Source file zed_rope.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
let max_leaf_size= 256
exception Out_of_bounds
type t=
| Leaf of Zed_string.t * (int * int)
| Node of int * (int * int) * t * (int * int) * t
type rope= t
let empty ()= Leaf (Zed_string.empty (), (0, 0))
let length= function
| Leaf(_, (len, _)) -> len
| Node(_, (len_l,_), _, (len_r,_), _) -> len_l + len_r
let size= function
| Leaf(_, (_,size)) -> size
| Node(_, (_,size_l), _, (_,size_r), _) -> size_l + size_r
let depth= function
| Leaf _ -> 0
| Node(d, _, _, _, _) -> d
let is_empty= function
| Leaf(_, (0, 0)) -> true
| _ -> false
let rec trim_hd t=
match t with
| Leaf (str, (l, _))->
let hd, _= Zed_string.extract_next str 0 in
let hd= hd
|> Zed_char.to_utf8
|> Zed_string.unsafe_of_utf8
in
let after= Zed_string.after str 1 in
let size= Zed_string.size after in
(Leaf (after, (l-1, size)), hd)
| Node (d, (ll, _sl), l, (lr, sr), r)->
let t, hd= trim_hd l in
let size= size t in
(Node (d, (ll-1, size), t, (lr, sr), r), hd)
let append_cm t cm=
let size= Zed_string.size cm in
let rec append_cm t=
match t with
| Leaf (str, (l, s))-> Leaf (Zed_string.append str cm, (l, s + size))
| Node (d, (ll, sl), l, (lr, sr), r)->
Node (d, (ll, sl), l, (lr, sr + size), append_cm r)
in
append_cm t
let rec make_fibo acc a b=
let c= a + b in
if c < b then
acc
else
make_fibo (c :: acc) b c
let fibo=
let l= make_fibo [1; 1; 0] 1 1 in
let n= List.length l in
let fibo= Array.make n 0 in
let rec loop i= function
| [] ->
fibo
| x :: l ->
fibo.(i) <- x;
loop (i - 1) l
in
loop (n - 1) l
let max_depth= Array.length fibo
let unsafe_concat rope1 rope2=
match rope1, rope2 with
| Leaf(_, (0,_)), _ -> rope2
| _, Leaf(_, (0,_)) -> rope1
| _ -> Node(
1 + max (depth rope1) (depth rope2),
(length rope1, size rope1), rope1,
(length rope2, size rope2), rope2)
let rec insert_to_forest forest acc idx=
let acc= unsafe_concat forest.(idx) acc in
if length acc < fibo.(idx + 1) then
forest.(idx) <- acc
else begin
forest.(idx) <- empty ();
insert_to_forest forest acc (idx + 1)
end
let rec concat_forest_until forest acc idx rope=
if length rope < fibo.(idx + 1) then
insert_to_forest forest (unsafe_concat acc rope) idx
else begin
let acc= unsafe_concat forest.(idx) acc in
forest.(idx) <- empty ();
concat_forest_until forest acc (idx + 1) rope
end
let rec balance_rec forest rope=
match rope with
| Leaf _ ->
concat_forest_until forest (empty ()) 2 rope
| Node(_depth, _len_l, rope_l, _len_r, rope_r) ->
balance_rec forest rope_l;
balance_rec forest rope_r
let rec concat_forest forest acc idx=
if idx = max_depth then
acc
else
concat_forest forest (unsafe_concat forest.(idx) acc) (idx + 1)
let balance rope=
match length rope with
| 0 | 1 ->
rope
| len when len >= fibo.(depth rope + 2) ->
rope
| _len ->
let forest= Array.make max_depth (empty ()) in
balance_rec forest rope;
concat_forest forest (empty ()) 2
let rec unsafe_get idx rope =
match rope with
| Leaf(text, _) ->
Zed_string.get text idx
| Node(_, (len_l,_), rope_l, _len_r, rope_r) ->
if idx < len_l then
unsafe_get idx rope_l
else
unsafe_get (idx - len_l) rope_r
let get rope idx =
if idx < 0 || idx >= length rope then
raise Out_of_bounds
else
unsafe_get idx rope
let rec unsafe_get_raw idx rope =
match rope with
| Leaf(text, _) ->
Zed_string.get_raw text idx
| Node(_, (_,size_l), rope_l, _len_r, rope_r) ->
if idx < size_l then
unsafe_get_raw idx rope_l
else
unsafe_get_raw (idx - size_l) rope_r
let get_raw rope idx =
if idx < 0 || idx >= size rope then
raise Out_of_bounds
else
unsafe_get_raw idx rope
let append rope1 rope2 =
let len_12_comb=
if length rope1 > 0 && length rope2 > 0 then
Zed_char.is_combining_mark (Zed_char.core (get rope2 0))
else
false
in
let len12 l1 l2= if len_12_comb then l1 + l2 - 1 else l1 + l2 in
match rope1, rope2 with
| Leaf(_, (0,_)), _ ->
rope2
| _, Leaf(_, (0,_)) ->
rope1
| Leaf(text1, (len1, size1)), Leaf(text2, (len2, size2))
when len12 len1 len2 <= max_leaf_size ->
Leaf(Zed_string.append text1 text2, (len12 len1 len2, size1+size2))
| Node(d, len_l, rope_l, _, Leaf(text1, (len1,size1))), Leaf(text2, (len2,size2))
when len12 len1 len2 <= max_leaf_size ->
let ls= len12 len1 len2, size1+size2 in
Node(
d,
len_l,
rope_l,
ls,
Leaf(Zed_string.append text1 text2, ls))
| Leaf(text1, (len1,size1)), Node(d, _, Leaf(text2, (len2,size2)), len_r, rope_r)
when len12 len1 len2 <= max_leaf_size ->
let ls= len12 len1 len2, size1+size2 in
Node(
d,
ls,
Leaf(Zed_string.append text1 text2, ls),
len_r,
rope_r)
| _ ->
let rope1, rope2=
if length rope1 > 0 && length rope2 > 0 then
if Zed_char.is_combining_mark (Zed_char.core (get rope2 0)) then
let r2, hd= trim_hd rope2 in
let r1= append_cm rope1 hd in
r1, r2
else
rope1, rope2
else
rope1, rope2
in
balance (Node(
1 + max (depth rope1) (depth rope2),
(length rope1, size rope1), rope1,
(length rope2, size rope2), rope2))
let concat sep l =
let rec loop acc = function
| [] -> acc
| x :: l -> loop (append (append acc sep) x) l
in
match l with
| [] -> empty ()
| x :: l -> loop x l
let rec unsafe_sub rope idx len =
match rope with
| Leaf(text, _) ->
let str= Zed_string.sub ~pos:idx ~len text in
let size= Zed_string.size str in
Leaf(str, (len,size))
| Node(_, (len_l,_), rope_l, (len_r,_), rope_r) ->
if len = len_l + len_r then
rope
else if idx >= len_l then
unsafe_sub rope_r (idx - len_l) len
else if idx + len <= len_l then
unsafe_sub rope_l idx len
else
append
(unsafe_sub rope_l idx (len_l - idx))
(unsafe_sub rope_r 0 (len - len_l + idx))
let sub rope idx len =
if idx < 0 || len < 0 || idx + len > length rope then
raise Out_of_bounds
else
unsafe_sub rope idx len
let make length char =
if length < max_leaf_size then
Leaf(Zed_string.make length char, (length, length))
else begin
let text = Zed_string.make max_leaf_size char in
let chunk = Leaf(text, (max_leaf_size, max_leaf_size)) in
let rec loop acc n =
if n = 0 then
acc
else if n < max_leaf_size then
let str= Zed_string.sub ~pos:0 ~len:n text in
let size= Zed_string.size str in
append acc (Leaf(str, (n, size)))
else
loop (append acc chunk) (n - max_leaf_size)
in
loop (empty ()) length
end
let singleton ch =
Leaf(Zed_string.make 1 ch, (1, 1))
let break rope pos =
let len = length rope in
if pos < 0 || pos > len then raise Out_of_bounds;
(unsafe_sub rope 0 pos, unsafe_sub rope pos (len - pos))
let before rope pos =
sub rope 0 pos
let after rope pos =
sub rope pos (length rope - pos)
let insert rope pos sub =
let before, after = break rope pos in
append before (append sub after)
let remove rope pos len =
append (sub rope 0 pos) (sub rope (pos + len) (length rope - pos - len))
let replace rope pos len repl =
append (sub rope 0 pos) (append repl (sub rope (pos + len) (length rope - pos - len)))
let insert_uChar rope pos ch =
if Uchar.to_int ch = 0 then
rope
else
if Zed_char.is_combining_mark ch then
if length rope = 0 then
failwith "inserting an individual combining mark"
else
if pos = 0 then
failwith "inserting an individual combining mark"
else
let pos= if pos > 0 then pos - 1 else pos in
let glyph= get rope pos in
if Zed_char.is_printable_core (Zed_char.core glyph) then
let glyph= Zed_char.append glyph ch in
replace rope pos 1 (Leaf (Zed_string.implode [glyph], (1, 1)))
else
failwith "inserting an individual combining mark"
else
let sub= Leaf (Zed_string.implode [Zed_char.unsafe_of_uChar ch], (1, 1)) in
insert rope pos sub
let lchop = function
| Leaf(_, (0,_)) -> empty ()
| rope -> sub rope 1 (length rope - 1)
let rchop = function
| Leaf(_, (0,_)) -> empty ()
| rope -> sub rope 0 (length rope - 1)
let rec iter f = function
| Leaf(text, _) ->
Zed_string.iter f text
| Node(_, _, rope_l, _, rope_r) ->
iter f rope_l;
iter f rope_r
let rec rev_iter f = function
| Leaf(text, _) ->
Zed_string.rev_iter f text
| Node(_, _, rope_l, _, rope_r) ->
rev_iter f rope_r;
rev_iter f rope_l
let rec fold f rope acc =
match rope with
| Leaf(text, _) ->
Zed_string.fold f text acc
| Node(_, _, rope_l, _, rope_r) ->
fold f rope_r (fold f rope_l acc)
let rec rev_fold f rope acc =
match rope with
| Leaf(text, _) ->
Zed_string.rev_fold f text acc
| Node(_, _, rope_l, _, rope_r) ->
rev_fold f rope_l (rev_fold f rope_r acc)
let rec map f = function
| Leaf(txt, len) ->
Leaf(Zed_string.map f txt, len)
| Node(depth, length_l, rope_l, length_r, rope_r) ->
let rope_l' = map f rope_l in
let rope_r' = map f rope_r in
Node(depth, length_l, rope_l', length_r, rope_r')
let rec rev_map f = function
| Leaf(txt, len) ->
Leaf(Zed_string.rev_map f txt, len)
| Node(depth, length_l, rope_l, length_r, rope_r) ->
let rope_l' = rev_map f rope_l in
let rope_r' = rev_map f rope_r in
Node(depth, length_r, rope_r', length_l, rope_l')
let rec iter_leaf f = function
| Leaf(text, _) ->
f text
| Node(_, _, rope_l, _, rope_r) ->
iter_leaf f rope_l;
iter_leaf f rope_r
let rec rev_iter_leaf f = function
| Leaf(text, _) ->
f text
| Node(_, _, rope_l, _, rope_r) ->
rev_iter_leaf f rope_r;
rev_iter_leaf f rope_l
let rec fold_leaf f rope acc =
match rope with
| Leaf(text, _) ->
f text acc
| Node(_, _, rope_l, _, rope_r) ->
fold_leaf f rope_r (fold_leaf f rope_l acc)
let rec rev_fold_leaf f rope acc =
match rope with
| Leaf(text, _) ->
f text acc
| Node(_, _, rope_l, _, rope_r) ->
rev_fold_leaf f rope_l (rev_fold_leaf f rope_r acc)
let rec cmp_loop str1 ofs1 str2 ofs2 rest1 rest2 =
if ofs1 = Zed_string.bytes str1 then
match rest1 with
| [] ->
if ofs2 = Zed_string.length str2 && rest2 = [] then
0
else
-1
| rope1 :: rest1 ->
cmp_search1 rope1 str2 ofs2 rest1 rest2
else if ofs2 = Zed_string.bytes str2 then
match rest2 with
| [] ->
1
| rope2 :: rest2 ->
cmp_search2 rope2 str1 ofs1 rest1 rest2
else
let chr1, ofs1 = Zed_string.extract_next str1 ofs1
and chr2, ofs2 = Zed_string.extract_next str2 ofs2 in
let d = Zed_char.compare_raw chr1 chr2 in
if d = 0 then
cmp_loop str1 ofs1 str2 ofs2 rest1 rest2
else
d
and cmp_search1 rope1 str2 ofs2 rest1 rest2 =
match rope1 with
| Leaf(str1, _) ->
cmp_loop str1 0 str2 ofs2 rest1 rest2
| Node(_, _, rope1_l, _, rope1_r) ->
cmp_search1 rope1_l str2 ofs2 (rope1_r :: rest1) rest2
and cmp_search2 rope2 str1 ofs1 rest1 rest2 =
match rope2 with
| Leaf(str2, _) ->
cmp_loop str1 ofs1 str2 0 rest1 rest2
| Node(_, _, rope2_l, _, rope2_r) ->
cmp_search2 rope2_l str1 ofs1 rest1 (rope2_r :: rest2)
let rec cmp_init rope1 rope2 rest1 =
match rope1 with
| Leaf(str1, _) ->
cmp_search2 rope2 str1 0 rest1 []
| Node(_, _, rope1_l, _, rope1_r) ->
cmp_init rope1_l rope2 (rope1_r :: rest1)
let compare r1 r2 = cmp_init r1 r2 []
let equal r1 r2 = length r1 = length r2 && compare r1 r2 = 0
module Zip = struct
type rope_zipper = {
str : Zed_string.t;
ofs : int;
leaf : t;
rest_b : t list;
rest_f : t list;
}
type t = {
idx : int;
pos : int;
zip : rope_zipper;
}
let rec make_rec ofs rope pos rest_b rest_f =
match rope with
| Leaf(str, _) ->
{ idx= Zed_string.move str 0 pos;
pos = pos;
zip = { str; ofs = ofs - pos; leaf = rope; rest_b; rest_f } }
| Node(_, _, r1, _, r2) ->
let len1 = length r1 in
if pos < len1 then
make_rec ofs r1 pos rest_b (r2 :: rest_f)
else
make_rec ofs r2 (pos - len1) (r1 :: rest_b) rest_f
let make_f rope pos =
if pos < 0 || pos > length rope then raise Out_of_bounds;
make_rec pos rope pos [] []
let make_b rope pos =
let len = length rope in
if pos < 0 || pos > len then raise Out_of_bounds;
let pos = len - pos in
make_rec pos rope pos [] []
let offset zip =
zip.zip.ofs + zip.pos
let rec next_leaf ofs rope rest_b rest_f =
match rope with
| Leaf(str, _) ->
let chr, idx= Zed_string.extract_next str 0 in
(chr,
{ idx;
pos = 1;
zip = { str; ofs; leaf = rope; rest_b; rest_f } })
| Node(_, _, r1, _, r2) ->
next_leaf ofs r1 rest_b (r2 :: rest_f)
let next zip =
if zip.idx = Zed_string.bytes zip.zip.str then
match zip.zip.rest_f with
| [] ->
raise Out_of_bounds
| rope :: rest ->
next_leaf (zip.zip.ofs + length zip.zip.leaf) rope (zip.zip.leaf :: zip.zip.rest_b) rest
else
let chr, idx= Zed_string.extract_next zip.zip.str zip.idx in
(chr, { zip with idx; pos = zip.pos + 1 })
let rec prev_leaf ofs rope rest_b rest_f =
match rope with
| Leaf(str, (len,_size)) ->
let chr, idx=
Zed_string.extract_prev str (Zed_string.bytes str)
in
(chr,
{ idx;
pos = len - 1;
zip = { str; ofs = ofs - len; leaf = rope; rest_b; rest_f } })
| Node(_, _, r1, _, r2) ->
prev_leaf ofs r2 (r1 :: rest_b) rest_f
let prev zip =
if zip.pos = 0 then
match zip.zip.rest_b with
| [] ->
raise Out_of_bounds
| rope :: rest ->
prev_leaf zip.zip.ofs rope rest (zip.zip.leaf :: zip.zip.rest_f)
else
let chr, idx= Zed_string.extract_prev zip.zip.str zip.idx in
(chr, { zip with idx; pos = zip.pos - 1 })
let rec move_f n ofs rope rest_b rest_f =
match rope with
| Leaf(str, (len,_size)) ->
if n <= len then
{ idx= Zed_string.move str 0 n;
pos = n;
zip = { str; ofs; leaf = rope; rest_b; rest_f } }
else begin
match rest_f with
| [] ->
raise Out_of_bounds
| rope' :: rest_f ->
move_f (n - len) (ofs + len) rope' (rope :: rest_b) rest_f
end
| Node(_, _, r1, _, r2) ->
move_f n ofs r1 rest_b (r2 :: rest_f)
let rec move_b n ofs rope rest_b rest_f =
match rope with
| Leaf(str, (len,_size)) ->
if n <= len then
{ idx= Zed_string.move str (Zed_string.bytes str) (-n);
pos = len - n;
zip = { str; ofs; leaf = rope; rest_b; rest_f } }
else begin
match rest_b with
| [] ->
raise Out_of_bounds
| rope' :: rest_b ->
move_b (n - len) (ofs - len) rope' rest_b (rope :: rest_f)
end
| Node(_, _, r1, _, r2) ->
move_b n ofs r2 (r1 :: rest_b) rest_f
let move n zip =
if n > 0 then
let len = length zip.zip.leaf in
if zip.pos + n <= len then
{ zip with
idx= Zed_string.move zip.zip.str zip.idx n;
pos = zip.pos + n }
else
match zip.zip.rest_f with
| [] ->
raise Out_of_bounds
| rope :: rest_f ->
move_f
(n - (len - zip.pos))
(zip.zip.ofs + len)
rope
(zip.zip.leaf :: zip.zip.rest_b)
rest_f
else
if zip.pos + n >= 0 then
{ zip with
idx= Zed_string.move zip.zip.str zip.idx n;
pos = zip.pos + n }
else
match zip.zip.rest_b with
| [] ->
raise Out_of_bounds
| rope :: rest_b ->
move_b
(n - zip.pos)
zip.zip.ofs
rope
rest_b
(zip.zip.leaf :: zip.zip.rest_f)
let at_bos zip= zip.zip.rest_b = [] && zip.idx = 0
let at_eos zip= zip.zip.rest_f = [] && zip.idx = Zed_string.bytes zip.zip.str
let rec sub_rec acc ropes len =
match ropes with
| [] ->
if len > 0 then
raise Out_of_bounds
else
acc
| rope :: rest ->
let len' = length rope in
if len <= len' then
append acc (sub rope 0 len)
else
sub_rec (append acc rope) rest (len - len')
let sub zip len =
if len < 0 then
raise Out_of_bounds
else
let len' = length zip.zip.leaf - zip.pos in
if len <= len' then
let str= Zed_string.sub ~pos:zip.pos ~len zip.zip.str in
let size= Zed_string.size str in
Leaf(str, (len,size))
else
let str= Zed_string.sub ~pos:zip.pos ~len:(Zed_string.length zip.zip.str - zip.pos) zip.zip.str in
let size= Zed_string.size str in
sub_rec (Leaf(str, (len',size))) zip.zip.rest_f (len - len')
let slice zip1 zip2 =
let ofs1 = offset zip1 and ofs2 = offset zip2 in
if ofs1 <= ofs2 then
sub zip1 (ofs2 - ofs1)
else
sub zip2 (ofs1 - ofs2)
let rec find_f f zip =
if at_eos zip then
zip
else
let ch, zip' = next zip in
if f ch then
zip
else
find_f f zip'
let rec find_b f zip =
if at_bos zip then
zip
else
let ch, zip' = prev zip in
if f ch then
zip
else
find_b f zip'
end
module Zip_raw = struct
type rope_zipper = {
str : Zed_string.t;
ofs : int;
leaf : t;
rest_b : t list;
rest_f : t list;
}
type t = {
idx : int;
pos : int;
zip : rope_zipper;
}
let rec make_f_rec ofs rope pos rest_b rest_f =
match rope with
| Leaf(str, _) ->
{ idx= Zed_string.move_raw str 0 pos;
pos = pos;
zip = { str; ofs = ofs - pos; leaf = rope; rest_b; rest_f } }
| Node(_, _, r1, _, r2) ->
let size1= size r1 in
if pos < size1 then
make_f_rec ofs r1 pos rest_b (r2 :: rest_f)
else
make_f_rec ofs r2 (pos - size1) (r1 :: rest_b) rest_f
let make_f rope pos =
if pos < 0 || pos > size rope then raise Out_of_bounds;
make_f_rec pos rope pos [] []
let rec make_b_rec ofs rope pos rest_b rest_f =
match rope with
| Leaf(str, (len,_)) ->
{ idx= Zed_string.move_raw str (Zed_string.bytes str) (- (len - pos));
pos = pos;
zip = { str; ofs = ofs - pos; leaf = rope; rest_b; rest_f } }
| Node(_, _, r1, _, r2) ->
let len1 = length r1 in
if pos < len1 then
make_b_rec ofs r1 pos rest_b (r2 :: rest_f)
else
make_b_rec ofs r2 (pos - len1) (r1 :: rest_b) rest_f
let make_b rope pos =
let size = size rope in
if pos < 0 || pos > size then raise Out_of_bounds;
let pos = size - pos in
make_b_rec pos rope pos [] []
let offset zip =
zip.zip.ofs + zip.pos
let rec next_leaf ofs rope rest_b rest_f =
match rope with
| Leaf(str, _) ->
let chr, idx= Zed_utf8.unsafe_extract_next (Zed_string.to_utf8 str) 0 in
(chr,
{ idx;
pos = 1;
zip = { str; ofs; leaf = rope; rest_b; rest_f } })
| Node(_, _, r1, _, r2) ->
next_leaf ofs r1 rest_b (r2 :: rest_f)
let next zip =
if zip.pos = Zed_string.size zip.zip.str then
match zip.zip.rest_f with
| [] ->
raise Out_of_bounds
| rope :: rest ->
next_leaf (zip.zip.ofs + size zip.zip.leaf) rope (zip.zip.leaf :: zip.zip.rest_b) rest
else
let chr, idx= Zed_utf8.unsafe_extract_next (Zed_string.to_utf8 zip.zip.str) zip.idx in
(chr, { zip with idx; pos = zip.pos + 1 })
let rec prev_leaf ofs rope rest_b rest_f =
match rope with
| Leaf(str, (_len, size)) ->
let chr, idx =
let str= Zed_string.to_utf8 str in
Zed_utf8.unsafe_extract_prev str (String.length str)
in
(chr,
{ idx;
pos = size - 1;
zip = { str; ofs = ofs - size; leaf = rope; rest_b; rest_f } })
| Node(_, _, r1, _, r2) ->
prev_leaf ofs r2 (r1 :: rest_b) rest_f
let prev zip =
if zip.pos = 0 then
match zip.zip.rest_b with
| [] ->
raise Out_of_bounds
| rope :: rest ->
prev_leaf zip.zip.ofs rope rest (zip.zip.leaf :: zip.zip.rest_f)
else
let chr, idx= Zed_utf8.unsafe_extract_prev (Zed_string.to_utf8 zip.zip.str) zip.idx in
(chr, { zip with idx; pos = zip.pos - 1 })
let rec move_f n ofs rope rest_b rest_f =
match rope with
| Leaf(str, (_,size)) ->
if n <= size then
{ idx= Zed_string.move_raw str 0 n;
pos = n;
zip = { str; ofs; leaf = rope; rest_b; rest_f } }
else begin
match rest_f with
| [] ->
raise Out_of_bounds
| rope' :: rest_f ->
move_f (n - size) (ofs + size) rope' (rope :: rest_b) rest_f
end
| Node(_, _, r1, _, r2) ->
move_f n ofs r1 rest_b (r2 :: rest_f)
let rec move_b n ofs rope rest_b rest_f =
match rope with
| Leaf(str, (_,size)) ->
if n <= size then
{ idx= Zed_string.move_raw str (Zed_string.bytes str) (-n);
pos = size - n;
zip = { str; ofs; leaf = rope; rest_b; rest_f } }
else begin
match rest_b with
| [] ->
raise Out_of_bounds
| rope' :: rest_b ->
move_b (n - size) (ofs - size) rope' rest_b (rope :: rest_f)
end
| Node(_, _, r1, _, r2) ->
move_b n ofs r2 (r1 :: rest_b) rest_f
let move n zip =
if n > 0 then
let size = size zip.zip.leaf in
if zip.pos + n <= size then
{ zip with
idx= Zed_string.move_raw zip.zip.str zip.idx n;
pos = zip.pos + n }
else
match zip.zip.rest_f with
| [] ->
raise Out_of_bounds
| rope :: rest_f ->
move_f
(n - (size - zip.pos))
(zip.zip.ofs + size)
rope
(zip.zip.leaf :: zip.zip.rest_b)
rest_f
else
if zip.pos + n >= 0 then
{ zip with
idx = Zed_string.move_raw zip.zip.str zip.idx (-n);
pos = zip.pos + n }
else
match zip.zip.rest_b with
| [] ->
raise Out_of_bounds
| rope :: rest_b ->
move_b
(n - zip.pos)
zip.zip.ofs
rope
rest_b
(zip.zip.leaf :: zip.zip.rest_f)
let at_bos zip= zip.zip.rest_b = [] && zip.idx = 0
let at_eos zip= zip.zip.rest_f = [] && zip.idx = Zed_string.bytes zip.zip.str
let rec find_f f zip =
if at_eos zip then
zip
else
let ch, zip' = next zip in
if f ch then
zip
else
find_f f zip'
let rec find_b f zip =
if at_bos zip then
zip
else
let ch, zip' = prev zip in
if f ch then
zip
else
find_b f zip'
end
module String_buffer = Buffer
module Buffer = struct
type t = {
mutable acc : rope;
mutable buf : Zed_string.Buf.buf;
mutable idx : int;
}
let create () = {
acc = empty ();
buf = Zed_string.Buf.create 1024;
idx = 0;
}
let add buffer x =
if buffer.idx = max_leaf_size then begin
let str= Zed_string.Buf.contents buffer.buf in
let size= Zed_string.size str in
buffer.acc <- append buffer.acc (Leaf(str, (max_leaf_size,size)));
Zed_string.Buf.reset buffer.buf;
Zed_string.Buf.add_zChar buffer.buf x;
buffer.idx <- Zed_string.Buf.length buffer.buf
end else begin
Zed_string.Buf.add_zChar buffer.buf x;
buffer.idx <- Zed_string.Buf.length buffer.buf
end
let add_uChar buffer x =
if buffer.idx = max_leaf_size then begin
let str= Zed_string.Buf.contents buffer.buf in
let size= Zed_string.size str in
buffer.acc <- append buffer.acc (Leaf(str, (max_leaf_size,size)));
Zed_string.Buf.reset buffer.buf;
Zed_string.Buf.add_uChar buffer.buf x;
buffer.idx <- Zed_string.Buf.length buffer.buf
end else begin
Zed_string.Buf.add_uChar buffer.buf x;
buffer.idx <- Zed_string.Buf.length buffer.buf
end
let add_rope buf rope= iter (add buf) rope
let add_string buf str= Zed_string.iter (add buf) str
let contents buffer =
if buffer.idx = 0 then
buffer.acc
else
let str= Zed_string.Buf.contents buffer.buf in
let size= Zed_string.size str in
append
buffer.acc
(Leaf (str, (buffer.idx, size)))
let reset buffer =
Zed_string.Buf.reset buffer.buf;
buffer.acc <- empty ();
buffer.idx <- 0
end
let init n f =
let buf = Buffer.create () in
for i = 0 to n - 1 do
Buffer.add buf (f i)
done;
Buffer.contents buf
let init_from_uChars len f=
match len with
| 0-> empty ()
| len when len > 0 ->
let rec create n=
if n > 0 then
f (len - n) :: create (n-1)
else []
in
let uChars= create len in
let zChars, _= Zed_char.zChars_of_uChars uChars in
let buf = Buffer.create () in
List.iter (Buffer.add buf) zChars;
Buffer.contents buf
| _-> raise (Invalid_argument "Zed_rope.init_from_uChars")
let of_string s=
let buf= Buffer.create () in
Buffer.add_string buf s;
Buffer.contents buf
let rec to_string t=
match t with
| Leaf (s,_)-> s
| Node (_,_,l,_,r)-> Zed_string.append (to_string l) (to_string r)
let case_map f ?locale:_ t =
let buf = Buffer.create () in
let rec loop zip =
match Zip_raw.next zip with
| exception Out_of_bounds ->
Buffer.contents buf
| u, zip ->
begin match f u with
| `Self -> Buffer.add_uChar buf u
| `Uchars us -> List.iter (Buffer.add_uChar buf) us
end;
loop zip
in
loop (Zip_raw.make_f t 0)
let lowercase ?locale t =
case_map Uucp.Case.Map.to_lower ?locale t
let uppercase ?locale t =
case_map Uucp.Case.Map.to_upper ?locale t