (List.map of_regval v)";
" | _ => None";
"end.";
"";
"Definition regval_of_list {a} (regval_of : a -> register_value) (xs : list a) : register_value := Regval_list \
(List.map regval_of xs).";
"";
"Definition option_of_regval {a} (of_regval : register_value -> option a) (rv : register_value) : option \
(option a) := match rv with";
" | Regval_option v => match v with None => Some None | Some v' => option_map Some (of_regval v') end";
" | _ => None";
"end.";
"";
"Definition regval_of_option {a} (regval_of : a -> register_value) (v : option a) := Regval_option (option_map \
regval_of v).";
"";
"";
]
in
let register_ref (typ, id, _) =
let idd = doc_id id in
let of_regval, regval_of = regval_convs_coq env typ in
concat
[
string "Definition ";
idd;
string "_ref := {|";
hardline;
string " name := \"";
idd;
string "\";";
hardline;
string " read_from := (fun s => s.(";
idd;
string "));";
hardline;
( if coq_record_update then string " write_to := (fun v s => (s <| " ^^ idd ^^ string " := v |>));"
else string " write_to := (fun v s => ({[ s with " ^^ idd ^^ string " := v ]}));"
);
hardline;
string " of_regval := ";
string of_regval;
string ";";
hardline;
string " regval_of := ";
string regval_of;
string " |}.";
hardline;
]
in
let refs = separate_map hardline register_ref registers in
let get_set_reg (_, id, _) =
let idd = doc_id id in
( concat
[
string " if string_dec reg_name \"";
idd;
string "\" then Some (";
idd;
string "_ref.(regval_of) (";
idd;
string "_ref.(read_from) s)) else";
],
concat
[
string " if string_dec reg_name \"";
idd;
string "\" then option_map (fun v => ";
idd;
string "_ref.(write_to) v s) (";
idd;
string "_ref.(of_regval) v) else";
]
)
in
let getters_setters =
let getters, setters = List.split (List.map get_set_reg registers) in
string "Local Open Scope string." ^^ hardline
^^ string "Definition get_regval (reg_name : string) (s : regstate) : option register_value :="
^^ hardline ^^ separate hardline getters ^^ hardline ^^ string " None." ^^ hardline ^^ hardline
^^ string "Definition set_regval (reg_name : string) (v : register_value) (s : regstate) : option regstate :="
^^ hardline ^^ separate hardline setters ^^ hardline ^^ string " None." ^^ hardline ^^ hardline
^^ string "Definition register_accessors := (get_regval, set_regval)."
^^ hardline ^^ hardline
in
separate hardline [generic_convs; refs; getters_setters]
let generate_regstate_defs ctx env ast =
let defs = ast.defs in
let registers = find_registers defs in
let regtyps = List.map (fun (x, _, _) -> x) registers in
let base_regtyps = register_base_types env regtyps in
let bitfield_regtyps = register_bitfield_types env regtyps in
let regtyps_with_ids = Bindings.union (fun _ x _ -> Some x) base_regtyps bitfield_regtyps in
let option_typ, ctx =
if is_defined defs "option" then ([], ctx)
else defs_of_string __POS__ ctx "union option ('a : Type) = {None : unit, Some : 'a}"
in
let regval_typ, ctx =
if is_defined defs "register_value" then ([], ctx) else generate_regval_typ ctx env base_regtyps
in
let regstate_typ = if is_defined defs "regstate" then [] else [generate_regstate env registers] in
let initregstate =
if is_defined defs "initial_regstate" || !opt_type_grouped_regstate then []
else generate_initial_regstate ctx env ast
in
let defs =
[option_typ] @ [regval_typ] @ regstate_typ @ initregstate
|> List.concat
|> Bindings.fold (add_regval_conv ctx env) regtyps_with_ids
in
let typdefs, defs = List.partition (function DEF_aux (DEF_type _, _) -> true | _ -> false) defs in
let valspecs, defs = List.partition (function DEF_aux (DEF_val _, _) -> true | _ -> false) defs in
(typdefs @ valspecs @ defs, ctx)
let add_regstate_defs mwords ctx env ast =
let defs, ctx = generate_regstate_defs ctx env ast in
let reg_defs, env = Type_error.check_defs env defs in
(ctx, env, append_ast_defs ast reg_defs)
let add_register_init_function ctx env ast =
let init_exp = function
| DEF_aux (DEF_register (DEC_aux (DEC_reg (_typ, id, Some exp), _)), _) ->
let loc = gen_loc (exp_loc exp) in
Some (mk_exp ~loc (E_assign (mk_lexp ~loc (LE_id id), strip_exp exp)))
| _ -> None
in
let init_exps = List.filter_map init_exp ast.defs in
let uninit = mk_exp (E_app (mk_id "initialize_registers", [mk_exp (E_lit (mk_lit L_unit))])) in
let id = mk_id "sail_model_init" in
let funcl = mk_exp (E_block (init_exps @ [uninit])) |> mk_funcl id (mk_pat P_wild) in
let fundef = mk_fundef [funcl] in
let val_spec = mk_val_spec (VS_val_spec (mk_typschm (mk_typquant []) (function_typ [unit_typ] unit_typ), id, None)) in
let new_defs, env = Type_error.check_defs env [val_spec; fundef] in
(append_ast_defs ast new_defs, ctx, env)