Source file generate.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
open! Stdlib
let debug = Debug.find "gen"
let times = Debug.find "times"
open Code
module J = Javascript
let string_of_set s =
String.concat ~sep:", " (List.map ~f:Addr.to_string (Addr.Set.elements s))
let rec list_group_rec f g l b m n =
match l with
| [] -> List.rev ((b, List.rev m) :: n)
| a :: r ->
let fa = f a in
if Poly.(fa = b)
then list_group_rec f g r b (g a :: m) n
else list_group_rec f g r fa [ g a ] ((b, List.rev m) :: n)
let list_group f g l =
match l with
| [] -> []
| a :: r -> list_group_rec f g r (f a) [ g a ] []
let rec map_last f l =
match l with
| [] -> assert false
| [ x ] -> [ f true x ]
| x :: xs -> f false x :: map_last f xs
module Share = struct
type 'a aux =
{ strings : 'a StringMap.t
; applies : 'a IntMap.t
; prims : 'a StringMap.t
}
let empty_aux =
{ prims = StringMap.empty; strings = StringMap.empty; applies = IntMap.empty }
type t =
{ mutable count : int aux
; mutable vars : J.ident aux
; alias_prims : bool
; alias_strings : bool
; alias_apply : bool
}
let add_string s t =
let n = try StringMap.find s t.strings with Not_found -> 0 in
{ t with strings = StringMap.add s (n + 1) t.strings }
let add_prim s t =
let n = try StringMap.find s t.prims with Not_found -> 0 in
{ t with prims = StringMap.add s (n + 1) t.prims }
let add_special_prim_if_exists s t =
if Primitive.exists s then { t with prims = StringMap.add s (-1) t.prims } else t
let add_apply i t =
let n = try IntMap.find i t.applies with Not_found -> 0 in
{ t with applies = IntMap.add i (n + 1) t.applies }
let add_code_string s share =
let share = add_string s share in
if Config.Flag.use_js_string ()
then share
else add_prim "caml_string_of_jsbytes" share
let add_code_istring s share = add_string s share
let rec get_constant c t =
match c with
| String s -> add_code_string s t
| IString s -> add_code_istring s t
| Tuple (_, args, _) -> Array.fold_left args ~init:t ~f:(fun t c -> get_constant c t)
| _ -> t
let add_args args t =
List.fold_left args ~init:t ~f:(fun t a ->
match a with
| Pc c -> get_constant c t
| _ -> t)
let get ?alias_strings ?(alias_prims = false) ?(alias_apply = true) { blocks; _ } : t =
let alias_strings =
match alias_strings with
| None -> Config.Flag.use_js_string ()
| Some x -> x
in
let count =
Addr.Map.fold
(fun _ block share ->
List.fold_left block.body ~init:share ~f:(fun share i ->
match i with
| Let (_, Constant c) -> get_constant c share
| Let (_, Apply (_, args, false)) -> add_apply (List.length args) share
| Let (_, Prim (Extern "%closure", [ Pc (IString name | String name) ])) ->
let name = Primitive.resolve name in
let share =
if Primitive.exists name then add_prim name share else share
in
share
| Let (_, Prim (Extern name, args)) ->
let name = Primitive.resolve name in
let share =
if Primitive.exists name then add_prim name share else share
in
add_args args share
| Let (_, Prim (_, args)) -> add_args args share
| _ -> share))
blocks
empty_aux
in
let count =
List.fold_left
[ "caml_trampoline"
; "caml_trampoline_return"
; "caml_wrap_exception"
; "caml_list_of_js_array"
; "caml_exn_with_js_backtrace"
]
~init:count
~f:(fun acc x -> add_special_prim_if_exists x acc)
in
{ count; vars = empty_aux; alias_strings; alias_prims; alias_apply }
let get_string gen s t =
if not t.alias_strings
then gen s
else
try
let c = StringMap.find s t.count.strings in
if c > 1
then (
try J.EVar (StringMap.find s t.vars.strings)
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cst_%s" s) in
let v = J.V x in
t.vars <- { t.vars with strings = StringMap.add s v t.vars.strings };
J.EVar v)
else gen s
with Not_found -> gen s
let get_prim gen s t =
let s = Primitive.resolve s in
if not t.alias_prims
then gen s
else
try
let c = StringMap.find s t.count.prims in
if c > 1 || c = -1
then (
try J.EVar (StringMap.find s t.vars.prims)
with Not_found ->
let x = Var.fresh_n s in
let v = J.V x in
t.vars <- { t.vars with prims = StringMap.add s v t.vars.prims };
J.EVar v)
else gen s
with Not_found -> gen s
let get_apply gen n t =
if not t.alias_apply
then gen n
else
try J.EVar (IntMap.find n t.vars.applies)
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "caml_call%d" n) in
let v = J.V x in
t.vars <- { t.vars with applies = IntMap.add n v t.vars.applies };
J.EVar v
end
module Ctx = struct
type t =
{ blocks : block Addr.Map.t
; live : int array
; share : Share.t
; debug : Parse_bytecode.Debug.t
; exported_runtime : Code.Var.t option
}
let initial ~exported_runtime blocks live share debug =
{ blocks; live; share; debug; exported_runtime }
end
let var x = J.EVar (J.V x)
let int n = J.ENum (J.Num.of_int32 (Int32.of_int n))
let int32 n = J.ENum (J.Num.of_int32 n)
let to_int cx = J.EBin (J.Bor, cx, int 0)
let unsigned' x = J.EBin (J.Lsr, x, int 0)
let unsigned x =
let pos_int32 =
match x with
| J.ENum num -> ( try Int32.(J.Num.to_int32 num >= 0l) with _ -> false)
| _ -> false
in
if pos_int32 then x else unsigned' x
let one = int 1
let zero = int 0
let plus_int x y =
match x, y with
| J.ENum y, x when J.Num.is_zero y -> x
| x, J.ENum y when J.Num.is_zero y -> x
| J.ENum x, J.ENum y -> J.ENum (J.Num.add x y)
| x, y -> J.EBin (J.Plus, x, y)
let bool e = J.ECond (e, one, zero)
let source_location ctx ?after pc =
match Parse_bytecode.Debug.find_loc ctx.Ctx.debug ?after pc with
| Some pi -> J.Pi pi
| None -> J.N
let float_const f = J.ENum (J.Num.of_float f)
let s_var name = J.EVar (J.ident name)
let runtime_fun ctx name =
match ctx.Ctx.exported_runtime with
| Some runtime -> J.EDot (J.EVar (J.V runtime), name)
| None -> s_var name
let str_js s = J.EStr (s, `Bytes)
let ecall f args loc = J.ECall (f, List.map args ~f:(fun x -> x, `Not_spread), loc)
let const_p = 0
let mutable_p = 1
let mutator_p = 2
let flush_p = 3
let or_p p q = max p q
let is_mutable p = p >= mutable_p
let kind k =
match k with
| `Pure -> const_p
| `Mutable -> mutable_p
| `Mutator -> mutator_p
let ocaml_string ~ctx ~loc s =
if Config.Flag.use_js_string ()
then s
else
let p = Share.get_prim (runtime_fun ctx) "caml_string_of_jsbytes" ctx.Ctx.share in
ecall p [ s ] loc
let rec constant_rec ~ctx x level instrs =
match x with
| String s ->
let e = Share.get_string str_js s ctx.Ctx.share in
let e = ocaml_string ~ctx ~loc:J.N e in
e, instrs
| IString s -> Share.get_string str_js s ctx.Ctx.share, instrs
| Float f -> float_const f, instrs
| Float_array a ->
( Mlvalue.Array.make
~tag:Obj.double_array_tag
~args:(Array.to_list (Array.map a ~f:float_const))
, instrs )
| Int64 i ->
let p =
Share.get_prim (runtime_fun ctx) "caml_int64_create_lo_mi_hi" ctx.Ctx.share
in
let lo = int (Int64.to_int i land 0xffffff)
and mi = int (Int64.to_int (Int64.shift_right i 24) land 0xffffff)
and hi = int (Int64.to_int (Int64.shift_right i 48) land 0xffff) in
ecall p [ lo; mi; hi ] J.N, instrs
| Tuple (tag, a, _) -> (
let constant_max_depth = Config.Param.constant_max_depth () in
let rec detect_list n acc = function
| Tuple (0, [| x; l |], _) -> detect_list (succ n) (x :: acc) l
| Int 0l -> if n > constant_max_depth then Some acc else None
| _ -> None
in
match detect_list 0 [] x with
| Some elts_rev ->
let arr, instrs =
List.fold_left elts_rev ~init:([], instrs) ~f:(fun (arr, instrs) elt ->
let js, instrs = constant_rec ~ctx elt level instrs in
Some js :: arr, instrs)
in
let p =
Share.get_prim (runtime_fun ctx) "caml_list_of_js_array" ctx.Ctx.share
in
ecall p [ J.EArr arr ] J.N, instrs
| None ->
let split = level = constant_max_depth in
let level = if split then 0 else level + 1 in
let l, instrs =
List.fold_left (Array.to_list a) ~init:([], instrs) ~f:(fun (l, instrs) cc ->
let js, instrs = constant_rec ~ctx cc level instrs in
js :: l, instrs)
in
let l, instrs =
if split
then
List.fold_left l ~init:([], instrs) ~f:(fun (acc, instrs) js ->
match js with
| J.EArr _ ->
let v = Code.Var.fresh_n "partial" in
let instrs =
(J.Variable_statement [ J.V v, Some (js, J.N) ], J.N) :: instrs
in
J.EVar (J.V v) :: acc, instrs
| _ -> js :: acc, instrs)
else List.rev l, instrs
in
Mlvalue.Block.make ~tag ~args:l, instrs)
| Int i -> int32 i, instrs
let constant ~ctx x level =
let expr, instr = constant_rec ~ctx x level [] in
expr, List.rev instr
type queue_elt =
{ prop : int
; cardinal : int
; ce : J.expression
; loc : J.location
; deps : Code.Var.Set.t
}
let access_queue queue x =
try
let elt = List.assoc x queue in
if elt.cardinal = 1
then (elt.prop, elt.ce), List.remove_assoc x queue
else
( (elt.prop, elt.ce)
, List.map queue ~f:(function
| x', elt when Var.equal x x' -> x', { elt with cardinal = pred elt.cardinal }
| x -> x) )
with Not_found -> (const_p, var x), queue
let access_queue' ~ctx queue x =
match x with
| Pc c ->
let js, instrs = constant ~ctx c (Config.Param.constant_max_depth ()) in
assert (List.is_empty instrs);
(const_p, js), queue
| Pv x -> access_queue queue x
let access_queue_may_flush queue v x =
let tx, queue = access_queue queue x in
let _, instrs, queue =
List.fold_left
queue
~init:(Code.Var.Set.singleton v, [], [])
~f:(fun (deps, instrs, queue) ((y, elt) as eq) ->
if Code.Var.Set.exists (fun p -> Code.Var.Set.mem p deps) elt.deps
then
( Code.Var.Set.add y deps
, (J.Variable_statement [ J.V y, Some (elt.ce, elt.loc) ], elt.loc) :: instrs
, queue )
else deps, instrs, eq :: queue)
in
instrs, (tx, List.rev queue)
let should_flush cond prop = cond <> const_p && cond + prop >= flush_p
let flush_queue expr_queue prop (l : J.statement_list) =
let instrs, expr_queue =
if prop >= flush_p
then expr_queue, []
else List.partition ~f:(fun (_, elt) -> should_flush prop elt.prop) expr_queue
in
let instrs =
List.map instrs ~f:(fun (x, elt) ->
J.Variable_statement [ J.V x, Some (elt.ce, elt.loc) ], elt.loc)
in
List.rev_append instrs l, expr_queue
let flush_all expr_queue l = fst (flush_queue expr_queue flush_p l)
let enqueue expr_queue prop x ce loc cardinal acc =
let instrs, expr_queue =
if Config.Flag.compact ()
then if is_mutable prop then flush_queue expr_queue prop [] else [], expr_queue
else flush_queue expr_queue flush_p []
in
let deps = Js_simpl.get_variable Code.Var.Set.empty ce in
let deps =
List.fold_left expr_queue ~init:deps ~f:(fun deps (x', elt) ->
if Code.Var.Set.mem x' deps then Code.Var.Set.union elt.deps deps else deps)
in
instrs @ acc, (x, { prop; ce; loc; cardinal; deps }) :: expr_queue
type state =
{ succs : (int, int list) Hashtbl.t
; backs : (int, Addr.Set.t) Hashtbl.t
; preds : (int, int) Hashtbl.t
; mutable loops : Addr.Set.t
; mutable loop_stack : (Addr.t * (J.Label.t * bool ref)) list
; mutable visited_blocks : Addr.Set.t
; mutable interm_idx : int
; ctx : Ctx.t
; mutable blocks : Code.block Addr.Map.t
}
let get_preds st pc = try Hashtbl.find st.preds pc with Not_found -> 0
let incr_preds st pc = Hashtbl.replace st.preds pc (get_preds st pc + 1)
let decr_preds st pc = Hashtbl.replace st.preds pc (get_preds st pc - 1)
let protect_preds st pc = Hashtbl.replace st.preds pc (get_preds st pc + 1000000)
let unprotect_preds st pc = Hashtbl.replace st.preds pc (get_preds st pc - 1000000)
module DTree = struct
type cond =
| IsTrue
| CEq of int32
| CLt of int32
| CLe of int32
type 'a t =
| If of cond * 'a t * 'a t
| Switch of (int list * 'a t) array
| Branch of 'a
| Empty
let normalize a =
a
|> Array.to_list
|> List.stable_sort ~cmp:(fun (cont1, _) (cont2, _) -> Poly.compare cont1 cont2)
|> list_group fst snd
|> List.map ~f:(fun (cont1, l1) -> cont1, List.flatten l1)
|> List.stable_sort ~cmp:(fun (_, l1) (_, l2) ->
compare (List.length l1) (List.length l2))
|> Array.of_list
let build_if b1 b2 = If (IsTrue, Branch b1, Branch b2)
let build_switch (a : cont array) : 'a t =
let m = Config.Param.switch_max_case () in
let ai = Array.mapi a ~f:(fun i x -> x, i) in
let ai : (Code.cont * int list) array =
Array.of_list (list_group fst snd (Array.to_list ai))
in
let rec loop low up =
let array_norm : (Code.cont * int list) array =
normalize (Array.sub ai ~pos:low ~len:(up - low + 1))
in
let array_len = Array.length array_norm in
if array_len = 1
then Branch (fst array_norm.(0))
else
try
match array_norm with
| [| (b1, [ i1 ]); (b2, _l2) |] ->
If (CEq (Int32.of_int i1), Branch b1, Branch b2)
| [| (b1, _l1); (b2, [ i2 ]) |] ->
If (CEq (Int32.of_int i2), Branch b2, Branch b1)
| [| (b1, l1); (b2, l2) |] ->
let bound l1 =
match l1, List.rev l1 with
| min :: _, max :: _ -> min, max
| _ -> assert false
in
let min1, max1 = bound l1 in
let min2, max2 = bound l2 in
if max1 < min2
then If (CLt (Int32.of_int max1), Branch b2, Branch b1)
else if max2 < min1
then If (CLt (Int32.of_int max2), Branch b1, Branch b2)
else raise Not_found
| _ -> raise Not_found
with Not_found -> (
let nbcases = ref 1 in
for i = 0 to array_len - 2 do
nbcases := !nbcases + List.length (snd array_norm.(i))
done;
if !nbcases <= m
then Switch (Array.map array_norm ~f:(fun (x, l) -> l, Branch x))
else
let h = (up + low) / 2 in
let b1 = loop low h and b2 = loop (succ h) up in
let range1 = snd ai.(h) and range2 = snd ai.(succ h) in
match range1, range2 with
| [], _ | _, [] -> assert false
| _, lower_bound2 :: _ -> If (CLe (Int32.of_int lower_bound2), b2, b1))
in
let len = Array.length ai in
if len = 0 then Empty else loop 0 (len - 1)
let rec fold_cont f b acc =
match b with
| If (_, b1, b2) ->
let acc = fold_cont f b1 acc in
let acc = fold_cont f b2 acc in
acc
| Switch a -> Array.fold_left a ~init:acc ~f:(fun acc (_, b) -> fold_cont f b acc)
| Branch (pc, _) -> f pc acc
| Empty -> acc
let nbcomp a =
let rec loop c = function
| Empty -> c
| Branch _ -> c
| If (_, a, b) ->
let c = succ c in
let c = loop c a in
let c = loop c b in
c
| Switch a ->
let c = succ c in
Array.fold_left a ~init:c ~f:(fun acc (_, b) -> loop acc b)
in
loop 0 a
end
let fold_children blocks pc f accu =
let block = Addr.Map.find pc blocks in
match block.branch with
| Return _ | Raise _ | Stop -> accu
| Branch (pc', _) | Poptrap ((pc', _), _) -> f pc' accu
| Pushtrap ((pc1, _), _, (pc2, _), _) ->
let accu = f pc1 accu in
let accu = f pc2 accu in
accu
| Cond (_, cont1, cont2) -> DTree.fold_cont f (DTree.build_if cont1 cont2) accu
| Switch (_, a1, a2) ->
let a1 = DTree.build_switch a1 and a2 = DTree.build_switch a2 in
let accu = DTree.fold_cont f a1 accu in
let accu = DTree.fold_cont f a2 accu in
accu
let rec build_graph st pc anc =
if not (Addr.Set.mem pc st.visited_blocks)
then (
st.visited_blocks <- Addr.Set.add pc st.visited_blocks;
let anc = Addr.Set.add pc anc in
let s = Code.fold_children st.blocks pc Addr.Set.add Addr.Set.empty in
let backs = Addr.Set.inter s anc in
Hashtbl.add st.backs pc backs;
let s = fold_children st.blocks pc (fun x l -> x :: l) [] in
let succs = List.filter s ~f:(fun pc -> not (Addr.Set.mem pc anc)) in
Hashtbl.add st.succs pc succs;
Addr.Set.iter (fun pc' -> st.loops <- Addr.Set.add pc' st.loops) backs;
List.iter succs ~f:(fun pc' -> build_graph st pc' anc);
List.iter succs ~f:(fun pc' -> incr_preds st pc'))
let rec dominance_frontier_rec st pc visited grey =
let n = get_preds st pc in
let v = try Addr.Map.find pc visited with Not_found -> 0 in
if v < n
then
let v = v + 1 in
let visited = Addr.Map.add pc v visited in
if v = n
then
let grey = Addr.Set.remove pc grey in
let s = Hashtbl.find st.succs pc in
List.fold_right s ~init:(visited, grey) ~f:(fun pc' (visited, grey) ->
dominance_frontier_rec st pc' visited grey)
else visited, if v = 1 then Addr.Set.add pc grey else grey
else visited, grey
let dominance_frontier st pc =
snd (dominance_frontier_rec st pc Addr.Map.empty Addr.Set.empty)
let rec resolve_node interm pc =
try resolve_node interm (fst (Addr.Map.find pc interm)) with Not_found -> pc
let resolve_nodes interm s =
Addr.Set.fold (fun pc s' -> Addr.Set.add (resolve_node interm pc) s') s Addr.Set.empty
let rec visit visited prev s m x l =
if not (Var.Set.mem x visited)
then
let visited = Var.Set.add x visited in
let y = Var.Map.find x m in
if Code.Var.compare x y = 0
then visited, None, l
else if Var.Set.mem y prev
then
let t = Code.Var.fresh () in
visited, Some (y, t), (x, t) :: l
else if Var.Set.mem y s
then
let visited, aliases, l = visit visited (Var.Set.add x prev) s m y l in
match aliases with
| Some (a, b) when Code.Var.compare a x = 0 -> visited, None, (b, a) :: (x, y) :: l
| _ -> visited, aliases, (x, y) :: l
else visited, None, (x, y) :: l
else visited, None, l
let visit_all params args =
let m = Subst.build_mapping params args in
let s = List.fold_left params ~init:Var.Set.empty ~f:(fun s x -> Var.Set.add x s) in
let _, l =
Var.Set.fold
(fun x (visited, l) ->
let visited, _, l = visit visited Var.Set.empty s m x l in
visited, l)
s
(Var.Set.empty, [])
in
l
let parallel_renaming params args continuation queue =
let l = List.rev (visit_all params args) in
List.fold_left
l
~f:(fun continuation (y, x) queue ->
let instrs, ((px, cx), queue) = access_queue_may_flush queue y x in
let st, queue =
flush_queue
queue
px
(instrs @ [ J.Variable_statement [ J.V y, Some (cx, J.N) ], J.N ])
in
st @ continuation queue)
~init:continuation
queue
let apply_fun_raw ctx f params =
let n = List.length params in
J.ECond
( J.EBin (J.EqEq, J.EDot (f, "length"), int n)
, ecall f params J.N
, ecall
(runtime_fun ctx "caml_call_gen")
[ f; J.EArr (List.map params ~f:(fun x -> Some x)) ]
J.N )
let generate_apply_fun ctx n =
let f' = Var.fresh_n "f" in
let f = J.V f' in
let params =
Array.to_list
(Array.init n ~f:(fun i ->
let a = Var.fresh_n (Printf.sprintf "a%d" i) in
J.V a))
in
let f' = J.EVar f in
let params' = List.map params ~f:(fun x -> J.EVar x) in
J.EFun
( None
, f :: params
, [ J.Statement (J.Return_statement (Some (apply_fun_raw ctx f' params'))), J.N ]
, J.N )
let apply_fun ctx f params loc =
if Config.Flag.inline_callgen ()
then apply_fun_raw ctx f params
else
let y = Share.get_apply (generate_apply_fun ctx) (List.length params) ctx.Ctx.share in
ecall y (f :: params) loc
let _ =
List.iter
~f:(fun (nm, nm') -> Primitive.alias nm nm')
[ "%int_mul", "caml_mul"
; "%int_div", "caml_div"
; "%int_mod", "caml_mod"
; "caml_int32_neg", "%int_neg"
; "caml_int32_add", "%int_add"
; "caml_int32_sub", "%int_sub"
; "caml_int32_mul", "%int_mul"
; "caml_int32_div", "%int_div"
; "caml_int32_mod", "%int_mod"
; "caml_int32_and", "%int_and"
; "caml_int32_or", "%int_or"
; "caml_int32_xor", "%int_xor"
; "caml_int32_shift_left", "%int_lsl"
; "caml_int32_shift_right", "%int_asr"
; "caml_int32_shift_right_unsigned", "%int_lsr"
; "caml_int32_of_int", "%identity"
; "caml_int32_to_int", "%identity"
; "caml_int32_of_float", "caml_int_of_float"
; "caml_int32_to_float", "%identity"
; "caml_int32_format", "caml_format_int"
; "caml_int32_of_string", "caml_int_of_string"
; "caml_int32_compare", "caml_int_compare"
; "caml_nativeint_neg", "%int_neg"
; "caml_nativeint_add", "%int_add"
; "caml_nativeint_sub", "%int_sub"
; "caml_nativeint_mul", "%int_mul"
; "caml_nativeint_div", "%int_div"
; "caml_nativeint_mod", "%int_mod"
; "caml_nativeint_and", "%int_and"
; "caml_nativeint_or", "%int_or"
; "caml_nativeint_xor", "%int_xor"
; "caml_nativeint_shift_left", "%int_lsl"
; "caml_nativeint_shift_right", "%int_asr"
; "caml_nativeint_shift_right_unsigned", "%int_lsr"
; "caml_nativeint_of_int", "%identity"
; "caml_nativeint_to_int", "%identity"
; "caml_nativeint_of_float", "caml_int_of_float"
; "caml_nativeint_to_float", "%identity"
; "caml_nativeint_of_int32", "%identity"
; "caml_nativeint_to_int32", "%identity"
; "caml_nativeint_format", "caml_format_int"
; "caml_nativeint_of_string", "caml_int_of_string"
; "caml_nativeint_compare", "caml_int_compare"
; "caml_nativeint_bswap", "caml_int32_bswap"
; "caml_int64_of_int", "caml_int64_of_int32"
; "caml_int64_to_int", "caml_int64_to_int32"
; "caml_int64_of_nativeint", "caml_int64_of_int32"
; "caml_int64_to_nativeint", "caml_int64_to_int32"
; "caml_float_of_int", "%identity"
; "caml_array_get_float", "caml_array_get"
; "caml_floatarray_get", "caml_array_get"
; "caml_array_get_addr", "caml_array_get"
; "caml_array_set_float", "caml_array_set"
; "caml_floatarray_set", "caml_array_set"
; "caml_array_set_addr", "caml_array_set"
; "caml_array_unsafe_get_float", "caml_array_unsafe_get"
; "caml_floatarray_unsafe_get", "caml_array_unsafe_get"
; "caml_array_unsafe_set_float", "caml_array_unsafe_set"
; "caml_floatarray_unsafe_set", "caml_array_unsafe_set"
; "caml_alloc_dummy_float", "caml_alloc_dummy"
; "caml_make_array", "%identity"
; "caml_ensure_stack_capacity", "%identity"
; "caml_js_from_float", "%identity"
; "caml_js_to_float", "%identity"
]
let internal_primitives = Hashtbl.create 31
let internal_prim name =
try Hashtbl.find internal_primitives name with Not_found -> None
let register_prim name k f =
Primitive.register name k None None;
Hashtbl.add internal_primitives name (Some f)
let register_un_prim name k f =
register_prim name k (fun l queue ctx loc ->
match l with
| [ x ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
f cx loc, or_p (kind k) px, queue
| _ -> assert false)
let register_un_prim_ctx name k f =
register_prim name k (fun l queue ctx loc ->
match l with
| [ x ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
f ctx cx loc, or_p (kind k) px, queue
| _ -> assert false)
let register_bin_prim name k f =
register_prim name k (fun l queue ctx loc ->
match l with
| [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
f cx cy loc, or_p (kind k) (or_p px py), queue
| _ -> assert false)
let register_tern_prim name f =
register_prim name `Mutator (fun l queue ctx loc ->
match l with
| [ x; y; z ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
let (pz, cz), queue = access_queue' ~ctx queue z in
f cx cy cz loc, or_p mutator_p (or_p px (or_p py pz)), queue
| _ -> assert false)
let register_un_math_prim name prim =
register_un_prim name `Pure (fun cx loc ->
ecall (J.EDot (s_var "Math", prim)) [ cx ] loc)
let register_bin_math_prim name prim =
register_bin_prim name `Pure (fun cx cy loc ->
ecall (J.EDot (s_var "Math", prim)) [ cx; cy ] loc)
let _ =
register_un_prim_ctx "%caml_format_int_special" `Pure (fun ctx cx loc ->
let s = J.EBin (J.Plus, str_js "", cx) in
ocaml_string ~ctx ~loc s);
register_bin_prim "caml_array_unsafe_get" `Mutable (fun cx cy _ ->
Mlvalue.Array.field cx cy);
register_bin_prim "%int_add" `Pure (fun cx cy _ -> to_int (plus_int cx cy));
register_bin_prim "%int_sub" `Pure (fun cx cy _ -> to_int (J.EBin (J.Minus, cx, cy)));
register_bin_prim "%direct_int_mul" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Mul, cx, cy)));
register_bin_prim "%direct_int_div" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Div, cx, cy)));
register_bin_prim "%direct_int_mod" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Mod, cx, cy)));
register_bin_prim "%int_and" `Pure (fun cx cy _ -> J.EBin (J.Band, cx, cy));
register_bin_prim "%int_or" `Pure (fun cx cy _ -> J.EBin (J.Bor, cx, cy));
register_bin_prim "%int_xor" `Pure (fun cx cy _ -> J.EBin (J.Bxor, cx, cy));
register_bin_prim "%int_lsl" `Pure (fun cx cy _ -> J.EBin (J.Lsl, cx, cy));
register_bin_prim "%int_lsr" `Pure (fun cx cy _ -> to_int (J.EBin (J.Lsr, cx, cy)));
register_bin_prim "%int_asr" `Pure (fun cx cy _ -> J.EBin (J.Asr, cx, cy));
register_un_prim "%int_neg" `Pure (fun cx _ -> to_int (J.EUn (J.Neg, cx)));
register_bin_prim "caml_eq_float" `Pure (fun cx cy _ -> bool (J.EBin (J.EqEq, cx, cy)));
register_bin_prim "caml_neq_float" `Pure (fun cx cy _ ->
bool (J.EBin (J.NotEq, cx, cy)));
register_bin_prim "caml_ge_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cy, cx)));
register_bin_prim "caml_le_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cx, cy)));
register_bin_prim "caml_gt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cy, cx)));
register_bin_prim "caml_lt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cx, cy)));
register_bin_prim "caml_add_float" `Pure (fun cx cy _ -> J.EBin (J.Plus, cx, cy));
register_bin_prim "caml_sub_float" `Pure (fun cx cy _ -> J.EBin (J.Minus, cx, cy));
register_bin_prim "caml_mul_float" `Pure (fun cx cy _ -> J.EBin (J.Mul, cx, cy));
register_bin_prim "caml_div_float" `Pure (fun cx cy _ -> J.EBin (J.Div, cx, cy));
register_un_prim "caml_neg_float" `Pure (fun cx _ -> J.EUn (J.Neg, cx));
register_bin_prim "caml_fmod_float" `Pure (fun cx cy _ -> J.EBin (J.Mod, cx, cy));
register_tern_prim "caml_array_unsafe_set" (fun cx cy cz _ ->
J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz));
register_un_prim "caml_alloc_dummy" `Pure (fun _ _ -> J.EArr []);
register_un_prim "caml_obj_dup" `Mutable (fun cx loc ->
J.ECall (J.EDot (cx, "slice"), [], loc));
register_un_prim "caml_int_of_float" `Pure (fun cx _loc -> to_int cx);
register_un_math_prim "caml_abs_float" "abs";
register_un_math_prim "caml_acos_float" "acos";
register_un_math_prim "caml_asin_float" "asin";
register_un_math_prim "caml_atan_float" "atan";
register_bin_math_prim "caml_atan2_float" "atan2";
register_un_math_prim "caml_ceil_float" "ceil";
register_un_math_prim "caml_cos_float" "cos";
register_un_math_prim "caml_exp_float" "exp";
register_un_math_prim "caml_floor_float" "floor";
register_un_math_prim "caml_log_float" "log";
register_bin_math_prim "caml_power_float" "pow";
register_un_math_prim "caml_sin_float" "sin";
register_un_math_prim "caml_sqrt_float" "sqrt";
register_un_math_prim "caml_tan_float" "tan";
register_un_prim "caml_js_from_bool" `Pure (fun cx _ ->
J.EUn (J.Not, J.EUn (J.Not, cx)));
register_un_prim "caml_js_to_bool" `Pure (fun cx _ -> to_int cx);
register_tern_prim "caml_js_set" (fun cx cy cz _ ->
J.EBin (J.Eq, J.EAccess (cx, cy), cz));
register_bin_prim "caml_js_get" `Mutable (fun cx cy _ -> J.EAccess (cx, cy));
register_bin_prim "caml_js_delete" `Mutable (fun cx cy _ ->
J.EUn (J.Delete, J.EAccess (cx, cy)));
register_bin_prim "caml_js_equals" `Mutable (fun cx cy _ ->
bool (J.EBin (J.EqEq, cx, cy)));
register_bin_prim "caml_js_instanceof" `Pure (fun cx cy _ ->
bool (J.EBin (J.InstanceOf, cx, cy)));
register_un_prim "caml_js_typeof" `Pure (fun cx _ -> J.EUn (J.Typeof, cx))
let throw_statement ctx cx k loc =
match (k : [ `Normal | `Reraise | `Notrace ]) with
| _ when not (Config.Flag.improved_stacktrace ()) -> [ J.Throw_statement cx, loc ]
| `Notrace -> [ J.Throw_statement cx, loc ]
| `Normal ->
[ ( J.Throw_statement
(ecall
(runtime_fun ctx "caml_exn_with_js_backtrace")
[ cx; bool (int 1) ]
loc)
, loc )
]
| `Reraise ->
[ ( J.Throw_statement
(ecall
(runtime_fun ctx "caml_exn_with_js_backtrace")
[ cx; bool (int 0) ]
loc)
, loc )
]
let rec translate_expr ctx queue loc _x e level : _ * J.statement_list =
match e with
| Apply (x, l, true) ->
let (px, cx), queue = access_queue queue x in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], or_p px mutator_p, queue)
in
(ecall cx args loc, prop, queue), []
| Apply (x, l, false) ->
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], mutator_p, queue)
in
let (prop', f), queue = access_queue queue x in
let prop = or_p prop prop' in
let e = apply_fun ctx f args loc in
(e, prop, queue), []
| Block (tag, a, array_or_not) ->
let contents, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue queue x in
cx :: args, or_p prop prop', queue)
(Array.to_list a)
~init:([], const_p, queue)
in
let x =
match array_or_not with
| Array -> Mlvalue.Array.make ~tag ~args:contents
| NotArray | Unknown -> Mlvalue.Block.make ~tag ~args:contents
in
(x, prop, queue), []
| Field (x, n) ->
let (px, cx), queue = access_queue queue x in
(Mlvalue.Block.field cx n, or_p px mutable_p, queue), []
| Closure (args, ((pc, _) as cont)) ->
let loc = source_location ctx ~after:true pc in
let clo = compile_closure ctx cont in
let clo =
match clo with
| (st, J.N) :: rem -> (st, J.U) :: rem
| _ -> clo
in
let clo = J.EFun (None, List.map args ~f:(fun v -> J.V v), clo, loc) in
(clo, flush_p, queue), []
| Constant c ->
let js, instrs = constant ~ctx c level in
(js, const_p, queue), instrs
| Prim (Extern "debugger", _) ->
let ins =
if Config.Flag.debugger () then J.Debugger_statement else J.Empty_statement
in
(int 0, const_p, queue), [ ins, loc ]
| Prim (p, l) ->
let res =
match p, l with
| Vectlength, [ x ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
Mlvalue.Array.length cx, px, queue
| Array_get, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
Mlvalue.Array.field cx cy, or_p mutable_p (or_p px py), queue
| Extern "caml_js_var", [ Pc (String nm | IString nm) ]
| Extern ("caml_js_expr" | "caml_pure_js_expr"), [ Pc (String nm | IString nm) ]
-> (
try
let lexbuf = Lexing.from_string nm in
let lexbuf =
match loc with
| J.N | J.U -> lexbuf
| J.Pi pi -> (
match pi.src with
| Some pos_fname ->
{ lexbuf with
lex_curr_p =
{ pos_fname
; pos_lnum = pi.line
; pos_cnum = pi.idx
; pos_bol = pi.idx
}
}
| None -> lexbuf)
in
let lex = Parse_js.Lexer.of_lexbuf lexbuf in
let e = Parse_js.parse_expr lex in
e, const_p, queue
with Parse_js.Parsing_error pi ->
failwith
(Printf.sprintf
"Parsing error %S%s at l:%d col:%d"
nm
(match pi.Parse_info.src with
| None -> ""
| Some s -> Printf.sprintf ", file %S" s)
pi.Parse_info.line
pi.Parse_info.col))
| Extern "%js_array", l ->
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], const_p, queue)
in
J.EArr (List.map args ~f:(fun x -> Some x)), prop, queue
| Extern "%closure", [ Pc (IString name | String name) ] ->
let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in
prim, const_p, queue
| Extern "%caml_js_opt_call", f :: o :: l ->
let (pf, cf), queue = access_queue' ~ctx queue f in
let (po, co), queue = access_queue' ~ctx queue o in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], mutator_p, queue)
in
ecall (J.EDot (cf, "call")) (co :: args) loc, or_p (or_p pf po) prop, queue
| Extern "%caml_js_opt_fun_call", f :: l ->
let (pf, cf), queue = access_queue' ~ctx queue f in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], mutator_p, queue)
in
ecall cf args loc, or_p pf prop, queue
| Extern "%caml_js_opt_meth_call", o :: Pc (String m | IString m) :: l ->
let (po, co), queue = access_queue' ~ctx queue o in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], mutator_p, queue)
in
ecall (J.EDot (co, m)) args loc, or_p po prop, queue
| Extern "%caml_js_opt_new", c :: l ->
let (pc, cc), queue = access_queue' ~ctx queue c in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
(cx, `Not_spread) :: args, or_p prop prop', queue)
l
~init:([], mutator_p, queue)
in
( J.ENew (cc, if List.is_empty args then None else Some args)
, or_p pc prop
, queue )
| Extern "caml_js_get", [ Pv o; Pc (String f | IString f) ] when J.is_ident f ->
let (po, co), queue = access_queue queue o in
J.EDot (co, f), or_p po mutable_p, queue
| Extern "caml_js_set", [ Pv o; Pc (String f | IString f); v ] when J.is_ident f
->
let (po, co), queue = access_queue queue o in
let (pv, cv), queue = access_queue' ~ctx queue v in
J.EBin (J.Eq, J.EDot (co, f), cv), or_p (or_p po pv) mutator_p, queue
| Extern "caml_js_delete", [ Pv o; Pc (String f | IString f) ] when J.is_ident f
->
let (po, co), queue = access_queue queue o in
J.EUn (J.Delete, J.EDot (co, f)), or_p po mutator_p, queue
| Extern "%overrideMod", [ Pc (String m | IString m); Pc (String f | IString f) ]
->
runtime_fun ctx (Printf.sprintf "caml_%s_%s" m f), const_p, queue
| Extern "%overrideMod", _ -> assert false
| Extern "%caml_js_opt_object", fields ->
let rec build_fields queue l =
match l with
| [] -> const_p, [], queue
| Pc (String nm | IString nm) :: x :: r ->
let (prop, cx), queue = access_queue' ~ctx queue x in
let prop', r', queue = build_fields queue r in
or_p prop prop', (J.PNS nm, cx) :: r', queue
| _ -> assert false
in
let prop, fields, queue = build_fields queue fields in
J.EObj fields, prop, queue
| Extern "caml_alloc_dummy_function", [ _; size ] ->
let i, queue =
let (_px, cx), queue = access_queue' ~ctx queue size in
match cx with
| J.ENum i -> Int32.to_int (J.Num.to_int32 i), queue
| _ -> assert false
in
let args = Array.to_list (Array.init i ~f:(fun _ -> J.V (Var.fresh ()))) in
let f = J.V (Var.fresh ()) in
let call =
ecall (J.EDot (J.EVar f, "fun")) (List.map args ~f:(fun v -> J.EVar v)) loc
in
let e =
J.EFun
(Some f, args, [ J.Statement (J.Return_statement (Some call)), J.N ], J.N)
in
e, const_p, queue
| Extern "caml_alloc_dummy_function", _ -> assert false
| Extern name, l -> (
let name = Primitive.resolve name in
match internal_prim name with
| Some f -> f l queue ctx loc
| None ->
if String.is_prefix name ~prefix:"%"
then failwith (Printf.sprintf "Unresolved internal primitive: %s" name);
let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in
let prim_kind = kind (Primitive.kind name) in
let args, prop, queue =
List.fold_right
~f:(fun x (args, prop, queue) ->
let (prop', cx), queue = access_queue' ~ctx queue x in
cx :: args, or_p prop prop', queue)
l
~init:([], prim_kind, queue)
in
ecall prim args loc, prop, queue)
| Not, [ x ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
J.EBin (J.Minus, one, cx), px, queue
| Lt, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
bool (J.EBin (J.Lt, cx, cy)), or_p px py, queue
| Le, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
bool (J.EBin (J.Le, cx, cy)), or_p px py, queue
| Eq, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
bool (J.EBin (J.EqEqEq, cx, cy)), or_p px py, queue
| Neq, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
bool (J.EBin (J.NotEqEq, cx, cy)), or_p px py, queue
| IsInt, [ x ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
bool (Mlvalue.is_immediate cx), px, queue
| Ult, [ x; y ] ->
let (px, cx), queue = access_queue' ~ctx queue x in
let (py, cy), queue = access_queue' ~ctx queue y in
bool (J.EBin (J.Lt, unsigned cx, unsigned cy)), or_p px py, queue
| (Vectlength | Array_get | Not | IsInt | Eq | Neq | Lt | Le | Ult), _ ->
assert false
in
res, []
and translate_instr ctx expr_queue loc instr =
match instr with
| Let (x, e) -> (
let (ce, prop, expr_queue), instrs = translate_expr ctx expr_queue loc x e 0 in
let keep_name x =
match Code.Var.get_name x with
| None -> false
| Some s -> not (String.is_prefix s ~prefix:"jsoo_")
in
match ctx.Ctx.live.(Var.idx x), e with
| 0, _ ->
flush_queue expr_queue prop (instrs @ [ J.Expression_statement ce, loc ])
| 1, _
when Config.Flag.compact () && ((not (Config.Flag.pretty ())) || not (keep_name x))
->
enqueue expr_queue prop x ce loc 1 instrs
| n, Constant (Int _ | Float _) -> enqueue expr_queue prop x ce loc n instrs
| _ ->
flush_queue
expr_queue
prop
(instrs @ [ J.Variable_statement [ J.V x, Some (ce, loc) ], loc ]))
| Set_field (x, n, y) ->
let (_px, cx), expr_queue = access_queue expr_queue x in
let (_py, cy), expr_queue = access_queue expr_queue y in
flush_queue
expr_queue
mutator_p
[ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Block.field cx n, cy)), loc ]
| Offset_ref (x, 1) ->
let (_px, cx), expr_queue = access_queue expr_queue x in
flush_queue
expr_queue
mutator_p
[ J.Expression_statement (J.EUn (J.IncrA, Mlvalue.Block.field cx 0)), loc ]
| Offset_ref (x, n) ->
let (_px, cx), expr_queue = access_queue expr_queue x in
flush_queue
expr_queue
mutator_p
[ J.Expression_statement (J.EBin (J.PlusEq, Mlvalue.Block.field cx 0, int n)), loc
]
| Array_set (x, y, z) ->
let (_px, cx), expr_queue = access_queue expr_queue x in
let (_py, cy), expr_queue = access_queue expr_queue y in
let (_pz, cz), expr_queue = access_queue expr_queue z in
flush_queue
expr_queue
mutator_p
[ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz)), loc ]
and translate_instrs ctx expr_queue loc instr =
match instr with
| [] -> [], expr_queue
| instr :: rem ->
let st, expr_queue = translate_instr ctx expr_queue loc instr in
let instrs, expr_queue = translate_instrs ctx expr_queue loc rem in
st @ instrs, expr_queue
and compile_block st queue (pc : Addr.t) frontier interm =
if (not (List.is_empty queue))
&& (Addr.Set.mem pc st.loops || not (Config.Flag.inline ()))
then flush_all queue (compile_block st [] pc frontier interm)
else (
if pc >= 0
then (
if Addr.Set.mem pc st.visited_blocks
then (
Format.eprintf "Trying to compile a block twice !!!! %d@." pc;
assert false);
st.visited_blocks <- Addr.Set.add pc st.visited_blocks);
if debug ()
then (
if Addr.Set.mem pc st.loops then Format.eprintf "@[<2>for(;;){@,";
Format.eprintf "block %d;@ @?" pc);
(if Addr.Set.mem pc st.loops
then
let lab =
match st.loop_stack with
| (_, (l, _)) :: _ -> J.Label.succ l
| [] -> J.Label.zero
in
st.loop_stack <- (pc, (lab, ref false)) :: st.loop_stack);
let succs = Hashtbl.find st.succs pc in
let backs = Hashtbl.find st.backs pc in
if pc < 0 then List.iter succs ~f:(fun pc -> unprotect_preds st pc);
let succs = List.map succs ~f:(fun pc -> pc, dominance_frontier st pc) in
let grey =
List.fold_right
~f:(fun (_, frontier) grey -> Addr.Set.union frontier grey)
succs
~init:Addr.Set.empty
in
let new_frontier = resolve_nodes interm grey in
let block = Addr.Map.find pc st.blocks in
let seq, queue =
translate_instrs st.ctx queue (source_location st.ctx pc) block.body
in
let body =
seq
@
match block.branch with
| Code.Pushtrap ((pc1, args1), x, (pc2, args2), pc3s) ->
let pc2s = resolve_nodes interm (dominance_frontier st pc2) in
let pc3s =
Addr.Set.fold
(fun pc3 acc ->
if Hashtbl.mem st.succs pc3
then
let rec limit pc =
if Addr.Set.mem pc pc2s
then false
else
let block = Addr.Map.find pc st.blocks in
(not (List.is_empty block.body))
||
match block.branch with
| Return _ -> false
| Poptrap ((pc', _), _) | Branch (pc', _) -> limit pc'
| _ -> true
in
if limit pc3 then Addr.Set.add pc3 acc else acc
else acc)
pc3s
Addr.Set.empty
in
let grey = Addr.Set.union pc2s pc3s in
Addr.Set.iter (incr_preds st) grey;
let prefix, grey', new_interm = colapse_frontier st grey interm in
assert (Addr.Set.cardinal grey' <= 1);
let inner_frontier = Addr.Set.union new_frontier grey' in
if debug () then Format.eprintf "@[<2>try {@,";
let body =
prefix
@ compile_branch
st
[]
(pc1, args1)
None
Addr.Set.empty
inner_frontier
new_interm
in
if debug () then Format.eprintf "} catch {@,";
let x =
let block2 = Addr.Map.find pc2 st.blocks in
let m = Subst.build_mapping args2 block2.params in
try Var.Map.find x m with Not_found -> x
in
let handler = compile_block st [] pc2 inner_frontier new_interm in
if debug () then Format.eprintf "}@]@ ";
Addr.Set.iter (decr_preds st) grey;
let after, exn_escape =
if not (Addr.Set.is_empty grey')
then
let pc = Addr.Set.choose grey' in
let exn_escape =
let x' = Var.fork x in
let found = ref false in
let map_var y =
if Code.Var.equal x y
then (
found := true;
x')
else y
in
let subst_block pc blocks =
Addr.Map.add pc (Subst.block map_var (Addr.Map.find pc blocks)) blocks
in
let blocks =
Code.traverse
{ fold = Code.fold_children }
subst_block
pc
st.blocks
st.blocks
in
if !found then st.blocks <- blocks;
if !found then Some x' else None
in
if Addr.Set.mem pc frontier
then [], exn_escape
else compile_block st [] pc frontier interm, exn_escape
else [], None
in
let handler =
if st.ctx.Ctx.live.(Var.idx x) > 0 && Config.Flag.excwrap ()
then
( J.Expression_statement
(J.EBin
( J.Eq
, J.EVar (J.V x)
, ecall
(Share.get_prim
(runtime_fun st.ctx)
"caml_wrap_exception"
st.ctx.Ctx.share)
[ J.EVar (J.V x) ]
J.N ))
, J.N )
:: handler
else handler
in
let handler =
match exn_escape with
| Some x' ->
handler
@ [ J.Variable_statement [ J.V x', Some (EVar (J.V x), J.N) ], J.N ]
| None -> handler
in
flush_all
queue
(( J.Try_statement (body, Some (J.V x, handler), None)
, source_location st.ctx pc )
:: after)
| _ ->
let prefix, new_frontier, new_interm =
colapse_frontier st new_frontier interm
in
assert (Addr.Set.cardinal new_frontier <= 1);
let cond =
compile_conditional
st
queue
pc
block.branch
block.handler
backs
new_frontier
new_interm
succs
in
prefix
@ cond
@
if Addr.Set.cardinal new_frontier = 0
then []
else
let pc = Addr.Set.choose new_frontier in
if Addr.Set.mem pc frontier
then []
else compile_block st [] pc frontier interm
in
if Addr.Set.mem pc st.loops
then
let label =
match st.loop_stack with
| (_, (l, used)) :: r ->
st.loop_stack <- r;
if !used then Some l else None
| [] -> assert false
in
let st =
( J.For_statement
( J.Left None
, None
, None
, Js_simpl.block
(if Addr.Set.cardinal frontier > 0
then (
if debug ()
then Format.eprintf "@ break (%d); }@]" (Addr.Set.choose new_frontier);
body @ [ J.Break_statement None, J.N ])
else (
if debug () then Format.eprintf "}@]";
body)) )
, source_location st.ctx pc )
in
match label with
| None -> [ st ]
| Some label -> [ J.Labelled_statement (label, st), J.N ]
else body)
and colapse_frontier st new_frontier interm =
if Addr.Set.cardinal new_frontier > 1
then (
if debug ()
then
Format.eprintf
"colapse frontier into %d: %s@."
st.interm_idx
(string_of_set new_frontier);
let x = Code.Var.fresh_n "switch" in
let a =
Addr.Set.elements new_frontier
|> List.map ~f:(fun pc -> pc, get_preds st pc)
|> List.sort ~cmp:(fun (_, (c1 : int)) (_, (c2 : int)) -> compare c2 c1)
|> List.map ~f:fst
in
if debug () then Format.eprintf "@ var %a;" Code.Var.print x;
let idx = st.interm_idx in
st.interm_idx <- idx - 1;
let switch =
let cases = Array.of_list (List.map a ~f:(fun pc -> pc, [])) in
if Array.length cases > 2
then Code.Switch (x, cases, [||])
else Code.Cond (x, cases.(1), cases.(0))
in
st.blocks <-
Addr.Map.add
idx
{ params = []; handler = None; body = []; branch = switch }
st.blocks;
let pc_i = List.mapi ~f:(fun i pc -> pc, i) a in
let default = 0 in
Addr.Set.iter (fun pc -> incr_preds st pc) new_frontier;
Addr.Set.iter (fun pc -> protect_preds st pc) new_frontier;
Hashtbl.add st.succs idx (Addr.Set.elements new_frontier);
Hashtbl.add st.backs idx Addr.Set.empty;
( [ J.Variable_statement [ J.V x, Some (int default, J.N) ], J.N ]
, Addr.Set.singleton idx
, List.fold_right pc_i ~init:interm ~f:(fun (pc, i) interm ->
Addr.Map.add pc (idx, (x, i, default = i)) interm) ))
else [], new_frontier, interm
and compile_decision_tree st _queue handler backs frontier interm succs loc cx dtree =
let rec loop cx = function
| DTree.Empty -> assert false
| DTree.Branch ((pc, _) as cont) ->
let never =
let d = try List.assoc pc succs with Not_found -> Addr.Set.empty in
(not (Addr.Set.mem pc frontier || Addr.Map.mem pc interm))
&& Addr.Set.is_empty d
in
never, compile_branch st [] cont handler backs frontier interm
| DTree.If (cond, cont1, cont2) ->
let never1, iftrue = loop cx cont1 in
let never2, iffalse = loop cx cont2 in
let e' =
match cond with
| IsTrue -> cx
| CEq n -> J.EBin (J.EqEqEq, int32 n, cx)
| CLt n -> J.EBin (J.Lt, int32 n, cx)
| CLe n -> J.EBin (J.Le, int32 n, cx)
in
( never1 && never2
, Js_simpl.if_statement
e'
loc
(Js_simpl.block iftrue)
never1
(Js_simpl.block iffalse)
never2 )
| DTree.Switch a ->
let all_never = ref true in
let len = Array.length a in
let last_index = len - 1 in
let arr =
Array.mapi a ~f:(fun i (ints, cont) ->
let never, cont = loop cx cont in
if not never then all_never := false;
let cont =
if never || i = last_index
then cont
else cont @ [ J.Break_statement None, J.N ]
in
ints, cont)
in
let _, last = arr.(last_index) in
let l = Array.to_list (Array.sub arr ~pos:0 ~len:(len - 1)) in
let l =
List.flatten
(List.map l ~f:(fun (ints, br) ->
map_last (fun last i -> int i, if last then br else []) ints))
in
!all_never, [ J.Switch_statement (cx, l, Some last, []), loc ]
in
let cx, binds =
match cx with
| (J.EVar _ | _) when DTree.nbcomp dtree <= 1 -> cx, []
| _ ->
let v = J.V (Code.Var.fresh ()) in
J.EVar v, [ J.Variable_statement [ v, Some (cx, J.N) ], J.N ]
in
binds @ snd (loop cx dtree)
and compile_conditional st queue pc last handler backs frontier interm succs =
List.iter succs ~f:(fun (pc, _) -> if Addr.Map.mem pc interm then decr_preds st pc);
(if debug ()
then
match last with
| Branch _ | Poptrap _ | Pushtrap _ -> ()
| Return _ -> Format.eprintf "ret"
| Raise _ -> Format.eprintf "raise"
| Stop -> Format.eprintf "stop"
| Cond _ -> Format.eprintf "@[<hv 2>cond{@,"
| Switch _ -> Format.eprintf "@[<hv 2>switch{@,");
let loc = source_location st.ctx pc in
let res =
match last with
| Return x ->
let (_px, cx), queue = access_queue queue x in
flush_all queue [ J.Return_statement (Some cx), loc ]
| Raise (x, k) ->
let (_px, cx), queue = access_queue queue x in
flush_all queue (throw_statement st.ctx cx k loc)
| Stop -> flush_all queue [ J.Return_statement None, loc ]
| Branch cont -> compile_branch st queue cont handler backs frontier interm
| Pushtrap _ -> assert false
| Poptrap (cont, _) ->
flush_all queue (compile_branch st [] cont None backs frontier interm)
| Cond (x, c1, c2) ->
let (_px, cx), queue = access_queue queue x in
let b =
compile_decision_tree
st
queue
handler
backs
frontier
interm
succs
loc
cx
(DTree.build_if c1 c2)
in
flush_all queue b
| Switch (x, [||], a2) ->
let (_px, cx), queue = access_queue queue x in
let code =
compile_decision_tree
st
queue
handler
backs
frontier
interm
succs
loc
(Mlvalue.Block.tag cx)
(DTree.build_switch a2)
in
flush_all queue code
| Switch (x, a1, [||]) ->
let (_px, cx), queue = access_queue queue x in
let code =
compile_decision_tree
st
queue
handler
backs
frontier
interm
succs
loc
cx
(DTree.build_switch a1)
in
flush_all queue code
| Switch (x, a1, a2) ->
let b1 =
compile_decision_tree
st
queue
handler
backs
frontier
interm
succs
loc
(var x)
(DTree.build_switch a1)
in
let b2 =
compile_decision_tree
st
queue
handler
backs
frontier
interm
succs
loc
(Mlvalue.Block.tag (var x))
(DTree.build_switch a2)
in
let code =
Js_simpl.if_statement
(Mlvalue.is_immediate (var x))
loc
(Js_simpl.block b1)
false
(Js_simpl.block b2)
false
in
flush_all queue code
in
(if debug ()
then
match last with
| Branch _ | Poptrap _ | Pushtrap _ | Return _ | Raise _ | Stop -> ()
| Switch _ | Cond _ -> Format.eprintf "}@]@ ");
res
and compile_argument_passing ctx queue (pc, args) _backs continuation =
if List.is_empty args
then continuation queue
else
let block = Addr.Map.find pc ctx.Ctx.blocks in
parallel_renaming block.params args continuation queue
and compile_exn_handling ctx queue (pc, args) handler continuation =
if pc < 0
then continuation queue
else
let block = Addr.Map.find pc ctx.Ctx.blocks in
match block.handler with
| None -> continuation queue
| Some (x0, (h_pc, h_args)) ->
let old_args =
match handler with
| Some (y, (old_pc, old_args)) ->
assert (
Var.compare x0 y = 0
&& old_pc = h_pc
&& List.length old_args = List.length h_args);
old_args
| None -> []
in
let m =
Subst.build_mapping (if List.is_empty args then [] else block.params) args
in
let h_block = Addr.Map.find h_pc ctx.Ctx.blocks in
let rec loop continuation old args params queue =
match args, params with
| [], [] -> continuation queue
| x :: args, y :: params ->
let z, old =
match old with
| [] -> None, []
| z :: old -> Some z, old
in
let x' = try Some (Var.Map.find x m) with Not_found -> Some x in
if Var.compare x x0 = 0 || Option.equal Var.equal x' z
then loop continuation old args params queue
else
let (px, cx), queue = access_queue queue x in
let st, queue =
match 2 with
| 0 -> assert false
| 1 -> enqueue queue px y cx (source_location ctx pc) 1 []
| _ ->
flush_queue
queue
px
[ (let loc = source_location ctx pc in
J.Variable_statement [ J.V y, Some (cx, loc) ], loc)
]
in
st @ loop continuation old args params queue
| _ -> assert false
in
loop continuation old_args h_args h_block.params queue
and compile_branch st queue ((pc, _) as cont) handler backs frontier interm =
compile_argument_passing st.ctx queue cont backs (fun queue ->
compile_exn_handling st.ctx queue cont handler (fun queue ->
if Addr.Set.mem pc backs
then (
let label =
match st.loop_stack with
| [] -> assert false
| (pc', _) :: rem ->
if pc = pc'
then None
else
let lab, used = List.assoc pc rem in
used := true;
Some lab
in
if debug ()
then
if Option.is_none label
then Format.eprintf "continue;@ "
else Format.eprintf "continue (%d);@ " pc;
flush_all queue [ J.Continue_statement label, J.N ])
else if Addr.Set.mem pc frontier || Addr.Map.mem pc interm
then (
if debug () then Format.eprintf "(br %d)@ " pc;
flush_all queue (compile_branch_selection pc interm))
else compile_block st queue pc frontier interm))
and compile_branch_selection pc interm =
try
let pc, (x, i, default) = Addr.Map.find pc interm in
if debug () then Format.eprintf "@ %a=%d;" Code.Var.print x i;
let branch = compile_branch_selection pc interm in
if default
then branch
else (J.Expression_statement (EBin (Eq, EVar (J.V x), int i)), J.N) :: branch
with Not_found -> []
and compile_closure ctx (pc, args) =
let st =
{ visited_blocks = Addr.Set.empty
; loops = Addr.Set.empty
; loop_stack = []
; succs = Hashtbl.create 17
; backs = Hashtbl.create 17
; preds = Hashtbl.create 17
; interm_idx = -1
; ctx
; blocks = ctx.Ctx.blocks
}
in
build_graph st pc Addr.Set.empty;
let current_blocks = st.visited_blocks in
st.visited_blocks <- Addr.Set.empty;
if debug () then Format.eprintf "@[<hov 2>closure{@,";
let res =
compile_branch st [] (pc, args) None Addr.Set.empty Addr.Set.empty Addr.Map.empty
in
if Addr.Set.cardinal st.visited_blocks <> Addr.Set.cardinal current_blocks
then (
let missing = Addr.Set.diff current_blocks st.visited_blocks in
Format.eprintf "Some blocks not compiled %s!@." (string_of_set missing);
assert false);
if debug () then Format.eprintf "}@]@ ";
List.map res ~f:(fun (st, loc) -> J.Statement st, loc)
let generate_shared_value ctx =
let strings =
( J.Statement
(J.Variable_statement
((match ctx.Ctx.exported_runtime with
| None -> []
| Some v ->
[ J.V v, Some (J.EDot (s_var Constant.global_object, "jsoo_runtime"), J.N)
])
@ List.map
(StringMap.bindings ctx.Ctx.share.Share.vars.Share.strings)
~f:(fun (s, v) -> v, Some (str_js s, J.N))
@ List.map
(StringMap.bindings ctx.Ctx.share.Share.vars.Share.prims)
~f:(fun (s, v) -> v, Some (runtime_fun ctx s, J.N))))
, J.U )
in
if not (Config.Flag.inline_callgen ())
then
let applies =
List.map (IntMap.bindings ctx.Ctx.share.Share.vars.Share.applies) ~f:(fun (n, v) ->
match generate_apply_fun ctx n with
| J.EFun (_, param, body, nid) ->
J.Function_declaration (v, param, body, nid), J.U
| _ -> assert false)
in
strings :: applies
else [ strings ]
let compile_program ctx pc =
let res = compile_closure ctx (pc, []) in
let res = generate_shared_value ctx @ res in
if debug () then Format.eprintf "@.@.";
res
let f (p : Code.program) ~exported_runtime ~live_vars debug =
let t' = Timer.make () in
let share = Share.get ~alias_prims:exported_runtime p in
let exported_runtime =
if exported_runtime then Some (Code.Var.fresh_n "runtime") else None
in
let ctx = Ctx.initial ~exported_runtime p.blocks live_vars share debug in
let p = compile_program ctx p.start in
if times () then Format.eprintf " code gen.: %a@." Timer.print t';
p