Source file global_flow.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
open! Stdlib
let debug = Debug.find "global-flow"
let times = Debug.find "times"
open Code
let return_values p =
Code.fold_closures
p
(fun name_opt _ (pc, _) rets ->
match name_opt with
| None -> rets
| Some name ->
let s =
Code.traverse
{ fold = fold_children }
(fun pc s ->
let block = Addr.Map.find pc p.blocks in
match fst block.branch with
| Return x -> Var.Set.add x s
| _ -> s)
pc
p.blocks
Var.Set.empty
in
Var.Map.add name s rets)
Var.Map.empty
type def =
| Expr of Code.expr
| Phi of
{ known : Var.Set.t
; others : bool
}
let undefined = Phi { known = Var.Set.empty; others = false }
let is_undefined d =
match d with
| Expr _ -> false
| Phi { known; others } -> Var.Set.is_empty known && not others
type escape_status =
| Escape
| Escape_constant
| No
type state =
{ vars : Var.ISet.t
; deps : Var.Set.t array
; defs : def array
; variable_may_escape : escape_status array
; variable_possibly_mutable : bool array
; may_escape : escape_status array
; possibly_mutable : bool array
; return_values : Var.Set.t Var.Map.t
; known_cases : (Var.t, int list) Hashtbl.t
; applied_functions : (Var.t * Var.t, unit) Hashtbl.t
; fast : bool
}
let add_var st x = Var.ISet.add st.vars x
let add_dep st x y =
let idx = Var.idx y in
st.deps.(idx) <- Var.Set.add x st.deps.(idx)
let add_expr_def st x e =
add_var st x;
let idx = Var.idx x in
assert (is_undefined st.defs.(idx));
st.defs.(idx) <- Expr e
let add_assign_def st x y =
add_var st x;
add_dep st x y;
let idx = Var.idx x in
match st.defs.(idx) with
| Expr _ -> assert false
| Phi { known; others } -> st.defs.(idx) <- Phi { known = Var.Set.add y known; others }
let add_param_def st x =
add_var st x;
let idx = Var.idx x in
assert (is_undefined st.defs.(idx));
if st.fast then st.defs.(idx) <- Phi { known = Var.Set.empty; others = true }
let rec arg_deps st ?ignore params args =
match params, args with
| x :: params, y :: args ->
(match ignore with
| Some y' when Var.equal y y' -> ()
| _ -> add_assign_def st x y);
arg_deps st params args
| [], [] -> ()
| _ -> assert false
let cont_deps blocks st ?ignore (pc, args) =
let block = Addr.Map.find pc blocks in
arg_deps st ?ignore block.params args
let do_escape st level x = st.variable_may_escape.(Var.idx x) <- level
let possibly_mutable st x = st.variable_possibly_mutable.(Var.idx x) <- true
let expr_deps blocks st x e =
match e with
| Constant _ | Prim ((Vectlength | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) | Block _
-> ()
| Special _ -> ()
| Prim ((Extern ("caml_check_bound" | "caml_array_unsafe_get") | Array_get), l) ->
(if st.fast
then
match l with
| Pv x :: _ -> do_escape st Escape x
| Pc _ :: _ -> ()
| [] -> assert false);
List.iter
~f:(fun a ->
match a with
| Pc _ -> ()
| Pv y -> add_dep st x y)
l
| Prim (Extern name, l) ->
let ka =
match Primitive.kind_args name with
| Some l -> l
| None -> (
match Primitive.kind name with
| `Mutable | `Mutator -> []
| `Pure -> List.map l ~f:(fun _ -> `Const))
in
let rec loop args ka =
match args, ka with
| [], _ -> ()
| Pc _ :: ax, [] -> loop ax []
| Pv a :: ax, [] ->
do_escape st Escape a;
loop ax []
| a :: ax, k :: kx ->
(match a, k with
| Pc _, _ -> ()
| Pv v, `Const -> do_escape st Escape_constant v
| Pv v, `Shallow_const -> (
match st.defs.(Var.idx v) with
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x -> do_escape st Escape x)
| _ -> do_escape st Escape v)
| Pv v, `Object_literal -> (
match st.defs.(Var.idx v) with
| Expr (Block (_, a, _, _)) ->
Array.iter a ~f:(fun x ->
match st.defs.(Var.idx x) with
| Expr (Block (_, [| _k; v |], _, _)) -> do_escape st Escape v
| _ -> do_escape st Escape x)
| _ -> do_escape st Escape v)
| Pv v, `Mutable -> do_escape st Escape v);
loop ax kx
in
loop l ka
| Apply { f; args; _ } -> (
add_dep st x f;
match st.defs.(Var.idx f) with
| Expr (Closure (params, _)) when List.length args = List.length params ->
Hashtbl.add st.applied_functions (x, f) ();
if st.fast
then List.iter ~f:(fun a -> do_escape st Escape a) args
else List.iter2 ~f:(fun p a -> add_assign_def st p a) params args;
Var.Set.iter (fun y -> add_dep st x y) (Var.Map.find f st.return_values)
| _ -> ())
| Closure (l, cont) ->
List.iter l ~f:(fun x -> add_param_def st x);
cont_deps blocks st cont
| Field (y, _) -> add_dep st x y
let program_deps st { blocks; _ } =
Addr.Map.iter
(fun _ block ->
List.iter block.body ~f:(fun (i, _) ->
match i with
| Let (x, e) ->
add_expr_def st x e;
expr_deps blocks st x e
| Assign (x, y) -> add_assign_def st x y
| Set_field (x, _, y) | Array_set (x, _, y) ->
possibly_mutable st x;
do_escape st Escape y
| Offset_ref _ -> ());
match fst block.branch with
| Return _ | Stop -> ()
| Raise (x, _) -> do_escape st Escape x
| Branch cont | Poptrap cont -> cont_deps blocks st cont
| Cond (x, cont1, cont2) ->
cont_deps blocks st cont1;
cont_deps blocks st ~ignore:x cont2
| Switch (x, a1) -> (
Array.iter a1 ~f:(fun cont -> cont_deps blocks st cont);
if not st.fast
then
match st.defs.(Code.Var.idx x) with
| Expr (Prim (Extern "%direct_obj_tag", [ Pv b ])) ->
let h = Hashtbl.create 16 in
Array.iteri a1 ~f:(fun i (pc, _) ->
Hashtbl.replace
h
pc
(i :: (try Hashtbl.find h pc with Not_found -> [])));
Hashtbl.iter
(fun pc tags ->
let block = Addr.Map.find pc blocks in
List.iter
~f:(fun (i, _) ->
match i with
| Let (y, Field (x', _)) when Var.equal b x' ->
Hashtbl.add st.known_cases y tags
| _ -> ())
block.body)
h
| Expr _ | Phi _ -> ())
| Pushtrap (cont, x, cont_h) ->
add_var st x;
st.defs.(Var.idx x) <- Phi { known = Var.Set.empty; others = true };
cont_deps blocks st cont_h;
cont_deps blocks st cont)
blocks
type approx =
| Top
| Values of
{ known : Var.Set.t
; others : bool
}
module Domain = struct
type t = approx
let bot = Values { known = Var.Set.empty; others = false }
let others = Values { known = Var.Set.empty; others = true }
let singleton x = Values { known = Var.Set.singleton x; others = false }
let equal x y =
match x, y with
| Top, Top -> true
| Values { known; others }, Values { known = known'; others = others' } ->
Var.Set.equal known known' && Bool.equal others others'
| Top, Values _ | Values _, Top -> false
let higher_escape_status s s' =
match s, s' with
| Escape, Escape -> false
| Escape, (Escape_constant | No) -> true
| Escape_constant, (Escape | Escape_constant) -> false
| Escape_constant, No -> true
| No, (Escape | Escape_constant | No) -> false
let rec value_escape ~update ~st ~approx s x =
let idx = Var.idx x in
if higher_escape_status s st.may_escape.(idx)
then (
st.may_escape.(idx) <- s;
match st.defs.(idx) with
| Expr (Block (_, a, _, _)) -> (
Array.iter ~f:(fun y -> variable_escape ~update ~st ~approx s y) a;
match s with
| Escape ->
st.possibly_mutable.(idx) <- true;
update ~children:true x
| Escape_constant | No -> ())
| Expr (Closure (params, _)) ->
List.iter
~f:(fun y ->
(match st.defs.(Var.idx y) with
| Phi { known; _ } -> st.defs.(Var.idx y) <- Phi { known; others = true }
| Expr _ -> assert false);
update ~children:false y)
params;
Var.Set.iter
(fun y -> variable_escape ~update ~st ~approx s y)
(Var.Map.find x st.return_values)
| _ -> ())
and variable_escape ~update ~st ~approx s x =
if higher_escape_status s st.variable_may_escape.(Var.idx x)
then (
st.variable_may_escape.(Var.idx x) <- s;
approx_escape ~update ~st ~approx s (Var.Tbl.get approx x))
and approx_escape ~update ~st ~approx s a =
match a with
| Top -> ()
| Values { known; _ } ->
Var.Set.iter (fun x -> value_escape ~update ~st ~approx s x) known
let join ~update ~st ~approx x y =
match x, y with
| Top, _ ->
approx_escape ~update ~st ~approx Escape y;
Top
| _, Top ->
approx_escape ~update ~st ~approx Escape x;
Top
| Values { known; others }, Values { known = known'; others = others' } ->
Values { known = Var.Set.union known known'; others = others || others' }
let join_set ~update ~st ~approx ?others:(o = false) f s =
Var.Set.fold
(fun x a -> join ~update ~st ~approx (f x) a)
s
(if o then others else bot)
let mark_mutable ~update ~st a =
match a with
| Top -> ()
| Values { known; _ } ->
Var.Set.iter
(fun x ->
if not st.possibly_mutable.(Var.idx x)
then (
st.possibly_mutable.(Var.idx x) <- true;
update ~children:true x))
known
end
let propagate st ~update approx x =
match st.defs.(Var.idx x) with
| Phi { known; others } ->
Domain.join_set ~update ~st ~approx ~others (fun y -> Var.Tbl.get approx y) known
| Expr e -> (
match e with
| Constant _ ->
Domain.bot
| Closure _ | Block _ -> Domain.singleton x
| Field (y, n) -> (
match Var.Tbl.get approx y with
| Values { known; others } ->
let tags =
try Some (Hashtbl.find st.known_cases x) with Not_found -> None
in
Domain.join_set
~others
~update
~st
~approx
(fun z ->
match st.defs.(Var.idx z) with
| Expr (Block (t, a, _, _))
when n < Array.length a
&&
match tags with
| Some tags -> List.memq t ~set:tags
| None -> true ->
let t = a.(n) in
add_dep st x t;
let a = Var.Tbl.get approx t in
if st.possibly_mutable.(Var.idx z)
then Domain.join ~update ~st ~approx Domain.others a
else a
| Expr (Block _ | Closure _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top -> Top)
| Prim (Extern "caml_check_bound", [ Pv y; _ ]) -> Var.Tbl.get approx y
| Prim ((Array_get | Extern "caml_array_unsafe_get"), [ Pv y; _ ]) -> (
if st.fast
then Domain.others
else
match Var.Tbl.get approx y with
| Values { known; others } ->
Domain.join_set
~update
~st
~approx
~others
(fun z ->
match st.defs.(Var.idx z) with
| Expr (Block (_, lst, _, _)) ->
Array.iter ~f:(fun t -> add_dep st x t) lst;
let a =
Array.fold_left
~f:(fun acc t ->
Domain.join ~update ~st ~approx (Var.Tbl.get approx t) acc)
~init:Domain.bot
lst
in
if st.possibly_mutable.(Var.idx z)
then Domain.join ~update ~st ~approx Domain.others a
else a
| Expr (Closure _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top -> Top)
| Prim (Array_get, _) -> Domain.others
| Prim ((Vectlength | Not | IsInt | Eq | Neq | Lt | Le | Ult), _) ->
Domain.bot
| Prim (Extern _, _) -> Domain.others
| Special _ -> Domain.others
| Apply { f; args; _ } -> (
match Var.Tbl.get approx f with
| Values { known; others } ->
if others
then
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Domain.join_set
~update
~st
~approx
~others
(fun g ->
match st.defs.(Var.idx g) with
| Expr (Closure (params, _)) when List.length args = List.length params
->
if not (Hashtbl.mem st.applied_functions (x, g))
then (
Hashtbl.add st.applied_functions (x, g) ();
if st.fast
then
List.iter
~f:(fun y ->
Domain.variable_escape ~update ~st ~approx Escape y)
args
else
List.iter2
~f:(fun p a ->
add_assign_def st p a;
update ~children:false p)
params
args;
Var.Set.iter
(fun y -> add_dep st x y)
(Var.Map.find g st.return_values));
Domain.join_set
~update
~st
~approx
(fun y -> Var.Tbl.get approx y)
(Var.Map.find g st.return_values)
| Expr (Closure (_, _)) ->
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Domain.variable_escape ~update ~st ~approx Escape g;
Domain.others
| Expr (Block _) -> Domain.bot
| Phi _ | Expr _ -> assert false)
known
| Top ->
List.iter
~f:(fun y -> Domain.variable_escape ~update ~st ~approx Escape y)
args;
Top))
let propagate st ~update approx x =
let res = propagate st ~update approx x in
match res with
| Values { known; _ } when Var.Set.cardinal known >= 200 ->
if debug () then Format.eprintf "TOP %a@." Var.print x;
Domain.approx_escape ~update ~st ~approx Escape res;
Top
| Values _ ->
(match st.variable_may_escape.(Var.idx x) with
| (Escape | Escape_constant) as s -> Domain.approx_escape ~update ~st ~approx s res
| No -> ());
if st.variable_possibly_mutable.(Var.idx x) then Domain.mark_mutable ~update ~st res;
res
| Top -> Top
module G = Dgraph.Make_Imperative (Var) (Var.ISet) (Var.Tbl)
module Solver = G.Solver (Domain)
let solver st =
let g =
{ G.domain = st.vars
; G.iter_children = (fun f x -> Var.Set.iter f st.deps.(Var.idx x))
}
in
Solver.f' () g (propagate st)
type info =
{ info_defs : def array
; info_approximation : Domain.t Var.Tbl.t
; info_may_escape : Var.ISet.t
; info_variable_may_escape : escape_status array
; info_return_vals : Var.Set.t Var.Map.t
}
let f ~fast p =
let t = Timer.make () in
let t1 = Timer.make () in
let rets = return_values p in
let nv = Var.count () in
let vars = Var.ISet.empty () in
let deps = Array.make nv Var.Set.empty in
let defs = Array.make nv undefined in
let variable_may_escape = Array.make nv No in
let variable_possibly_mutable = Array.make nv false in
let may_escape = Array.make nv No in
let possibly_mutable = Array.make nv false in
let st =
{ vars
; deps
; defs
; return_values = rets
; variable_may_escape
; variable_possibly_mutable
; may_escape
; possibly_mutable
; known_cases = Hashtbl.create 16
; applied_functions = Hashtbl.create 16
; fast
}
in
program_deps st p;
if times ()
then Format.eprintf " global flow analysis (initialize): %a@." Timer.print t1;
let t2 = Timer.make () in
let approximation = solver st in
if times ()
then Format.eprintf " global flow analysis (solve): %a@." Timer.print t2;
if times () then Format.eprintf " global flow analysis: %a@." Timer.print t;
if debug ()
then
Var.ISet.iter
(fun x ->
let s = Var.Tbl.get approximation x in
if not (Domain.equal s Domain.bot)
then
Format.eprintf
"%a: %a@."
Var.print
x
(fun f a ->
match a with
| Top -> Format.fprintf f "top"
| Values { known; others } ->
Format.fprintf
f
"{%a/%b} mut:%b vmut:%b vesc:%s esc:%s"
(Format.pp_print_list
~pp_sep:(fun f () -> Format.fprintf f ", ")
(fun f x ->
Format.fprintf
f
"%a(%s)"
Var.print
x
(match st.defs.(Var.idx x) with
| Expr (Closure _) -> "C"
| Expr (Block _) -> (
"B"
^
match st.may_escape.(Var.idx x) with
| Escape -> "X"
| _ -> "")
| _ -> "O")))
(Var.Set.elements known)
others
st.possibly_mutable.(Var.idx x)
st.variable_possibly_mutable.(Var.idx x)
(match st.variable_may_escape.(Var.idx x) with
| Escape -> "Y"
| Escape_constant -> "y"
| No -> "n")
(match st.may_escape.(Var.idx x) with
| Escape -> "Y"
| Escape_constant -> "y"
| No -> "n"))
s)
vars;
let info_variable_may_escape = variable_may_escape in
let info_may_escape = Var.ISet.empty () in
Array.iteri
~f:(fun i s -> if Poly.(s <> No) then Var.ISet.add info_may_escape (Var.of_idx i))
may_escape;
{ info_defs = defs
; info_approximation = approximation
; info_variable_may_escape
; info_may_escape
; info_return_vals = rets
}
let exact_call info f n =
match Var.Tbl.get info.info_approximation f with
| Top | Values { others = true; _ } -> false
| Values { known; others = false } ->
Var.Set.for_all
(fun g ->
match info.info_defs.(Var.idx g) with
| Expr (Closure (params, _)) -> List.length params = n
| Expr (Block _) -> true
| Expr _ | Phi _ -> assert false)
known
let function_arity info f =
match Var.Tbl.get info.info_approximation f with
| Top | Values { others = true; _ } -> None
| Values { known; others = false } -> (
match
Var.Set.fold
(fun g acc ->
match info.info_defs.(Var.idx g) with
| Expr (Closure (params, _)) -> (
let n = List.length params in
match acc with
| None -> Some (Some n)
| Some (Some n') when n <> n' -> Some None
| Some _ -> acc)
| Expr (Block _) -> acc
| Expr _ | Phi _ -> assert false)
known
None
with
| Some v -> v
| None -> None)