Source file incr_map_intf.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
open! Core_kernel
module type S = sig
module Incr : sig
type 'a t
module Cutoff : sig
type 'a t
end
end
val of_set : ('k, 'cmp) Set.t Incr.t -> ('k, unit, 'cmp) Map.t Incr.t
val filter_mapi
: ?data_equal:('v1 -> 'v1 -> bool)
-> ('k, 'v1, 'cmp) Map.t Incr.t
-> f:(key:'k -> data:'v1 -> 'v2 option)
-> ('k, 'v2, 'cmp) Map.t Incr.t
val mapi
: ?data_equal:('v1 -> 'v1 -> bool)
-> ('k, 'v1, 'cmp) Map.t Incr.t
-> f:(key:'k -> data:'v1 -> 'v2)
-> ('k, 'v2, 'cmp) Map.t Incr.t
val filter_mapi'
: ?cutoff:'v1 Incr.Cutoff.t
-> ?data_equal:('v1 -> 'v1 -> bool)
-> ('k, 'v1, 'cmp) Map.t Incr.t
-> f:(key:'k -> data:'v1 Incr.t -> 'v2 option Incr.t)
-> ('k, 'v2, 'cmp) Map.t Incr.t
val mapi'
: ?cutoff:'v1 Incr.Cutoff.t
-> ?data_equal:('v1 -> 'v1 -> bool)
-> ('k, 'v1, 'cmp) Map.t Incr.t
-> f:(key:'k -> data:'v1 Incr.t -> 'v2 Incr.t)
-> ('k, 'v2, 'cmp) Map.t Incr.t
(** [unordered_fold i ~init ~add ~remove] constructs a more incremental version of:
{[
let%map m = i in
Map.fold m ~init ~f:add
]}
assuming that [remove] is the inverse of [add], and that the operations for
different keys can be performed in any order. Note that [data_equal] defaults
to [phys_equal], but a more precise equality can be provided instead.
When the data for a key updates, by default [remove] is called on the old data
and then [add] is called on the new data.
[update] provides an alternative single function to call each time a key's data
updates, and can be used to improve efficiency.
*)
val unordered_fold
: ?data_equal:('v -> 'v -> bool)
-> ?update:(key:'k -> old_data:'v -> new_data:'v -> 'acc -> 'acc)
-> ('k, 'v, 'cmp) Map.t Incr.t
-> init:'acc
-> add:(key:'k -> data:'v -> 'acc -> 'acc)
-> remove:(key:'k -> data:'v -> 'acc -> 'acc)
-> 'acc Incr.t
(** Like [merge] in [Base.Map.merge]. Note that [f] is called at most once per key in
any given stabilization. *)
val merge
: ?data_equal_left:('v1 -> 'v1 -> bool)
-> ?data_equal_right:('v2 -> 'v2 -> bool)
-> ('k, 'v1, 'cmp) Map.t Incr.t
-> ('k, 'v2, 'cmp) Map.t Incr.t
-> f:(key:'k -> [ `Left of 'v1 | `Right of 'v2 | `Both of 'v1 * 'v2 ] -> 'v3 option)
-> ('k, 'v3, 'cmp) Map.t Incr.t
(** This is the "easy" version of [join] *)
val flatten : ('k, 'v Incr.t, 'cmp) Map.t -> ('k, 'v, 'cmp) Map.t Incr.t
(** The non-incremental semantics of this function is the identity function. Its
purpose is to collapse the extra level of incrementality at the level of the data of
the map.*)
val join : ('k, 'v Incr.t, 'cmp) Map.t Incr.t -> ('k, 'v, 'cmp) Map.t Incr.t
val separate
: ('k, 'v, 'cmp) Map.t Incr.t
-> data_equal:('v -> 'v -> bool)
-> ('k, 'v Incr.t, 'cmp) Map.t Incr.t
val keys : ('k, 'v, 'c) Map.t Incr.t -> ('k, 'c) Set.t Incr.t
(** [subrange map (min, max)] constructs an incremental submap that includes all of the
keys and data from [map] between [min] and [max], and none of the keys outside the
range.
[subrange map None] is the empty map. [range] being [None] means no elements are
chosen.
Note that incremental changes have a runtime of O((k + m) log n) where k is the size
of the changes to the underlying map and m is the size of the changes to the
elements contained by the range. The complexity of the initial computation is the
same as the incremental computation, with some simplification. k = 0 because we have
not made any changes to the underlying map yet, and m equals the size of the range,
because the initial range is empty. *)
val subrange
: ?data_equal:('v -> 'v -> bool)
-> ('k, 'v, 'cmp) Map.t Incr.t
-> ('k Maybe_bound.As_lower_bound.t * 'k Maybe_bound.As_upper_bound.t) option Incr.t
-> ('k, 'v, 'cmp) Map.t Incr.t
(** [subrange_by_rank map (s, e)] constructs an incremental submap that includes (e-s+1)
keys between s-th and e-th, inclusive.
If s is greater or equal to map length, the result is empty.
If e is greater or equal to map length, the result contains keys from s-th to the
last one.
Raises for invalid indices - s < 0 or e < s.
Runtime of the initial computation is O(min(e, n-s) + log(n)), i.e. linear,
but optimized for ranges close to beginning or end.
Runtime of the incremental computation is O(log(n) + k + (m+m') * log(n)) where:
- k is the size of the diff
- m is the total impact of map changes on the range, bounded by k (e.g. if we add
1001 keys and remove 1000 below s, then m = 1)
- m' = O( |new s - old s| + |new e - old e| ).
*)
val subrange_by_rank
: ?data_equal:('v -> 'v -> bool)
-> ('k, 'v, 'cmp) Map.t Incr.t
-> (int * int) Incr.t
-> ('k, 'v, 'cmp) Map.t Incr.t
(** [('k, 'v) Lookup.t] provides a way to lookup keys in a map which uses symmetric
diffs to trigger updates of the lookups.
The complexity of an update depends on:
- [n]: the number of keys in the larger of the old/updated input map
- [k]: the number of lookup nodes created using [find]
- [m]: the number of elements in the symdiff of the maps
- [symdiff(n)]: the cost of performing the symdiff on the map (m <= symdiff(n) <= n)
Each update should cost [O(symdiff(n) + m * log k)], so this will be efficient when
there are a lot of lookups (close to n) into a map which can be efficiently
symdiffed (and therefore has a small number of changes also). The cost of updating
when performing the same lookups by means of [Incr.map ~f:(fun m -> Map.find m key)]
is [O(k * log n)].
*)
module Lookup : sig
type ('k, 'v, 'cmp) t
(** Create the lookup structure on an incremental map. *)
val create
: ?data_equal:('v -> 'v -> bool)
-> ('k, 'v, 'cmp) Map.t Incr.t
-> comparator:('k, 'cmp) Comparator.t
-> ('k, 'v, 'cmp) t
(** Create a node which performs [Map.find] on the input map.
[find (create incr_map) key] should be equivalent to [Incr.map ~f:(fun m ->
Map.find m key) incr_map], but when you call [find] many times for a single
[create] the nodes should update more efficiently in stabilisation when [incr_map]
changes in a way which can be efficiently diffed.
This will re-use existing nodes when it can, but will not always do so.
*)
val find : ('k, 'v, _) t -> 'k -> 'v option Incr.t
(** A convenient way to refer to the type for a given key. *)
module M (K : sig
type t
type comparator_witness
end) : sig
type nonrec 'v t = (K.t, 'v, K.comparator_witness) t
end
module For_debug : sig
val sexp_of_t : ('k -> Sexp.t) -> ('v -> Sexp.t) -> ('k, 'v, 'cmp) t -> Sexp.t
end
end
module For_testing : sig
val key_range_linear
: from:int
-> to_:int
-> ('a, 'b, 'c) Base.Map.t
-> ('a * 'a option) option
end
end
module type Incr_map = sig
(** Functions for using maps efficiently within Incremental. The goal of the algorithms
here is to do work on the output of the computation proportional to the amount of
work done on the input. i.e., [k] modifications to the input map for some
computation will result in [k] modifications to the output map. The changes to the
input map are typically computed using [Map.symmetric_diff].
Unless stated otherwise, the non-incremental semantics of these functions (i.e..,
ignoring performance) is the same as the corresponding function in Core_kernel's
[Map] module. *)
module Make (Incr : Incremental.S) : S with module Incr := Incr
module type S = S
end