package kdl
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
open Sexplib0 (** [signed_int_of_string_opt str] is similar to [int_of_string_opt str], but prohibits unsigned ranges in case the prefix of the number is one of [0x 0b 0o]. This function assumes that negative numbers begin with [-]. *) let signed_int_of_string_opt str = let negative = String.length str >= 1 && String.unsafe_get str 0 = '-' in match int_of_string str with | int when int < 0 && not negative -> None | int when int > 0 && negative -> None | int -> Some int | exception Failure _ -> None module Num = struct type t = [ | `Int of int | `Int_raw of string | `Float_raw of string ] (* Note: Float.to_string outputs "inf", "-inf", "nan" for the infinity, neg_infinity, and nan values respectively; Float.of_string can parse those strings. That makes the functions suitable for KDL's #inf, #-inf, #nan as-is. *) let to_string : [< t ] -> string = function | `Int int -> Int.to_string int | `Int_raw str | `Float_raw str -> str let to_float : [< t ] -> float = function | `Int int -> Float.of_int int | `Int_raw str | `Float_raw str -> float_of_string str open struct let check_safe_int_float_bounds = let min = -9007199254740991. and max = 9007199254740991. in fun f -> f >= min && f <= max let safe_int_float_of_string str = match float_of_string str with | f when Float.is_integer f && check_safe_int_float_bounds f -> Some f | _ -> None | exception Failure _ -> None let check_int_bounds = let min = Int.to_float Int.min_int and max = Int.to_float Int.max_int in fun f -> f >= min && f <= max let check_unsigned_int_bounds = let max = Int.to_float Int.max_int *. 2. +. 1. in fun f -> f >= 0. && f <= max let check_int32_bounds = let min = Int32.to_float Int32.min_int and max = Int32.to_float Int32.max_int in fun f -> f >= min && f <= max let check_unsigned_int32_bounds = let max = Int32.to_float Int32.max_int *. 2. +. 1. in fun f -> f >= 0. && f <= max let check_nativeint_bounds = let min = Nativeint.to_float Nativeint.min_int and max = Nativeint.to_float Nativeint.max_int in fun f -> f >= min && f <= max let check_unsigned_nativeint_bounds = let max = Nativeint.to_float Nativeint.max_int *. 2. +. 1. in fun f -> f >= 0. && f <= max let[@inline] to_unsigned_literal lit = (* Somewhat hacky. Makes sure decimal numbers are prefixed with 0u. Examples: 42 -> 0u42, 0x42 -> 0x42. Fails for negative non-zero numbers. *) let len = String.length lit in if len >= 1 && lit.[0] = '-' && not (len = 2 && lit.[1] = '0') then None else if len >= 3 then match lit.[1] with | 'x' | 'o' | 'b' | 'u' -> Some lit | _ -> Some ("0u" ^ lit) else Some lit let (>>=) = Option.bind end let to_int : [< t ] -> int option = function | `Int int -> Some int | `Int_raw str -> int_of_string_opt str | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_int_bounds f -> Some (Int.of_float f) | _ -> None let to_int_unsigned : [< t ] -> int option = function | `Int int -> if int >= 0 then Some int else None | `Int_raw str -> to_unsigned_literal str >>= int_of_string_opt | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_unsigned_int_bounds f -> Some (Int.of_float f) | _ -> None let to_int32 : [< t ] -> int32 option = function | `Int int when Sys.int_size > 32 && int > Int32.to_int Int32.max_int -> None | `Int int -> Some (Int32.of_int int) | `Int_raw str -> Int32.of_string_opt str | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_int32_bounds f -> Some (Int32.of_float f) | _ -> None let to_int32_unsigned : [< t ] -> int32 option = function | `Int int when int < 0 -> None | `Int int when Sys.int_size > 32 && int > Int32.to_int Int32.max_int lsl 1 + 1 -> None | `Int int -> Some (Int32.of_int int) | `Int_raw str -> to_unsigned_literal str >>= Int32.of_string_opt | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_unsigned_int32_bounds f -> Some (Int32.of_float f) | _ -> None let to_int64 : [< t ] -> int64 option = function | `Int int -> Some (Int64.of_int int) | `Int_raw str -> Int64.of_string_opt str | `Float_raw str -> match safe_int_float_of_string str with | Some f -> Some (Int64.of_float f) | None -> None let to_int64_unsigned : [< t ] -> int64 option = function | `Int int when int < 0 -> None | `Int int -> Some (Int64.of_int int) | `Int_raw str -> to_unsigned_literal str >>= Int64.of_string_opt | `Float_raw str -> match safe_int_float_of_string str with | Some f when f >= 0.0 -> Some (Int64.of_float f) | _ -> None let to_nativeint : [< t ] -> nativeint option = function | `Int int when Nativeint.size < Sys.int_size && int > Nativeint.(to_int max_int) -> None | `Int int -> Some (Nativeint.of_int int) | `Int_raw str -> Nativeint.of_string_opt str | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_nativeint_bounds f -> Some (Nativeint.of_float f) | _ -> None let to_nativeint_unsigned : [< t ] -> nativeint option = function | `Int int when int < 0 -> None | `Int int when Nativeint.size < Sys.int_size -> (match Nativeint.(unsigned_to_int (neg 1n)) with | Some max when int <= max -> Some (Nativeint.of_int int) | Some _ | None -> None) | `Int int -> Some (Nativeint.of_int int) | `Int_raw str -> to_unsigned_literal str >>= Nativeint.of_string_opt | `Float_raw str -> match safe_int_float_of_string str with | Some f when check_unsigned_nativeint_bounds f -> Some (Nativeint.of_float f) | _ -> None let to_int_exn num = match to_int num with Some x -> x | None -> failwith "Kdl.Num.to_int_exn" let to_int32_exn num = match to_int32 num with Some x -> x | None -> failwith "Kdl.Num.to_int32_exn" let to_int64_exn num = match to_int64 num with Some x -> x | None -> failwith "Kdl.Num.to_int64_exn" let to_nativeint_exn num = match to_nativeint num with | Some x -> x | None -> failwith "Kdl.Num.to_nativeint_exn" let of_string : string -> [> t ] option = fun input -> (* Note: Does not check that the literal is a valid KDL number *) match signed_int_of_string_opt input with | Some x -> Some (`Int x) | None -> match float_of_string_opt input with | Some _ -> Some (`Float_raw input) | None -> None let of_float : float -> [> t ] = fun x -> if Float.is_integer x && check_safe_int_float_bounds x && check_int_bounds x then `Int (Float.to_int x) else `Float_raw (Float.to_string x) let of_int : int -> [> t ] = fun x -> `Int x let of_int32 : int32 -> [> t ] = if Sys.int_size >= 32 then fun x -> `Int (Int32.to_int x) else fun x -> let min = Int32.of_int Int.min_int and max = Int32.of_int Int.max_int in let fits = x >= min && x <= max in if fits then `Int (Int32.to_int x) else `Int_raw (Int32.to_string x) let of_int64 : int64 -> [> t ] = fun x -> let min = Int64.of_int Int.min_int and max = Int64.of_int Int.max_int in let fits = x >= min && x <= max in if fits then `Int (Int64.to_int x) else `Int_raw (Int64.to_string x) let of_nativeint : nativeint -> [> t ] = if Nativeint.size <= Sys.int_size then fun x -> `Int (Nativeint.to_int x) else fun x -> let min = Nativeint.of_int Int.min_int and max = Nativeint.of_int Int.max_int in let fits = x >= min && x <= max in if fits then `Int (Nativeint.to_int x) else `Int_raw (Nativeint.to_string x) let equal (x : [< t ]) (y : [< t ]) = match x, y with | `Int i1, `Int i2 -> Int.equal i1 i2 (* The strings are not necessarily normalized *) | `Int_raw s1, `Int_raw s2 -> String.equal s1 s2 | `Float_raw d1, `Float_raw d2 -> String.equal d1 d2 | `Int i, `Int_raw s | `Int_raw s, `Int i -> String.equal (Int.to_string i) s | `Int i, `Float_raw d | `Float_raw d, `Int i -> (match safe_int_float_of_string d with | Some f -> Int.equal (Float.to_int f) i | None -> false) | `Int_raw ilit, `Float_raw d | `Float_raw d, `Int_raw ilit -> (match safe_int_float_of_string d with | Some f -> String.equal (Float.to_string f) ilit | None -> false) end type number = Num.t type value = [ | `String of string | number | `Bool of bool | `Null ] type annot_value = string option * value type prop = string * annot_value type node = { name : string; annot : string option; args : annot_value list; props : prop list; (** [props] is an assoc list; the order is unspecified *) children : node list; } type t = node list let equal_value (v1 : value) (v2 : value) = match v1, v2 with | `String s1, `String s2 -> String.equal s1 s2 | (#number as n1), (#number as n2) -> Num.equal n1 n2 | `Bool true, `Bool true -> true | `Bool false, `Bool false -> true | `Null, `Null -> true | _ -> false let equal_annot_value (annot1, v1 : annot_value) (annot2, v2 : annot_value) = Option.equal String.equal annot1 annot2 && equal_value v1 v2 let equal_prop (name1, annot_value1 : prop) (name2, annot_value2 : prop) = String.equal name1 name2 && equal_annot_value annot_value1 annot_value2 let equal_node n1 n2 = String.equal n1.name n2.name && Option.equal String.equal n1.annot n2.annot && List.equal equal_annot_value n1.args n2.args && List.equal equal_prop n1.props n2.props let equal nodes1 nodes2 = List.equal equal_node nodes1 nodes2 let sexp_of_value : [< value ] -> Sexp.t = function | `String str -> Sexp.List [Atom "string"; Atom str] | #number as num -> let tag = match num with | `Int _ -> "int" | `Int_raw _ -> "int-raw" | `Float_raw _ -> "float-raw" in Sexp.List [Atom (Printf.sprintf "number-%s" tag); Atom (Num.to_string num)] | `Bool true -> Sexp.List [Atom "bool"; Atom "true"] | `Bool false -> Sexp.List [Atom "bool"; Atom "false"] | `Null -> Sexp.List [Atom "null"] let sexp_of_annot_value = function | None, v -> sexp_of_value v | Some annot, v -> match sexp_of_value v with | Sexp.List [x1; x2] -> Sexp.List [x1; x2; Atom annot] | Sexp.List [x] -> Sexp.List [x; Atom annot] | Sexp.List xs -> Sexp.List (xs @ [Atom annot]) | Sexp.Atom _ as atom -> Sexp.List [atom; Atom annot] let sexp_of_prop (key, value) = Sexp.List [Atom "prop"; Atom key; sexp_of_annot_value value] let rec sexp_of_node node = let children = List.rev @@ List.rev_map sexp_of_node node.children in let list = match children with | [] -> [] | _ -> [Sexp.List (Atom "children" :: children)] in let props = List.rev_map sexp_of_prop node.props in let list = List.rev_append props list in let args = List.rev_map sexp_of_annot_value node.args in let list = List.rev_append args list in let list = match node.annot with | Some a -> Sexp.List [Atom "type"; Atom a] :: list | None -> list in let list = Sexp.Atom node.name :: list in Sexp.List list let sexp_of_t = function | [node] -> sexp_of_node node | nodes -> Sexp_conv.sexp_of_list sexp_of_node nodes let node ?annot name ?(args = []) ?(props = []) children = { name; annot; args; props; children } let arg ?(annot : string option) value = annot, value let prop ?(annot : string option) name value = name, (annot, value)