Source file inode.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
open! Import
include Inode_intf
module Make_internal
(Conf : Conf.S)
(H : Irmin.Hash.S)
(Node : Irmin.Private.Node.S with type hash = H.t) =
struct
let () =
if Conf.entries > Conf.stable_hash then
invalid_arg "entries should be lower or equal to stable_hash"
module Node = struct
include Node
module H = Irmin.Hash.Typed (H) (Node)
let hash = H.hash
end
let max_depth = int_of_float (log (2. ** 50.) /. log (float Conf.entries))
module T = struct
type hash = H.t [@@deriving irmin ~pp ~to_bin_string]
type step = Node.step [@@deriving irmin ~to_bin_string ~compare]
type metadata = Node.metadata [@@deriving irmin]
type value = Node.value [@@deriving irmin]
let default = Node.default
exception Dangling_hash = Node.Dangling_hash
let raise_dangling_hash c hash =
let context = "Irmin_pack.Inode." ^ c in
raise (Dangling_hash { context; hash })
end
module Step =
Irmin.Hash.Typed
(H)
(struct
type t = T.step
let t = T.step_t
end)
exception Max_depth of int
module Index : sig
type key
val key : T.step -> key
val index : depth:int -> key -> int
end = struct
open T
type key = bytes
let log_entry = int_of_float (log (float Conf.entries) /. log 2.)
let () =
assert (log_entry <> 0);
assert (Conf.entries = int_of_float (2. ** float log_entry))
let key =
match Conf.inode_child_order with
| `Hash_bits ->
fun s -> Bytes.unsafe_of_string (hash_to_bin_string (Step.hash s))
| `Seeded_hash | `Custom _ ->
fun s -> Bytes.unsafe_of_string (step_to_bin_string s)
let hash_bits ~depth k =
let byte = 8 in
let n = depth * log_entry / byte in
let r = depth * log_entry mod byte in
if n >= Bytes.length k then raise (Max_depth depth);
if r + log_entry <= byte then
let i = Bytes.get_uint8 k n in
let e0 = i lsr (byte - log_entry - r) in
let r0 = e0 land (Conf.entries - 1) in
r0
else
let i0 = Bytes.get_uint8 k n in
let to_read = byte - r in
let rest = log_entry - to_read in
let mask = (1 lsl to_read) - 1 in
let r0 = (i0 land mask) lsl rest in
if n + 1 >= Bytes.length k then raise (Max_depth depth);
let i1 = Bytes.get_uint8 k (n + 1) in
let r1 = i1 lsr (byte - rest) in
r0 + r1
let short_hash = Irmin.Type.(unstage (short_hash bytes))
let seeded_hash ~depth k = abs (short_hash ~seed:depth k) mod Conf.entries
let index =
match Conf.inode_child_order with
| `Seeded_hash -> seeded_hash
| `Hash_bits -> hash_bits
| `Custom f -> f
end
module StepMap = struct
include Map.Make (struct
type t = T.step
let compare = Irmin.Type.(unstage (compare T.step_t))
end)
let of_list l = List.fold_left (fun acc (k, v) -> add k v acc) empty l
end
module Bin = struct
open T
type ptr = { index : int; hash : H.t } [@@deriving irmin]
type tree = { depth : int; length : int; entries : ptr list }
[@@deriving irmin]
type v = Values of (step * value) list | Tree of tree [@@deriving irmin]
module V =
Irmin.Hash.Typed
(H)
(struct
type t = v
let t = v_t
end)
type t = { hash : H.t Lazy.t; stable : bool; v : v }
let pre_hash_v = Irmin.Type.(unstage (pre_hash v_t))
let t : t Irmin.Type.t =
let open Irmin.Type in
let pre_hash x = pre_hash_v x.v in
record "Bin.t" (fun hash stable v -> { hash = lazy hash; stable; v })
|+ field "hash" H.t (fun t -> Lazy.force t.hash)
|+ field "stable" bool (fun t -> t.stable)
|+ field "v" v_t (fun t -> t.v)
|> sealr
|> like ~pre_hash
let v ~stable ~hash v = { stable; hash; v }
let hash t = Lazy.force t.hash
let depth t =
match t.v with
| Values _ -> if t.stable then Some 0 else None
| Tree t -> Some t.depth
end
module Compress = struct
open T
type name = Indirect of int | Direct of step
type address = Indirect of int63 | Direct of H.t
let address_t : address Irmin.Type.t =
let open Irmin.Type in
variant "Compress.address" (fun i d -> function
| Indirect x -> i x | Direct x -> d x)
|~ case1 "Indirect" int63_t (fun x -> Indirect x)
|~ case1 "Direct" H.t (fun x -> Direct x)
|> sealv
type ptr = { index : int; hash : address }
let ptr_t : ptr Irmin.Type.t =
let open Irmin.Type in
record "Compress.ptr" (fun index hash -> { index; hash })
|+ field "index" int (fun t -> t.index)
|+ field "hash" address_t (fun t -> t.hash)
|> sealr
type tree = { depth : int; length : int; entries : ptr list }
let tree_t : tree Irmin.Type.t =
let open Irmin.Type in
record "Compress.tree" (fun depth length entries ->
{ depth; length; entries })
|+ field "depth" int (fun t -> t.depth)
|+ field "length" int (fun t -> t.length)
|+ field "entries" (list ptr_t) (fun t -> t.entries)
|> sealr
type value =
| Contents of name * address * metadata
| Node of name * address
let is_default = Irmin.Type.(unstage (equal T.metadata_t)) T.default
let value_t : value Irmin.Type.t =
let open Irmin.Type in
variant "Compress.value"
(fun
contents_ii
contents_x_ii
node_ii
contents_id
contents_x_id
node_id
contents_di
contents_x_di
node_di
contents_dd
contents_x_dd
node_dd
-> function
| Contents (Indirect n, Indirect h, m) ->
if is_default m then contents_ii (n, h) else contents_x_ii (n, h, m)
| Node (Indirect n, Indirect h) -> node_ii (n, h)
| Contents (Indirect n, Direct h, m) ->
if is_default m then contents_id (n, h) else contents_x_id (n, h, m)
| Node (Indirect n, Direct h) -> node_id (n, h)
| Contents (Direct n, Indirect h, m) ->
if is_default m then contents_di (n, h) else contents_x_di (n, h, m)
| Node (Direct n, Indirect h) -> node_di (n, h)
| Contents (Direct n, Direct h, m) ->
if is_default m then contents_dd (n, h) else contents_x_dd (n, h, m)
| Node (Direct n, Direct h) -> node_dd (n, h))
|~ case1 "contents-ii" (pair int Int63.t) (fun (n, i) ->
Contents (Indirect n, Indirect i, T.default))
|~ case1 "contents-x-ii" (triple int int63_t metadata_t) (fun (n, i, m) ->
Contents (Indirect n, Indirect i, m))
|~ case1 "node-ii" (pair int Int63.t) (fun (n, i) ->
Node (Indirect n, Indirect i))
|~ case1 "contents-id" (pair int H.t) (fun (n, h) ->
Contents (Indirect n, Direct h, T.default))
|~ case1 "contents-x-id" (triple int H.t metadata_t) (fun (n, h, m) ->
Contents (Indirect n, Direct h, m))
|~ case1 "node-id" (pair int H.t) (fun (n, h) ->
Node (Indirect n, Direct h))
|~ case1 "contents-di" (pair step_t Int63.t) (fun (n, i) ->
Contents (Direct n, Indirect i, T.default))
|~ case1 "contents-x-di" (triple step_t int63_t metadata_t)
(fun (n, i, m) -> Contents (Direct n, Indirect i, m))
|~ case1 "node-di" (pair step_t Int63.t) (fun (n, i) ->
Node (Direct n, Indirect i))
|~ case1 "contents-dd" (pair step_t H.t) (fun (n, i) ->
Contents (Direct n, Direct i, T.default))
|~ case1 "contents-x-dd" (triple step_t H.t metadata_t) (fun (n, i, m) ->
Contents (Direct n, Direct i, m))
|~ case1 "node-dd" (pair step_t H.t) (fun (n, i) ->
Node (Direct n, Direct i))
|> sealv
type v = Values of value list | Tree of tree
let v_t : v Irmin.Type.t =
let open Irmin.Type in
variant "Compress.v" (fun values tree -> function
| Values x -> values x | Tree x -> tree x)
|~ case1 "Values" (list value_t) (fun x -> Values x)
|~ case1 "Tree" tree_t (fun x -> Tree x)
|> sealv
type t = { hash : H.t; stable : bool; v : v }
let v ~stable ~hash v = { hash; stable; v }
let kind_node = Pack_value.Kind.Node
let kind_inode = Pack_value.Kind.Inode
let magic_node = Pack_value.Kind.to_magic kind_node
let magic_inode = Pack_value.Kind.to_magic kind_inode
let stable_t : bool Irmin.Type.t =
Irmin.Type.(map char)
(fun n -> n = magic_node)
(function true -> magic_node | false -> magic_inode)
let t =
let open Irmin.Type in
record "Compress.t" (fun hash stable v -> { hash; stable; v })
|+ field "hash" H.t (fun t -> t.hash)
|+ field "stable" stable_t (fun t -> t.stable)
|+ field "v" v_t (fun t -> t.v)
|> sealr
end
(** [Val_impl] defines the recursive structure of inodes.
{3 Inode Layout}
{4 Layout Types}
The layout ['a layout] associated to an inode ['a t] defines certain
properties of the inode:
- When [Total], the inode is self contained and immutable.
- When [Partial], chunks of the inode might be missing but they can be
fetched from the backend when needed using the available [find] function
stored in the layout. Mutable pointers act as cache.
- When [Truncated], chunks of the inode might be missing. Those chunks are
unreachable because the pointer to the backend is missing. The inode is
immutable.
{4 Layout Instantiation}
The layout of an inode is determined from the module [Val], it depends on
the way the inode was constructed:
- When [Total], it originates from [Val.v] or [Val.empty].
- When [Partial], it originates from [Val.of_bin], which is only used by
[Inode.find].
- When [Truncated], it originates from an [Irmin.Type] deserialisation
made possible by [Val.t].
Almost all other functions in [Val_impl] are polymorphic regarding the
layout of the manipulated inode.
{4 Details on the [Truncated] Layout}
The [Truncated] layout is identical to [Partial] except for the missing
[find] function.
On the one hand, when creating the root of a [Truncated] inode, the
pointers to children inodes - if any - are set to the [Broken] tag,
meaning that we know the hash to such children but we will have to way to
load them in the future. On the other hand, when adding children to a
[Truncated] inode, there is no such problem, the pointer is then set to
the [Intact] tag.
As of Irmin 2.4 (February 2021), inode deserialisation using Repr happens
in [irmin/slice.ml] and [irmin/sync_ext.ml], and maybe some other places.
At some point we might want to forbid such deserialisations and instead
use something in the flavour of [Val.of_bin] to create [Partial] inodes.
{3 Topmost Inode Ancestor}
[Val_impl.t] is a recursive type, it is labelled with a [depth] integer
that indicates the recursion depth. An inode with [depth = 0] corresponds
to the root of a directory, its hash is the hash of the directory.
A [Val.t] points to the topmost [Val_impl.t] of an inode tree. In most
scenarios, that topmost inode has [depth = 0], but it is also legal for
the topmost inode to be an intermediate inode, i.e. with [depth > 0].
The only way for an inode tree to have an intermediate inode as root is to
fetch it from the backend by calling [Make_ext.find], using the hash of
that inode.
Write-only operations are not permitted when the root is an intermediate
inode. *)
module Val_impl = struct
open T
let equal_value = Irmin.Type.(unstage (equal value_t))
type _ layout =
| Total : total_ptr layout
| Partial : find -> partial_ptr layout
| Truncated : truncated_ptr layout
and find = expected_depth:int -> hash -> partial_ptr t option
and partial_ptr_target =
| Dirty of partial_ptr t
| Lazy of hash
| Lazy_loaded of partial_ptr t
(** A partial pointer differentiates the [Dirty] and [Lazy_loaded]
cases in order to remember that only the latter should be
collected when [clear] is called.
The child in [Lazy_loaded] can only emanate from the disk. It can
be savely collected on [clear].
The child in [Dirty] can only emanate from a user modification,
e.g. through the [add] or [to_concrete] functions. It shouldn't be
collected on [clear] because it will be needed for [save]. *)
and partial_ptr = { mutable target : partial_ptr_target }
and total_ptr = Total_ptr of total_ptr t [@@unboxed]
and truncated_ptr = Broken of hash | Intact of truncated_ptr t
and 'ptr tree = { depth : int; length : int; entries : 'ptr option array }
and 'ptr v = Values of value StepMap.t | Tree of 'ptr tree
and 'ptr t = { hash : hash Lazy.t; stable : bool; v : 'ptr v }
let depth_of_v = function Values _ -> None | Tree t -> Some t.depth
let depth t = if t.stable then Some 0 else depth_of_v t.v
module Ptr = struct
let hash : type ptr. ptr layout -> ptr -> _ = function
| Total -> fun (Total_ptr ptr) -> Lazy.force ptr.hash
| Partial _ -> (
fun { target } ->
match target with
| Lazy hash -> hash
| Dirty { hash; _ } | Lazy_loaded { hash; _ } -> Lazy.force hash)
| Truncated -> (
function Broken h -> h | Intact ptr -> Lazy.force ptr.hash)
let target :
type ptr.
depth:int ->
cache:bool ->
force:bool ->
string ->
ptr layout ->
ptr ->
ptr t =
fun ~depth ~cache ~force context layout ->
match layout with
| Total -> fun (Total_ptr t) -> t
| Partial find -> (
function
| { target = Dirty entry } | { target = Lazy_loaded entry } ->
entry
| { target = Lazy _ } as t -> (
let h = hash layout t in
if not force then raise_dangling_hash context h
else
match find ~expected_depth:depth h with
| None -> raise_dangling_hash context h
| Some x ->
if cache then t.target <- Lazy_loaded x;
x))
| Truncated -> (
function
| Intact entry -> entry | Broken h -> raise_dangling_hash context h)
let of_target : type ptr. ptr layout -> ptr t -> ptr = function
| Total -> fun target -> Total_ptr target
| Partial _ -> fun target -> { target = Dirty target }
| Truncated -> fun target -> Intact target
let of_hash : type ptr. ptr layout -> hash -> ptr = function
| Total -> assert false
| Partial _ -> fun hash -> { target = Lazy hash }
| Truncated -> fun hash -> Broken hash
let save :
type ptr.
broken:(hash -> unit) ->
save_dirty:(ptr t -> unit) ->
clear:bool ->
ptr layout ->
ptr ->
unit =
fun ~broken ~save_dirty ~clear -> function
| Total -> fun (Total_ptr entry) -> (save_dirty [@tailcall]) entry
| Partial _ -> (
function
| { target = Dirty entry } as box ->
if clear then box.target <- Lazy (Lazy.force entry.hash)
else
box.target <- Lazy_loaded entry;
(save_dirty [@tailcall]) entry
| { target = Lazy_loaded entry } as box ->
if clear then box.target <- Lazy (Lazy.force entry.hash);
(save_dirty [@tailcall]) entry
| { target = Lazy _ } -> ())
| Truncated -> (
function
| Broken h -> (broken [@tailcall]) h
| Intact entry -> (save_dirty [@tailcall]) entry)
let clear :
type ptr.
iter_dirty:(ptr layout -> ptr t -> unit) -> ptr layout -> ptr -> unit
=
fun ~iter_dirty layout ptr ->
match layout with
| Partial _ -> (
match ptr with
| { target = Lazy _ } -> ()
| { target = Dirty ptr } -> iter_dirty layout ptr
| { target = Lazy_loaded ptr } as box ->
let hash = Lazy.force ptr.hash in
box.target <- Lazy hash)
| Total | Truncated -> ()
end
let pred layout t =
match t.v with
| Tree i ->
let hash_of_ptr = Ptr.hash layout in
Array.fold_left
(fun acc -> function
| None -> acc
| Some ptr -> `Inode (hash_of_ptr ptr) :: acc)
[] i.entries
| Values l ->
StepMap.fold
(fun _ v acc ->
let v =
match v with
| `Node _ as k -> k
| `Contents (k, _) -> `Contents k
in
v :: acc)
l []
let length_of_v = function
| Values vs -> StepMap.cardinal vs
| Tree vs -> vs.length
let length t = length_of_v t.v
let rec clear layout t =
match t.v with
| Tree i ->
Array.iter
(Option.iter (Ptr.clear ~iter_dirty:clear layout))
i.entries
| Values _ -> ()
let stable t = t.stable
type cont = off:int -> len:int -> (step * value) Seq.node
let rec seq_tree layout bucket_seq ~depth ~cache : cont -> cont =
fun k ~off ~len ->
assert (off >= 0);
assert (len > 0);
match bucket_seq () with
| Seq.Nil -> k ~off ~len
| Seq.Cons (None, rest) -> seq_tree layout rest ~depth ~cache k ~off ~len
| Seq.Cons (Some i, rest) ->
let trg = Ptr.target ~depth ~cache ~force:true "seq_tree" layout i in
let trg_len = length trg in
if off - trg_len >= 0 then
let off = off - trg_len in
seq_tree layout rest ~depth ~cache k ~off ~len
else
seq_v layout trg.v ~depth:(Some depth) ~cache
(seq_tree layout rest ~depth ~cache k)
~off ~len
and seq_values layout value_seq : cont -> cont =
fun k ~off ~len ->
assert (off >= 0);
assert (len > 0);
match value_seq () with
| Seq.Nil -> k ~off ~len
| Cons (x, rest) ->
if off = 0 then
let len = len - 1 in
if len = 0 then
Seq.Cons (x, Seq.empty)
else Seq.Cons (x, fun () -> seq_values layout rest k ~off ~len)
else
let off = off - 1 in
seq_values layout rest k ~off ~len
and seq_v layout v ~depth ~cache : cont -> cont =
fun k ~off ~len ->
assert (off >= 0);
assert (len > 0);
match (depth, v) with
| Some depth, Tree t ->
seq_tree layout (Array.to_seq t.entries) ~depth:(depth + 1) ~cache k
~off ~len
| _, Values vs -> seq_values layout (StepMap.to_seq vs) k ~off ~len
| _ -> assert false
let empty_continuation : cont = fun ~off:_ ~len:_ -> Seq.Nil
let seq layout ?offset:(off = 0) ?length:(len = Int.max_int) ?(cache = true)
t : (step * value) Seq.t =
if off < 0 then invalid_arg "Invalid pagination offset";
if len < 0 then invalid_arg "Invalid pagination length";
if len = 0 then Seq.empty
else fun () ->
seq_v layout t.v ~depth:(depth t) ~cache empty_continuation ~off ~len
let seq_tree layout ?(cache = true) i : (step * value) Seq.t =
let off = 0 in
let len = Int.max_int in
fun () ->
seq_v layout (Tree i) ~depth:(Some i.depth) ~cache empty_continuation
~off ~len
let seq_v layout ?(cache = true) v : (step * value) Seq.t =
let off = 0 in
let len = Int.max_int in
fun () ->
seq_v layout v ~depth:(depth_of_v v) ~cache empty_continuation ~off ~len
let to_bin_v layout = function
| Values vs ->
let vs = StepMap.bindings vs in
Bin.Values vs
| Tree t ->
let hash_of_ptr = Ptr.hash layout in
let _, entries =
Array.fold_left
(fun (i, acc) -> function
| None -> (i + 1, acc)
| Some ptr ->
let hash = hash_of_ptr ptr in
(i + 1, { Bin.index = i; hash } :: acc))
(0, []) t.entries
in
let entries = List.rev entries in
Bin.Tree { depth = t.depth; length = t.length; entries }
let to_bin layout t =
let v = to_bin_v layout t.v in
Bin.v ~stable:t.stable ~hash:t.hash v
type len = [ `Eq of int | `Ge of int ] [@@deriving irmin]
module Concrete = struct
type kind = Contents | Contents_x of metadata | Node [@@deriving irmin]
type entry = { name : step; kind : kind; hash : hash } [@@deriving irmin]
type 'a pointer = { index : int; pointer : hash; tree : 'a }
[@@deriving irmin]
type 'a tree = { depth : int; length : int; pointers : 'a pointer list }
[@@deriving irmin]
type t = Tree of t tree | Values of entry list | Blinded
[@@deriving irmin]
let metadata_equal = Irmin.Type.(unstage (equal metadata_t))
let to_entry (name, v) =
match v with
| `Contents (hash, m) ->
if metadata_equal m Node.default then
{ name; kind = Contents; hash }
else { name; kind = Contents_x m; hash }
| `Node hash -> { name; kind = Node; hash }
let of_entry e =
( e.name,
match e.kind with
| Contents -> `Contents (e.hash, Node.default)
| Contents_x m -> `Contents (e.hash, m)
| Node -> `Node e.hash )
type error =
[ `Invalid_hash of hash * hash * t
| `Invalid_depth of int * int * t
| `Invalid_length of len * int * t
| `Duplicated_entries of t
| `Duplicated_pointers of t
| `Unsorted_entries of t
| `Unsorted_pointers of t
| `Blinded_root
| `Too_large_values of t
| `Empty ]
[@@deriving irmin]
let rec length = function
| Values l -> `Eq (List.length l)
| Tree t ->
List.fold_left
(fun acc p ->
match (acc, length p.tree) with
| `Eq x, `Eq y -> `Eq (x + y)
| (`Eq x | `Ge x), (`Eq y | `Ge y) -> `Ge (x + y))
(`Eq 0) t.pointers
| Blinded -> `Ge 0
let pp = Irmin.Type.pp_json t
let pp_len ppf = function
| `Eq e -> Fmt.pf ppf "%d" e
| `Ge e -> Fmt.pf ppf "'at least %d'" e
let pp_error ppf = function
| `Invalid_hash (got, expected, t) ->
Fmt.pf ppf "invalid hash for %a@,got: %a@,expecting: %a" pp t
pp_hash got pp_hash expected
| `Invalid_depth (got, expected, t) ->
Fmt.pf ppf "invalid depth for %a@,got: %d@,expecting: %d" pp t got
expected
| `Invalid_length (got, expected, t) ->
Fmt.pf ppf "invalid length for %a@,got: %a@,expecting: %d" pp t
pp_len got expected
| `Duplicated_entries t -> Fmt.pf ppf "duplicated entries: %a" pp t
| `Duplicated_pointers t -> Fmt.pf ppf "duplicated pointers: %a" pp t
| `Unsorted_entries t -> Fmt.pf ppf "entries should be sorted: %a" pp t
| `Unsorted_pointers t ->
Fmt.pf ppf "pointers should be sorted: %a" pp t
| `Blinded_root -> Fmt.pf ppf "blinded root"
| `Too_large_values t ->
Fmt.pf ppf "A Values should have at most Conf.entries elements: %a"
pp t
| `Empty -> Fmt.pf ppf "concrete subtrees cannot be empty"
end
let to_concrete ~force (la : 'ptr layout) (t : 'ptr t) =
let rec aux t =
match t.v with
| Tree tr ->
( Lazy.force t.hash,
Concrete.Tree
{
depth = tr.depth;
length = tr.length;
pointers =
Array.fold_left
(fun (i, acc) e ->
match e with
| None -> (i + 1, acc)
| Some t ->
let pointer, tree =
try
aux
(Ptr.target ~depth:tr.depth ~cache:true ~force
"to_concrete" la t)
with Dangling_hash { hash; _ } ->
(hash, Concrete.Blinded)
in
(i + 1, { Concrete.index = i; tree; pointer } :: acc))
(0, []) tr.entries
|> snd
|> List.rev;
} )
| Values l ->
( Lazy.force t.hash,
Concrete.Values (List.map Concrete.to_entry (StepMap.bindings l))
)
in
snd (aux t)
exception Invalid_hash of hash * hash * Concrete.t
exception Invalid_depth of int * int * Concrete.t
exception Invalid_length of len * int * Concrete.t
exception Empty
exception Duplicated_entries of Concrete.t
exception Duplicated_pointers of Concrete.t
exception Unsorted_entries of Concrete.t
exception Unsorted_pointers of Concrete.t
exception Blinded_root
exception Too_large_values of Concrete.t
let hash_equal = Irmin.Type.(unstage (equal hash_t))
let of_concrete_exn ~depth la t =
let sort_entries =
List.sort_uniq (fun x y -> compare x.Concrete.name y.Concrete.name)
in
let sort_pointers =
List.sort_uniq (fun x y -> compare x.Concrete.index y.Concrete.index)
in
let check_entries t es =
if es = [] then raise Empty;
let s = sort_entries es in
if List.compare_length_with es Conf.entries > 0 then
raise (Too_large_values t);
if List.compare_lengths s es <> 0 then raise (Duplicated_entries t);
if s <> es then raise (Unsorted_entries t)
in
let check_pointers t ps =
if ps = [] then raise Empty;
let s = sort_pointers ps in
if List.length s <> List.length ps then raise (Duplicated_pointers t);
if s <> ps then raise (Unsorted_pointers t)
in
let hash v = Bin.V.hash (to_bin_v la v) in
let rec aux depth t =
match t with
| Concrete.Blinded -> None
| Concrete.Values l ->
check_entries t l;
Some (Values (StepMap.of_list (List.map Concrete.of_entry l)))
| Concrete.Tree tr ->
let entries = Array.make Conf.entries None in
check_pointers t tr.pointers;
List.iter
(fun { Concrete.index; pointer; tree } ->
match aux (depth + 1) tree with
| None -> entries.(index) <- Some (Ptr.of_hash la pointer)
| Some v ->
let hash = hash v in
if not (hash_equal hash pointer) then
raise (Invalid_hash (hash, pointer, t));
let t = { hash = lazy pointer; stable = false; v } in
entries.(index) <- Some (Ptr.of_target la t))
tr.pointers;
if depth <> tr.depth then raise (Invalid_depth (depth, tr.depth, t));
let () =
match Concrete.length t with
| `Eq length ->
if length <> tr.length then
raise (Invalid_length (`Eq length, tr.length, t))
| `Ge length ->
if length > tr.length then
raise (Invalid_length (`Ge length, tr.length, t))
in
Some (Tree { depth = tr.depth; length = tr.length; entries })
in
let v =
match aux depth t with None -> raise Blinded_root | Some v -> v
in
let length = length_of_v v in
let stable, hash =
if length > Conf.stable_hash || depth > 0 then (false, hash v)
else
let node = Node.of_seq (seq_v la v) in
(true, Node.hash node)
in
{ hash = lazy hash; stable; v }
let of_concrete ~depth la t =
try Ok (of_concrete_exn ~depth la t) with
| Invalid_hash (x, y, z) -> Error (`Invalid_hash (x, y, z))
| Invalid_depth (x, y, z) -> Error (`Invalid_depth (x, y, z))
| Invalid_length (x, y, z) -> Error (`Invalid_length (x, y, z))
| Empty -> Error `Empty
| Duplicated_entries t -> Error (`Duplicated_entries t)
| Duplicated_pointers t -> Error (`Duplicated_pointers t)
| Unsorted_entries t -> Error (`Unsorted_entries t)
| Unsorted_pointers t -> Error (`Unsorted_pointers t)
| Too_large_values t -> Error (`Too_large_values t)
| Blinded_root -> Error `Blinded_root
let hash t = Lazy.force t.hash
let hash_exn ?(force = true) t =
if force = false && (not @@ Lazy.is_val t.hash) then raise Not_found
else Lazy.force t.hash
let is_root t =
match t.v with
| Tree { depth; _ } -> depth = 0
| Values _ ->
t.stable
let check_write_op_supported t =
if not @@ is_root t then
failwith "Cannot perform operation on non-root inode value."
let stabilize layout t =
if t.stable then t
else
let n = length t in
if n > Conf.stable_hash then t
else
let hash =
lazy
(let vs = seq layout t in
Node.hash (Node.of_seq vs))
in
{ hash; stable = true; v = t.v }
let index ~depth k =
if depth >= max_depth then raise (Max_depth depth);
Index.index ~depth k
(** This function shouldn't be called with the [Total] layout. In the
future, we could add a polymorphic variant to the GADT parameter to
enfoce that. *)
let of_bin layout t =
let v =
match t.Bin.v with
| Bin.Values vs ->
let vs = StepMap.of_list vs in
Values vs
| Tree t ->
let entries = Array.make Conf.entries None in
let ptr_of_hash = Ptr.of_hash layout in
List.iter
(fun { Bin.index; hash } ->
entries.(index) <- Some (ptr_of_hash hash))
t.entries;
Tree { depth = t.Bin.depth; length = t.length; entries }
in
{ hash = t.Bin.hash; stable = t.Bin.stable; v }
let empty : 'a. 'a layout -> 'a t =
fun _ ->
let hash = lazy (Node.hash Node.empty) in
{ stable = true; hash; v = Values StepMap.empty }
let values layout vs =
let length = StepMap.cardinal vs in
if length = 0 then empty layout
else
let v = Values vs in
let hash = lazy (Bin.V.hash (to_bin_v layout v)) in
{ hash; stable = false; v }
let tree layout is =
let v = Tree is in
let hash = lazy (Bin.V.hash (to_bin_v layout v)) in
{ hash; stable = false; v }
let is_empty t =
match t.v with Values vs -> StepMap.is_empty vs | Tree _ -> false
let find_value ~cache layout ~depth t s =
let target_of_ptr = Ptr.target ~cache ~force:true "find_value" layout in
let key = Index.key s in
let rec aux ~depth = function
| Values vs -> ( try Some (StepMap.find s vs) with Not_found -> None)
| Tree t -> (
let i = index ~depth key in
let x = t.entries.(i) in
match x with
| None -> None
| Some i ->
let depth = depth + 1 in
aux ~depth (target_of_ptr ~depth i).v)
in
aux ~depth t.v
let find ?(cache = true) layout t s = find_value ~cache ~depth:0 layout t s
let rec add layout ~depth ~copy ~replace t (s, key) v k =
match t.v with
| Values vs ->
let length =
if replace then StepMap.cardinal vs else StepMap.cardinal vs + 1
in
let t =
if length <= Conf.entries then values layout (StepMap.add s v vs)
else
let vs = StepMap.bindings (StepMap.add s v vs) in
let empty =
tree layout
{ length = 0; depth; entries = Array.make Conf.entries None }
in
let aux t (s', v) =
let key' = Index.key s' in
(add [@tailcall]) layout ~depth ~copy:false ~replace t
(s', key') v (fun x -> x)
in
List.fold_left aux empty vs
in
k t
| Tree t -> (
let length = if replace then t.length else t.length + 1 in
let entries = if copy then Array.copy t.entries else t.entries in
let i = index ~depth key in
match entries.(i) with
| None ->
let target = values layout (StepMap.singleton s v) in
entries.(i) <- Some (Ptr.of_target layout target);
let t = tree layout { depth; length; entries } in
k t
| Some n ->
let t =
Ptr.target ~depth ~cache:true ~force:true "add" layout n
in
(add [@tailcall]) layout ~depth:(depth + 1) ~copy ~replace t
(s, key) v (fun target ->
entries.(i) <- Some (Ptr.of_target layout target);
let t = tree layout { depth; length; entries } in
k t))
let add layout ~copy t s v =
let k = Index.key s in
match find_value ~cache:true ~depth:0 layout t s with
| Some v' when equal_value v v' -> stabilize layout t
| Some _ ->
add ~depth:0 layout ~copy ~replace:true t (s, k) v Fun.id
|> stabilize layout
| None ->
add ~depth:0 layout ~copy ~replace:false t (s, k) v Fun.id
|> stabilize layout
let rec remove layout ~depth t (s, key) k =
match t.v with
| Values vs ->
let t = values layout (StepMap.remove s vs) in
k t
| Tree t -> (
let len = t.length - 1 in
if len <= Conf.entries then
let vs = seq_tree layout t in
let vs = StepMap.of_seq vs in
let vs = StepMap.remove s vs in
let t = values layout vs in
k t
else
let entries = Array.copy t.entries in
let i = index ~depth key in
match entries.(i) with
| None -> assert false
| Some t ->
let t =
Ptr.target ~depth ~cache:true ~force:true "remove" layout t
in
if length t = 1 then (
entries.(i) <- None;
let t = tree layout { depth; length = len; entries } in
k t)
else
remove ~depth:(depth + 1) layout t (s, key) @@ fun target ->
entries.(i) <- Some (Ptr.of_target layout target);
let t = tree layout { depth; length = len; entries } in
k t)
let remove layout t s =
let k = Index.key s in
match find_value ~cache:true layout ~depth:0 t s with
| None -> stabilize layout t
| Some _ -> remove layout ~depth:0 t (s, k) Fun.id |> stabilize layout
let of_seq la l =
let t =
let rec aux_big seq inode =
match seq () with
| Seq.Nil -> inode
| Seq.Cons ((s, v), rest) ->
aux_big rest (add la ~copy:false inode s v)
in
let len =
ref 0
in
let rec aux_small seq map =
match seq () with
| Seq.Nil ->
assert (!len <= Conf.entries);
values la map
| Seq.Cons ((s, v), rest) ->
let map =
StepMap.update s
(function
| None ->
incr len;
Some v
| Some _ -> Some v)
map
in
if !len = Conf.entries then aux_big rest (values la map)
else aux_small rest map
in
aux_small l StepMap.empty
in
stabilize la t
let save layout ~add ~mem t =
let clear =
false
in
let iter_entries =
let broken h =
if not @@ mem h then
Fmt.failwith
"You are trying to save to the backend an inode deserialized \
using [Irmin.Type] that used to contain pointer(s) to inodes \
which are unknown to the backend. Hash: %a"
pp_hash h
else
()
in
fun save_dirty arr ->
let iter_ptr = Ptr.save ~broken ~save_dirty ~clear layout in
Array.iter (Option.iter iter_ptr) arr
in
let rec aux ~depth t =
Log.debug (fun l -> l "save depth:%d" depth);
match t.v with
| Values _ -> add (Lazy.force t.hash) (to_bin layout t)
| Tree n ->
iter_entries
(fun t ->
let hash = Lazy.force t.hash in
if mem hash then () else aux ~depth:(depth + 1) t)
n.entries;
add (Lazy.force t.hash) (to_bin layout t)
in
aux ~depth:0 t
let check_stable layout t =
let target_of_ptr =
Ptr.target ~cache:true ~force:true "check_stable" layout
in
let rec check ~depth t any_stable_ancestor =
let stable = t.stable || any_stable_ancestor in
match t.v with
| Values _ -> true
| Tree tree ->
Array.for_all
(function
| None -> true
| Some t ->
let depth = depth + 1 in
let t = target_of_ptr ~depth t in
(if stable then not t.stable else true)
&& check ~depth t stable)
tree.entries
in
check ~depth:0 t t.stable
let contains_empty_map layout t =
let target_of_ptr =
Ptr.target ~cache:true ~force:true "contains_empty_map" layout
in
let rec check_lower ~depth t =
match t.v with
| Values l when StepMap.is_empty l -> true
| Values _ -> false
| Tree inodes ->
Array.exists
(function
| None -> false
| Some t ->
let depth = depth + 1 in
target_of_ptr ~depth t |> check_lower ~depth)
inodes.entries
in
check_lower ~depth:0 t
let is_tree t = match t.v with Tree _ -> true | Values _ -> false
type proof = Node.proof [@@deriving irmin]
module Proof = struct
let rec proof_of_concrete :
type a. hash Lazy.t -> Concrete.t -> (proof -> a) -> a =
fun h proof k ->
match proof with
| Blinded -> k (`Blinded (Lazy.force h))
| Values vs -> k (`Values (List.map Concrete.of_entry vs))
| Tree tr ->
let proofs =
List.fold_left
(fun acc (e : _ Concrete.pointer) ->
let hash = lazy e.pointer in
proof_of_concrete hash e.tree (fun proof ->
(e.index, proof) :: acc))
[] (List.rev tr.pointers)
in
k (`Inode (tr.length, proofs))
let hash_v v = Bin.V.hash (to_bin_v Truncated v)
let hash_values ~depth l =
let t =
match depth with
| 0 -> of_seq Truncated (List.to_seq l)
| _ -> values Truncated (StepMap.of_list l)
in
hash t
let hash_inode ~depth ~length es =
let entries = Array.make Conf.entries None in
List.iter (fun (index, ptr) -> entries.(index) <- Some ptr) es;
let v : truncated_ptr v = Tree { depth; length; entries } in
hash_v v
let rec concrete_of_proof :
type a. depth:int -> proof -> (hash -> Concrete.t -> a) -> a =
fun ~depth proof k ->
match proof with
| `Blinded h -> k h Concrete.Blinded
| `Values vs ->
assert (List.compare_length_with vs Conf.entries <= 0);
let hash = hash_values ~depth vs in
let c = Concrete.Values (List.map Concrete.to_entry vs) in
k hash c
| `Inode (length, proofs) -> concrete_of_inode ~length ~depth proofs k
and concrete_of_inode :
type a.
length:int ->
depth:int ->
(int * proof) list ->
(hash -> Concrete.t -> a) ->
a =
fun ~length ~depth proofs k ->
let rec aux ps es = function
| [] ->
let c = Concrete.Tree { depth; length; pointers = ps } in
let hash = hash_inode ~depth ~length es in
k hash c
| (index, proof) :: proofs ->
concrete_of_proof ~depth:(depth + 1) proof (fun pointer tree ->
let ps = { Concrete.tree; pointer; index } :: ps in
let es = (index, Broken pointer) :: es in
aux ps es proofs)
in
aux [] [] (List.rev proofs)
let proof_of_concrete h p = proof_of_concrete h p Fun.id
let concrete_of_proof ~depth p = concrete_of_proof ~depth p (fun _ t -> t)
let to_proof la t =
let p =
if t.stable then
let bindings =
seq la t
|> Seq.map Concrete.to_entry
|> List.of_seq
|> List.fast_sort (fun x y ->
compare_step x.Concrete.name y.Concrete.name)
in
Concrete.Values bindings
else to_concrete ~force:false la t
in
proof_of_concrete t.hash p
let of_proof (Partial _ as la) ~depth (proof : proof) =
match proof with
| `Values vs when List.compare_length_with vs Conf.entries > 0 -> (
if depth <> 0 then None
else
let t = of_seq Total (List.to_seq vs) in
let hash =
let x = hash t in
lazy x
in
match t.v with
| Values _ -> assert false
| Tree { depth; length; entries } ->
let entries =
Array.map
(function
| None -> None
| Some (Total_ptr ptr) ->
let hash = Lazy.force ptr.hash in
let ptr =
Ptr.of_hash la hash
in
Some ptr)
entries
in
let v = Tree { depth; length; entries } in
let t = { hash; v; stable = true } in
Some t)
| _ -> (
let c = concrete_of_proof ~depth proof in
match of_concrete la ~depth c with
| Ok v -> Some v
| Error _ -> None)
let of_concrete t = proof_of_concrete (lazy (failwith "blinded root")) t
let to_concrete = concrete_of_proof ~depth:0
end
end
module Raw = struct
type hash = H.t
type t = Bin.t
let t = Bin.t
let depth = Bin.depth
exception Invalid_depth of { expected : int; got : int; v : t }
let kind (t : t) =
if t.stable then Compress.kind_node else Compress.kind_inode
let hash t = Bin.hash t
let step_to_bin = Irmin.Type.(unstage (to_bin_string T.step_t))
let step_of_bin = Irmin.Type.(unstage (of_bin_string T.step_t))
let encode_compress = Irmin.Type.(unstage (encode_bin Compress.t))
let decode_compress = Irmin.Type.(unstage (decode_bin Compress.t))
let decode_compress_length =
match Irmin.Type.Size.of_encoding Compress.t with
| Unknown | Static _ -> assert false
| Dynamic f -> f
let encode_bin ~dict ~offset (t : t) k =
let step s : Compress.name =
let str = step_to_bin s in
if String.length str <= 3 then Direct s
else match dict str with Some i -> Indirect i | None -> Direct s
in
let hash h : Compress.address =
match offset h with
| None -> Compress.Direct h
| Some off -> Compress.Indirect off
in
let ptr : Bin.ptr -> Compress.ptr =
fun n ->
let hash = hash n.hash in
{ index = n.index; hash }
in
let value : T.step * T.value -> Compress.value = function
| s, `Contents (c, m) ->
let s = step s in
let v = hash c in
Compress.Contents (s, v, m)
| s, `Node n ->
let s = step s in
let v = hash n in
Compress.Node (s, v)
in
let v : Bin.v -> Compress.v = function
| Values vs -> Values (List.map value vs)
| Tree { depth; length; entries } ->
let entries = List.map ptr entries in
Tree { Compress.depth; length; entries }
in
let t = Compress.v ~stable:t.stable ~hash:k (v t.v) in
encode_compress t
exception Exit of [ `Msg of string ]
let decode_bin ~dict ~hash t off : int * t =
let off, i = decode_compress t off in
let step : Compress.name -> T.step = function
| Direct n -> n
| Indirect s -> (
match dict s with
| None -> raise_notrace (Exit (`Msg "dict"))
| Some s -> (
match step_of_bin s with
| Error e -> raise_notrace (Exit e)
| Ok v -> v))
in
let hash : Compress.address -> H.t = function
| Indirect off -> hash off
| Direct n -> n
in
let ptr : Compress.ptr -> Bin.ptr =
fun n ->
let hash = hash n.hash in
{ index = n.index; hash }
in
let value : Compress.value -> T.step * T.value = function
| Contents (n, h, metadata) ->
let name = step n in
let hash = hash h in
(name, `Contents (hash, metadata))
| Node (n, h) ->
let name = step n in
let hash = hash h in
(name, `Node hash)
in
let t : Compress.v -> Bin.v = function
| Values vs -> Values (List.rev_map value (List.rev vs))
| Tree { depth; length; entries } ->
let entries = List.map ptr entries in
Tree { depth; length; entries }
in
let t = Bin.v ~stable:i.stable ~hash:(lazy i.hash) (t i.v) in
(off, t)
let decode_bin_length = decode_compress_length
end
type hash = T.hash
let pp_hash = T.pp_hash
module Val = struct
include T
module I = Val_impl
type t =
| Total of I.total_ptr I.t
| Partial of I.partial_ptr I.layout * I.partial_ptr I.t
| Truncated of I.truncated_ptr I.t
type 'b apply_fn = { f : 'a. 'a I.layout -> 'a I.t -> 'b } [@@unboxed]
let apply : t -> 'b apply_fn -> 'b =
fun t f ->
match t with
| Total v -> f.f I.Total v
| Partial (layout, v) -> f.f layout v
| Truncated v -> f.f I.Truncated v
type map_fn = { f : 'a. 'a I.layout -> 'a I.t -> 'a I.t } [@@unboxed]
let map : t -> map_fn -> t =
fun t f ->
match t with
| Total v ->
let v' = f.f I.Total v in
if v == v' then t else Total v'
| Partial (layout, v) ->
let v' = f.f layout v in
if v == v' then t else Partial (layout, v')
| Truncated v ->
let v' = f.f I.Truncated v in
if v == v' then t else Truncated v'
let pred t = apply t { f = (fun layout v -> I.pred layout v) }
let of_seq l = Total (I.of_seq Total l)
let of_list l = of_seq (List.to_seq l)
let seq ?offset ?length ?cache t =
apply t { f = (fun layout v -> I.seq layout ?offset ?length ?cache v) }
let list ?offset ?length ?cache t =
List.of_seq (seq ?offset ?length ?cache t)
let empty = of_list []
let is_empty t = apply t { f = (fun _ v -> I.is_empty v) }
let find ?cache t s =
apply t { f = (fun layout v -> I.find ?cache layout v s) }
let add t s value =
let f layout v =
I.check_write_op_supported v;
I.add ~copy:true layout v s value
in
map t { f }
let remove t s =
let f layout v =
I.check_write_op_supported v;
I.remove layout v s
in
map t { f }
let pre_hash_binv = Irmin.Type.(unstage (pre_hash Bin.v_t))
let pre_hash_node = Irmin.Type.(unstage (pre_hash Node.t))
let t : t Irmin.Type.t =
let pre_hash x =
let stable = apply x { f = (fun _ v -> I.stable v) } in
if not stable then
let bin = apply x { f = (fun layout v -> I.to_bin layout v) } in
pre_hash_binv bin.v
else
let vs =
seq x
in
pre_hash_node (Node.of_seq vs)
in
Irmin.Type.map ~pre_hash Bin.t
(fun bin -> Truncated (I.of_bin I.Truncated bin))
(fun x -> apply x { f = (fun layout v -> I.to_bin layout v) })
let hash_exn ?force t = apply t { f = (fun _ v -> I.hash_exn ?force v) }
let save ~add ~mem t =
let f layout v =
I.check_write_op_supported v;
I.save layout ~add ~mem v
in
apply t { f }
let of_raw find' v =
let rec find ~expected_depth h =
Option.map (I.of_bin layout) (find' ~expected_depth h)
and layout = I.Partial find in
Partial (layout, I.of_bin layout v)
let to_raw t = apply t { f = (fun layout v -> I.to_bin layout v) }
let stable t = apply t { f = (fun _ v -> I.stable v) }
let length t = apply t { f = (fun _ v -> I.length v) }
let clear t = apply t { f = (fun layout v -> I.clear layout v) }
let index ~depth s = I.index ~depth (Index.key s)
let integrity_check t =
let f layout v =
let check_stable () =
let check () = I.check_stable layout v in
let n = length t in
if n > Conf.stable_hash then (not (stable t)) && check ()
else stable t && check ()
in
let contains_empty_map_non_root () =
let check () = I.contains_empty_map layout v in
if I.is_tree v then check () else false
in
check_stable () && not (contains_empty_map_non_root ())
in
apply t { f }
module Concrete = I.Concrete
module Proof = I.Proof
let to_concrete t =
apply t { f = (fun la v -> I.to_concrete ~force:true la v) }
let of_concrete t =
match I.of_concrete ~depth:0 Truncated t with
| Ok t -> Ok (Truncated t)
| Error _ as e -> e
type proof = I.proof [@@deriving irmin]
let to_proof (t : t) : proof =
apply t { f = (fun la v -> I.Proof.to_proof la v) }
let of_proof ~depth (p : proof) =
let find ~expected_depth:_ hash = raise_dangling_hash "of_proof" hash in
let la = I.Partial find in
Option.map (fun v -> Partial (la, v)) (I.Proof.of_proof la ~depth p)
let with_handler f_env t =
match t with
| Total _ -> t
| Truncated _ -> t
| Partial ((I.Partial find as la), v) ->
let find_v ~expected_depth h =
match find ~expected_depth h with
| None -> None
| Some v -> Some (Partial (la, v))
in
let find = f_env find_v in
let find_ptr ~expected_depth h =
match find ~expected_depth h with
| Some (Partial (_, v)) -> Some v
| _ -> None
in
let la = I.Partial find_ptr in
Partial (la, v)
let head t =
let f la (v : _ I.t) =
if v.stable then
let elts =
I.seq la v
|> List.of_seq
|> List.fast_sort (fun (x, _) (y, _) -> compare_step x y)
in
`Node elts
else
match v.v with
| I.Values n -> `Node (List.of_seq (StepMap.to_seq n))
| I.Tree v ->
let entries = ref [] in
for i = Array.length v.entries - 1 downto 0 do
match v.entries.(i) with
| None -> ()
| Some ptr ->
let h = I.Ptr.hash la ptr in
entries := (i, h) :: !entries
done;
`Inode (v.length, !entries)
in
apply t { f }
end
end
module Make
(H : Irmin.Hash.S)
(Node : Irmin.Private.Node.S with type hash = H.t)
(Inter : Internal
with type hash = H.t
and type Val.metadata = Node.metadata
and type Val.step = Node.step)
(Pack : Content_addressable.S
with type key = H.t
and type value = Inter.Raw.t) =
struct
module Key = H
module Val = Inter.Val
type 'a t = 'a Pack.t
type key = Key.t
type value = Inter.Val.t
exception Invalid_depth = Inter.Raw.Invalid_depth
let pp_value = Irmin.Type.pp Inter.Raw.t
let pp_invalid_depth ppf (expected, got, v) =
Fmt.pf ppf "Invalid depth: got %d, expecting %d (%a)" got expected pp_value
v
let check_depth_opt ~expected_depth:expected = function
| None -> ()
| Some v -> (
match Inter.Raw.depth v with
| None -> ()
| Some got ->
if got <> expected then raise (Invalid_depth { expected; got; v }))
let mem t k = Pack.mem t k
let find t k =
Pack.find t k >|= function
| None -> None
| Some v ->
let find ~expected_depth k =
let v = Pack.unsafe_find ~check_integrity:true t k in
check_depth_opt ~expected_depth v;
v
in
let v = Val.of_raw find v in
Some v
let save t v =
let add k v =
Pack.unsafe_append ~ensure_unique:true ~overcommit:false t k v
in
Val.save ~add ~mem:(Pack.unsafe_mem t) v
let hash_exn = Val.hash_exn
let add t v =
save t v;
Lwt.return (hash_exn v)
let equal_hash = Irmin.Type.(unstage (equal H.t))
let check_hash expected got =
if equal_hash expected got then ()
else
Fmt.invalid_arg "corrupted value: got %a, expecting %a" Inter.pp_hash
expected Inter.pp_hash got
let unsafe_add t k v =
check_hash k (hash_exn v);
save t v;
Lwt.return_unit
let batch = Pack.batch
let close = Pack.close
let clear = Pack.clear
let decode_bin_length = Inter.Raw.decode_bin_length
let protect_from_invalid_depth_exn f =
Lwt.catch f (function
| Invalid_depth { expected; got; v } ->
let msg = Fmt.to_to_string pp_invalid_depth (expected, got, v) in
Lwt.return (Error msg)
| e -> Lwt.fail e)
let integrity_check_inodes t k =
protect_from_invalid_depth_exn @@ fun () ->
find t k >|= function
| None ->
assert false
| Some v ->
if Inter.Val.integrity_check v then Ok ()
else
let msg =
Fmt.str "Problematic inode %a" (Irmin.Type.pp Inter.Val.t) v
in
Error msg
end
module Make_persistent
(H : Irmin.Hash.S)
(Node : Irmin.Private.Node.S with type hash = H.t)
(Inter : Internal
with type hash = H.t
and type Val.metadata = Node.metadata
and type Val.step = Node.step)
(CA : Pack_store.Maker
with type key = H.t
and type index = Pack_index.Make(H).t) =
struct
module Persistent_pack = CA.Make (Inter.Raw)
module Pack = Persistent_pack
include Make (H) (Node) (Inter) (Pack)
type index = Pack.index
let v = Pack.v
let sync = Pack.sync
let integrity_check = Pack.integrity_check
let clear_caches = Pack.clear_caches
end