Source file jib_ssa.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
open Ast_util
open Jib
open Jib_util
module IntSet = Util.IntSet
module IntMap = Map.Make (struct
type t = int
let compare = compare
end)
let ssa_name i = function
| Name (id, _) -> Name (id, i)
| Have_exception _ -> Have_exception i
| Current_exception _ -> Current_exception i
| Throw_location _ -> Throw_location i
| Channel (c, _) -> Channel (c, i)
| Return _ -> Return i
let unssa_name = function
| Name (id, n) -> (Name (id, -1), n)
| Have_exception n -> (Have_exception (-1), n)
| Current_exception n -> (Current_exception (-1), n)
| Throw_location n -> (Throw_location (-1), n)
| Channel (c, n) -> (Channel (c, -1), n)
| Return n -> (Return (-1), n)
type 'a array_graph = {
mutable next : int;
mutable nodes : ('a * IntSet.t * IntSet.t) option array;
mutable next_cond : int;
mutable conds : cval IntMap.t;
}
let make ~initial_size () = { next = 0; nodes = Array.make initial_size None; next_cond = 1; conds = IntMap.empty }
let get_cond graph n = if n >= 0 then IntMap.find n graph.conds else V_call (Bnot, [IntMap.find (abs n) graph.conds])
let get_vertex graph n = graph.nodes.(n)
let iter_graph f graph =
for n = 0 to graph.next - 1 do
match graph.nodes.(n) with Some (x, y, z) -> f x y z | None -> ()
done
let add_cond cval graph =
let n = graph.next_cond in
graph.conds <- IntMap.add n cval graph.conds;
graph.next_cond <- n + 1;
n
(** Add a vertex to a graph, returning the node index *)
let add_vertex data graph =
let n = graph.next in
if n >= Array.length graph.nodes then begin
let new_nodes = Array.make (Array.length graph.nodes * 2) None in
Array.blit graph.nodes 0 new_nodes 0 (Array.length graph.nodes);
graph.nodes <- new_nodes
end;
graph.nodes.(n) <- Some (data, IntSet.empty, IntSet.empty);
graph.next <- n + 1;
n
(** Add an edge between two existing vertices. Raises Invalid_argument
if either of the vertices do not exist. *)
let add_edge n m graph =
begin
match graph.nodes.(n) with
| Some (data, parents, children) -> graph.nodes.(n) <- Some (data, parents, IntSet.add m children)
| None -> raise (Invalid_argument "Parent node does not exist in graph")
end;
match graph.nodes.(m) with
| Some (data, parents, children) -> graph.nodes.(m) <- Some (data, IntSet.add n parents, children)
| None -> raise (Invalid_argument "Child node does not exist in graph")
let cardinal graph = graph.next
let reachable roots graph =
let visited = ref IntSet.empty in
let rec reachable' n =
if IntSet.mem n !visited then ()
else begin
visited := IntSet.add n !visited;
match graph.nodes.(n) with Some (_, _, successors) -> IntSet.iter reachable' successors | None -> ()
end
in
IntSet.iter reachable' roots;
!visited
exception Not_a_DAG of int
let topsort graph =
let marked = ref IntSet.empty in
let temp_marked = ref IntSet.empty in
let list = ref [] in
let rec visit node =
if IntSet.mem node !temp_marked then raise (Not_a_DAG node)
else if IntSet.mem node !marked then ()
else begin
match get_vertex graph node with
| None -> failwith "Node does not exist in topsort"
| Some (_, _, succs) ->
temp_marked := IntSet.add node !temp_marked;
IntSet.iter visit succs;
marked := IntSet.add node !marked;
temp_marked := IntSet.remove node !temp_marked;
list := node :: !list
end
in
let find_unmarked () =
let unmarked = ref (-1) in
let i = ref 0 in
while !unmarked = -1 && !i < Array.length graph.nodes do
begin
match get_vertex graph !i with None -> () | Some _ -> if not (IntSet.mem !i !marked) then unmarked := !i
end;
incr i
done;
!unmarked
in
let rec topsort' () =
let unmarked = find_unmarked () in
if unmarked = -1 then ()
else (
visit unmarked;
topsort' ()
)
in
topsort' ();
!list
let prune visited graph =
for i = 0 to graph.next - 1 do
match graph.nodes.(i) with
| Some (n, preds, succs) ->
if IntSet.mem i visited then graph.nodes.(i) <- Some (n, IntSet.inter visited preds, IntSet.inter visited succs)
else graph.nodes.(i) <- None
| None -> ()
done
type terminator =
| T_undefined of ctyp
| T_exit of string
| T_end of name
| T_goto of string
| T_jump of int * string
| T_label of string
| T_none
type cf_node =
| CF_label of string
| CF_block of instr list * terminator
| CF_guard of int
| CF_start of ctyp NameMap.t
| CF_end
let to_terminator graph = function
| I_label label -> T_label label
| I_goto label -> T_goto label
| I_jump (cval, label) ->
let n = add_cond cval graph in
T_jump (n, label)
| I_end name -> T_end name
| I_exit cause -> T_exit cause
| I_undefined ctyp -> T_undefined ctyp
| _ -> assert false
let control_flow_graph instrs =
let module StringMap = Map.Make (String) in
let labels = ref StringMap.empty in
let graph = make ~initial_size:512 () in
iter_instr
(fun (I_aux (instr, annot)) ->
match instr with
| I_label label -> labels := StringMap.add label (add_vertex ([], CF_label label) graph) !labels
| _ -> ()
)
(iblock instrs);
let cf_split (I_aux (aux, _)) =
match aux with I_label _ | I_goto _ | I_jump _ | I_end _ | I_exit _ | I_undefined _ -> true | _ -> false
in
let start = add_vertex ([], CF_start NameMap.empty) graph in
let finish = add_vertex ([], CF_end) graph in
let rec cfg preds instrs =
let before, after = instr_split_at cf_split instrs in
let terminator, after =
match after with I_aux (instr, _) :: after -> (to_terminator graph instr, after) | [] -> (T_none, [])
in
let preds =
match (before, terminator) with
| [], (T_none | T_label _) -> preds
| instrs, _ ->
let n = add_vertex ([], CF_block (instrs, terminator)) graph in
List.iter (fun p -> add_edge p n graph) preds;
[n]
in
match terminator with
| T_end _ | T_exit _ | T_undefined _ ->
List.iter (fun p -> add_edge p finish graph) preds;
cfg [] after
| T_goto label ->
List.iter (fun p -> add_edge p (StringMap.find label !labels) graph) preds;
cfg [] after
| T_jump (cond, label) ->
let t = add_vertex ([], CF_guard cond) graph in
let f = add_vertex ([], CF_guard (-cond)) graph in
List.iter
(fun p ->
add_edge p t graph;
add_edge p f graph
)
preds;
add_edge t (StringMap.find label !labels) graph;
cfg [f] after
| T_label label -> cfg (StringMap.find label !labels :: preds) after
| T_none -> preds
in
let _ = cfg [start] instrs in
let visited = reachable (IntSet.singleton start) graph in
prune visited graph;
(start, finish, graph)
let graph_order ~post predecessors successors = if post then (successors, predecessors) else (predecessors, successors)
(** Calculate the (immediate) dominators of a graph using the
Lengauer-Tarjan algorithm. This is the slightly less sophisticated
version from Appel's book 'Modern compiler implementation in ML'
which runs in O(n log(n)) time.
If the post flag is set this computes the post-dominators. *)
let immediate_dominators ?(post = false) graph root =
let none = -1 in
let vertex = Array.make (cardinal graph) 0 in
let parent = Array.make (cardinal graph) none in
let ancestor = Array.make (cardinal graph) none in
let semi = Array.make (cardinal graph) none in
let idom = Array.make (cardinal graph) none in
let samedom = Array.make (cardinal graph) none in
let best = Array.make (cardinal graph) none in
let dfnum = Array.make (cardinal graph) (-1) in
let bucket = Array.make (cardinal graph) IntSet.empty in
let rec ancestor_with_lowest_semi v =
let a = ancestor.(v) in
if ancestor.(a) <> none then (
let b = ancestor_with_lowest_semi a in
ancestor.(v) <- ancestor.(a);
if dfnum.(semi.(b)) < dfnum.(semi.(best.(v))) then best.(v) <- b else ()
)
else ();
if best.(v) <> none then best.(v) else v
in
let link p n =
ancestor.(n) <- p;
best.(n) <- n
in
let count = ref 0 in
let rec dfs p n =
if dfnum.(n) = -1 then begin
dfnum.(n) <- !count;
vertex.(!count) <- n;
parent.(n) <- p;
incr count;
match graph.nodes.(n) with
| Some (_, predecessors, successors) ->
let predecessors, successors = graph_order ~post predecessors successors in
IntSet.iter (fun w -> dfs n w) successors
| None -> assert false
end
in
dfs none root;
for i = !count - 1 downto 1 do
let n = vertex.(i) in
let p = parent.(n) in
let s = ref p in
begin
match graph.nodes.(n) with
| Some (_, predecessors, successors) ->
let predecessors, successors = graph_order ~post predecessors successors in
IntSet.iter
(fun v ->
let s' = if dfnum.(v) <= dfnum.(n) then v else semi.(ancestor_with_lowest_semi v) in
if dfnum.(s') < dfnum.(!s) then s := s'
)
predecessors
| None -> assert false
end;
semi.(n) <- !s;
bucket.(!s) <- IntSet.add n bucket.(!s);
link p n;
IntSet.iter
(fun v ->
let y = ancestor_with_lowest_semi v in
if semi.(y) = semi.(v) then idom.(v) <- p else samedom.(v) <- y
)
bucket.(p)
done;
for i = 1 to !count - 1 do
let n = vertex.(i) in
if samedom.(n) <> none then idom.(n) <- idom.(samedom.(n))
done;
idom
(** [(dominator_children idoms).(n)] are the nodes whose immediate dominator
(idom) is n. *)
let dominator_children idom =
let none = -1 in
let children = Array.make (Array.length idom) IntSet.empty in
for n = 0 to Array.length idom - 1 do
let p = idom.(n) in
if p <> none then children.(p) <- IntSet.add n children.(p)
done;
children
(** [dominate idom n w] is true if n dominates w in the tree of
immediate dominators idom. *)
let rec dominate idom n w =
let none = -1 in
let p = idom.(n) in
if p = none then false else if p = w then true else dominate idom p w
let dominance_frontiers ?(post = false) graph root idom children =
let df = Array.make (cardinal graph) IntSet.empty in
let rec compute_df n =
let set = ref IntSet.empty in
begin
match graph.nodes.(n) with
| Some (content, predecessors, successors) ->
let predecessors, successors = graph_order ~post predecessors successors in
IntSet.iter (fun y -> if idom.(y) <> n then set := IntSet.add y !set) successors
| None -> ()
end;
IntSet.iter
(fun c ->
compute_df c;
IntSet.iter (fun w -> if not (dominate idom n w) then set := IntSet.add w !set) df.(c)
)
children.(n);
df.(n) <- !set
in
compute_df root;
df
type ssa_elem = Phi of Jib.name * Jib.ctyp * Jib.name list | Pi of Jib.cval list
let place_phi_functions graph df =
let defsites = ref NameCTMap.empty in
let all_vars = ref NameCTSet.empty in
let rec all_decls = function
| I_aux ((I_init (ctyp, id, _) | I_decl (ctyp, id)), _) :: instrs -> NameCTSet.add (id, ctyp) (all_decls instrs)
| _ :: instrs -> all_decls instrs
| [] -> NameCTSet.empty
in
let orig_A n =
match graph.nodes.(n) with
| Some ((_, CF_block (instrs, _)), _, _) ->
let vars = List.fold_left NameCTSet.union NameCTSet.empty (List.map instr_typed_writes instrs) in
let vars = NameCTSet.diff vars (all_decls instrs) in
all_vars := NameCTSet.union vars !all_vars;
vars
| Some _ -> NameCTSet.empty
| None -> NameCTSet.empty
in
let phi_A = ref NameCTMap.empty in
for n = 0 to graph.next - 1 do
NameCTSet.iter
(fun a ->
let ds = match NameCTMap.find_opt a !defsites with Some ds -> ds | None -> IntSet.empty in
defsites := NameCTMap.add a (IntSet.add n ds) !defsites
)
(orig_A n)
done;
NameCTSet.iter
(fun a ->
let workset = ref (NameCTMap.find a !defsites) in
while not (IntSet.is_empty !workset) do
let n = IntSet.choose !workset in
workset := IntSet.remove n !workset;
IntSet.iter
(fun y ->
let phi_A_a = match NameCTMap.find_opt a !phi_A with Some set -> set | None -> IntSet.empty in
if not (IntSet.mem y phi_A_a) then begin
begin
match graph.nodes.(y) with
| Some ((phis, cfnode), preds, succs) ->
graph.nodes.(y) <-
Some
( (Phi (fst a, snd a, Util.list_init (IntSet.cardinal preds) (fun _ -> fst a)) :: phis, cfnode),
preds,
succs
)
| None -> assert false
end;
phi_A := NameCTMap.add a (IntSet.add y phi_A_a) !phi_A;
if not (NameCTSet.mem a (orig_A y)) then workset := IntSet.add y !workset
end
)
df.(n)
done
)
!all_vars
module NameGraph = Graph.Make (Name)
let phi_dependencies cfg =
let deps = ref NameGraph.empty in
let decl_nodes = ref NameMap.empty in
for n = 0 to cfg.next - 1 do
match cfg.nodes.(n) with
| Some ((ssa, _), _, _) ->
List.iter
(function
| Phi (id, _, args) ->
assert (not (NameMap.mem id !decl_nodes));
decl_nodes := NameMap.add id n !decl_nodes;
List.iter (fun arg -> deps := NameGraph.add_edge id arg !deps) args
| _ -> ()
)
ssa
| None -> ()
done;
(!deps, !decl_nodes)
let rename_variables globals graph root children =
let counts = ref NameMap.empty in
let stacks = ref NameMap.empty in
let phi_zeros = ref NameMap.empty in
let get_count id = match NameMap.find_opt id !counts with Some n -> n | None -> 0 in
let top_stack id = match NameMap.find_opt id !stacks with Some (x :: _) -> x | Some [] -> 0 | None -> 0 in
let top_stack_phi id ctyp =
match NameMap.find_opt id !stacks with
| Some (x :: _) -> x
| Some [] -> 0
| None ->
phi_zeros := NameMap.add (ssa_name 0 id) ctyp !phi_zeros;
0
in
let push_stack id n =
stacks := NameMap.add id (n :: (match NameMap.find_opt id !stacks with Some s -> s | None -> [])) !stacks
in
let rec fold_cval = function
| V_id (id, ctyp) ->
if NameSet.mem id globals then V_id (id, ctyp)
else (
let i = top_stack id in
V_id (ssa_name i id, ctyp)
)
| V_member (id, ctyp) -> V_member (id, ctyp)
| V_lit (vl, ctyp) -> V_lit (vl, ctyp)
| V_call (id, fs) -> V_call (id, List.map fold_cval fs)
| V_field (f, field) -> V_field (fold_cval f, field)
| V_tuple_member (f, len, n) -> V_tuple_member (fold_cval f, len, n)
| V_ctor_kind (f, ctor, ctyp) -> V_ctor_kind (fold_cval f, ctor, ctyp)
| V_ctor_unwrap (f, ctor, ctyp) -> V_ctor_unwrap (fold_cval f, ctor, ctyp)
| V_struct (fields, ctyp) -> V_struct (List.map (fun (field, cval) -> (field, fold_cval cval)) fields, ctyp)
| V_tuple (members, ctyp) -> V_tuple (List.map fold_cval members, ctyp)
in
let rec fold_clexp rmw = function
| CL_id (id, ctyp) when rmw ->
let i = top_stack id in
let j = get_count id + 1 in
counts := NameMap.add id j !counts;
push_stack id j;
CL_rmw (ssa_name i id, ssa_name j id, ctyp)
| CL_id (id, ctyp) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
CL_id (ssa_name i id, ctyp)
| CL_rmw _ -> assert false
| CL_field (clexp, field) -> CL_field (fold_clexp true clexp, field)
| CL_addr clexp -> CL_addr (fold_clexp false clexp)
| CL_tuple (clexp, n) -> CL_tuple (fold_clexp true clexp, n)
| CL_void -> CL_void
in
let fold_creturn = function
| CR_one clexp -> CR_one (fold_clexp false clexp)
| CR_multi clexps -> CR_multi (List.map (fold_clexp false) clexps)
in
let ssa_instr (I_aux (aux, annot)) =
let aux =
match aux with
| I_funcall (creturn, extern, id, args) ->
let args = List.map fold_cval args in
I_funcall (fold_creturn creturn, extern, id, args)
| I_copy (clexp, cval) ->
let cval = fold_cval cval in
I_copy (fold_clexp false clexp, cval)
| I_decl (ctyp, id) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
I_decl (ctyp, ssa_name i id)
| I_init (ctyp, id, cval) ->
let cval = fold_cval cval in
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
I_init (ctyp, ssa_name i id, cval)
| instr -> instr
in
I_aux (aux, annot)
in
let ssa_terminator = function
| T_jump (cond, label) -> begin
match IntMap.find_opt cond graph.conds with
| Some cval ->
graph.conds <- IntMap.add cond (fold_cval cval) graph.conds;
T_jump (cond, label)
| None -> assert false
end
| T_end id ->
let i = top_stack id in
T_end (ssa_name i id)
| terminator -> terminator
in
let ssa_cfnode = function
| CF_start inits -> CF_start inits
| CF_block (instrs, terminator) ->
let instrs = List.map ssa_instr instrs in
CF_block (instrs, ssa_terminator terminator)
| CF_label label -> CF_label label
| CF_guard cond -> CF_guard cond
| CF_end -> CF_end
in
let ssa_ssanode = function
| Phi (id, ctyp, args) ->
let i = get_count id + 1 in
counts := NameMap.add id i !counts;
push_stack id i;
Phi (ssa_name i id, ctyp, args)
| Pi _ -> assert false
in
let fix_phi j = function
| Phi (id, ctyp, ids) ->
let fix_arg k a =
if k = j then (
let i = top_stack_phi a ctyp in
ssa_name i a
)
else a
in
Phi (id, ctyp, List.mapi fix_arg ids)
| Pi _ -> assert false
in
let rec rename n =
let old_stacks = !stacks in
begin
match graph.nodes.(n) with
| Some ((ssa, cfnode), preds, succs) ->
let ssa = List.map ssa_ssanode ssa in
graph.nodes.(n) <- Some ((ssa, ssa_cfnode cfnode), preds, succs);
List.iter
(fun succ ->
match graph.nodes.(succ) with
| Some ((ssa, cfnode), preds, succs) ->
let rec find_j n succ = function
| pred :: preds -> if pred = succ then n else find_j (n + 1) succ preds
| [] -> assert false
in
let j = find_j 0 n (IntSet.elements preds) in
graph.nodes.(succ) <- Some ((List.map (fix_phi j) ssa, cfnode), preds, succs)
| None -> assert false
)
(IntSet.elements succs)
| None -> assert false
end;
IntSet.iter (fun child -> rename child) children.(n);
stacks := old_stacks
in
rename root;
match graph.nodes.(root) with
| Some ((ssa, CF_start _), preds, succs) -> graph.nodes.(root) <- Some ((ssa, CF_start !phi_zeros), preds, succs)
| _ -> failwith "root node is not CF_start"
let is_true_literal = function V_lit (VL_bool true, _) -> true | _ -> false
let is_false_literal = function V_lit (VL_bool false, _) -> true | _ -> false
let simp_disj = function
| [x; V_call (Bnot, [y])] when x = y -> [V_lit (VL_bool true, CT_bool)]
| xs ->
if List.exists is_true_literal xs then [V_lit (VL_bool true, CT_bool)]
else List.filter (fun x -> not (is_false_literal x)) xs
let simp_conj = function
| [x; V_call (Bnot, [y])] when x = y -> [V_lit (VL_bool false, CT_bool)]
| xs ->
if List.exists is_false_literal xs then [V_lit (VL_bool false, CT_bool)]
else List.filter (fun x -> not (is_true_literal x)) xs
let place_pi_functions ~start ~finish ~post_idom ~post_df graph =
let get_guard = function
| CF_guard cond -> begin
match IntMap.find_opt (abs cond) graph.conds with
| Some guard when cond > 0 -> Some guard
| Some guard -> Some (V_call (Bnot, [guard]))
| None -> assert false
end
| _ -> None
in
let get_pi ssanode = List.concat (List.map (function Pi guards -> guards | _ -> []) ssanode) in
let mk_disj xs = match simp_disj xs with [] -> V_lit (VL_bool false, CT_bool) | [x] -> x | xs -> V_call (Bor, xs) in
let mk_conj xs = match simp_conj xs with [] -> V_lit (VL_bool true, CT_bool) | [x] -> x | xs -> V_call (Band, xs) in
let visited = ref IntSet.empty in
let rec go n =
if not (IntSet.mem n !visited) then (
match graph.nodes.(n) with
| Some ((ssa, cfnode), preds, succs) ->
let disj =
List.map
(fun post_frontier ->
assert (post_frontier <> n);
go post_frontier;
match graph.nodes.(post_frontier) with
| Some ((ssanode, _), _, succs) ->
let pathcond = get_pi ssanode in
let disj =
List.filter_map
(fun s ->
if s = n || dominate post_idom s n then (
let (_, cfnode), _, _ = Option.get graph.nodes.(s) in
get_guard cfnode
)
else None
)
(IntSet.elements succs)
in
mk_disj disj :: pathcond
| None -> assert false
)
(IntSet.elements post_df.(n))
in
let mk_pi = function
| [] -> Pi []
| [conj] -> Pi conj
| conjs -> Pi [mk_disj (List.map (fun conj -> mk_conj conj) conjs)]
in
visited := IntSet.add n !visited;
graph.nodes.(n) <- Some ((mk_pi disj :: ssa, cfnode), preds, succs)
| None -> ()
)
in
for n = 0 to graph.next - 1 do
go n
done
let string_of_ssainstr = function
| Phi (id, ctyp, args) ->
string_of_name id ^ " : " ^ string_of_ctyp ctyp ^ " = φ(" ^ Util.string_of_list ", " string_of_name args ^ ")"
| Pi cvals -> "π(" ^ Util.string_of_list ", " (fun v -> String.escaped (string_of_cval v)) cvals ^ ")"
let string_of_phis = function [] -> "" | phis -> Util.string_of_list "\\l" string_of_ssainstr phis ^ "\\l"
let string_of_node = function
| phis, CF_label label -> string_of_phis phis ^ label
| phis, CF_block (instrs, terminator) ->
string_of_phis phis ^ Util.string_of_list "\\l" (fun instr -> String.escaped (string_of_instr instr)) instrs
| phis, CF_start inits ->
string_of_phis phis ^ "START" ^ "\\l"
^ Util.string_of_list "\\l"
(fun (n, ctyp) -> string_of_name n ^ " : " ^ string_of_ctyp ctyp)
(NameMap.bindings inits)
| phis, CF_guard cval -> string_of_phis phis ^ string_of_int cval
| phis, CF_end -> string_of_phis phis ^ "END"
let vertex_color = function
| _, CF_start _ -> "peachpuff"
| _, CF_block _ -> "white"
| _, CF_label _ -> "springgreen"
| _, CF_guard _ -> "yellow"
| _, CF_end -> "red"
let make_dot out_chan graph =
Util.opt_colors := false;
output_string out_chan "digraph DEPS {\n";
let make_node i n =
output_string out_chan
(Printf.sprintf " n%i [label=\"%i\\n%s\\l\";shape=box;style=filled;fillcolor=%s];\n" i i (string_of_node n)
(vertex_color n)
)
in
let make_line i s = output_string out_chan (Printf.sprintf " n%i -> n%i [color=black];\n" i s) in
for i = 0 to graph.next - 1 do
match graph.nodes.(i) with
| Some (n, _, successors) ->
make_node i n;
IntSet.iter (fun s -> make_line i s) successors
| None -> ()
done;
output_string out_chan "}\n";
Util.opt_colors := true
let make_dominators_dot out_chan idom graph =
Util.opt_colors := false;
output_string out_chan "digraph DOMS {\n";
let make_node i n =
output_string out_chan
(Printf.sprintf " n%i [label=\"%i\\n%s\\l\";shape=box;style=filled;fillcolor=%s];\n" i i (string_of_node n)
(vertex_color n)
)
in
let make_line i s = output_string out_chan (Printf.sprintf " n%i -> n%i [color=black];\n" i s) in
for i = 0 to Array.length idom - 1 do
match graph.nodes.(i) with
| Some (n, _, _) ->
if idom.(i) = -1 then make_node i n
else (
make_node i n;
make_line i idom.(i)
)
| None -> ()
done;
output_string out_chan "}\n";
Util.opt_colors := true
let ssa ?globals ?debug_prefix instrs =
let start, finish, cfg = control_flow_graph instrs in
begin
match debug_prefix with
| Some prefix ->
let out_chan = open_out (prefix ^ "_cfg.gv") in
make_dot out_chan cfg;
close_out out_chan
| None -> ()
end;
let idom = immediate_dominators cfg start in
let post_idom = immediate_dominators ~post:true cfg finish in
begin
match debug_prefix with
| Some prefix ->
let out_chan = open_out (prefix ^ "_post_doms.gv") in
make_dominators_dot out_chan post_idom cfg;
close_out out_chan
| None -> ()
end;
let children = dominator_children idom in
let post_children = dominator_children post_idom in
let df = dominance_frontiers cfg start idom children in
let post_df = dominance_frontiers ~post:true cfg finish post_idom post_children in
place_phi_functions cfg df;
rename_variables (Option.value ~default:NameSet.empty globals) cfg start children;
place_pi_functions ~start ~finish ~post_idom ~post_df cfg;
(start, finish, cfg)