package hardcaml_event_driven_sim

  1. Overview
  2. Docs

Source file simulator.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
open Core

module type Value_S = sig
  type t [@@deriving sexp_of]

  val ( = ) : t -> t -> bool
  val resolve_value : [ `Unresolved | `Func of last_value:t -> t list -> t ]

  (** Checks if [t] is a correct value for this signal type. *)
  val check_value_compatibility : t -> unit

  val initial_value : t
end

module Delta_step = struct
  type t =
    { time : int
    ; delta : int
    }
  [@@deriving equal, fields ~getters, sexp_of]

  let zero = { time = 0; delta = 0 }
  let before_zero = { time = 0; delta = -1 }
end

module Process_id = struct
  type t = int [@@deriving hash, compare, sexp]

  let empty = -1
end

module Signal_id = struct
  (* Signal_id is only used in sensitivity lists - we only need to be able to modify
     on_change list. *)
  type t = { add_on_change : (unit -> unit) -> unit } [@@deriving fields ~getters]
end

module Signal = struct
  type 'value t =
    { m : (module Value_S with type t = 'value)
    ; values : (Process_id.t, 'value) Hashtbl.t (* in case of resolved signal *)
    ; mutable current_value : 'value
    ; mutable last_value : 'value
    ; mutable last_change : Delta_step.t
    ; mutable scheduled_invoke_callbacks : bool
    ; mutable on_change : (unit -> unit) list
    ; (* optimization for unresolved signals: *)
      mutable writer_process : Process_id.t
    }
  [@@deriving fields ~getters]

  let sexp_of_current_value (type value) (t : value t) =
    let (module Value : Value_S with type t = value) = t.m in
    Value.sexp_of_t t.current_value
  ;;

  let sexp_of_t t =
    Sexp.List
      [ Sexp.Atom "signal"
      ; Sexp.List [ Sexp.Atom "current_value"; sexp_of_current_value t ]
      ]
  ;;

  let read = current_value
  let read_last = last_value

  let create (type value) m =
    let (module Value : Value_S with type t = value) = m in
    { m
    ; values = Hashtbl.create (module Process_id)
    ; writer_process = Process_id.empty
    ; current_value = Value.initial_value
    ; last_value = Value.initial_value
    ; last_change = Delta_step.before_zero
    ; scheduled_invoke_callbacks = false
    ; on_change = []
    }
  ;;

  let schedule_on_change t ~f = t.on_change <- f :: t.on_change
  let id t = { Signal_id.add_on_change = (fun f -> schedule_on_change t ~f) }
end

module Scheduled_event = struct
  type t =
    { time : int
    ; sequential_id : int
    ; f : unit -> unit
    }
  [@@deriving sexp_of, fields ~getters]

  let compare a b =
    Comparable.lift [%compare: int * int] ~f:(fun t -> t.time, t.sequential_id) a b
  ;;
end

type simulation_callbacks =
  { mutable at_start_of_time_step : (unit -> unit) list
  ; mutable at_end_of_time_step : (unit -> unit) list
  }

(* Although changes to [delta_updates] never interleave read / write, storing
   with a [Queue.t] is probably faster than storing it as a [list] since
   [Queue.t] is implemented using an array under the hood and saves
   unnecessary allocations. This is an untested claim, though.
*)
type t =
  { mutable delta_updates : Scheduled_event.t Queue.t
      (* keep second queue to avoid allocating every delta step *)
  ; mutable delta_updates_now : Scheduled_event.t Queue.t
  ; updates : Scheduled_event.t Pairing_heap.t
  ; mutable current_step : Delta_step.t
  ; mutable current_sequential_id : int
  ; simulation_callbacks : simulation_callbacks
  }
[@@deriving fields ~getters]

let schedule_call t ~delay ~f =
  let scheduled_update =
    { Scheduled_event.f
    ; time = delay + t.current_step.time
    ; sequential_id = t.current_sequential_id
    }
  in
  t.current_sequential_id <- t.current_sequential_id + 1;
  match Int.sign delay with
  | Sign.Neg -> failwith "negative delay"
  | Sign.Zero -> Queue.enqueue t.delta_updates scheduled_update
  | Sign.Pos -> Pairing_heap.add t.updates scheduled_update
;;

let invoke_on_change_callbacks (type value) (signal : value Signal.t) =
  let (module Value : Value_S with type t = value) = signal.m in
  if not (Value.( = ) signal.current_value signal.last_value)
  then (
    let on_change_callbacks = signal.on_change in
    signal.on_change <- [];
    List.iter on_change_callbacks ~f:(fun f -> f ()))
;;

let maybe_invoke_on_change_callbacks (type value) (signal : value Signal.t) =
  if signal.scheduled_invoke_callbacks
  then (
    signal.scheduled_invoke_callbacks <- false;
    invoke_on_change_callbacks signal)
;;

let apply_update
  (type value)
  simulator
  (signal : value Signal.t)
  (value : value)
  ~process_id
  =
  let (module Value : Value_S with type t = value) = signal.m in
  let new_current_value =
    match Value.resolve_value with
    | `Unresolved ->
      if signal.writer_process = Process_id.empty
      then signal.writer_process <- process_id
      else if signal.writer_process <> process_id
      then failwith "two processes attempt to drive an unresolved signal";
      value
    | `Func resolve_func ->
      Hashtbl.set signal.values ~key:process_id ~data:value;
      resolve_func ~last_value:signal.current_value (Hashtbl.data signal.values)
  in
  if not (Delta_step.equal signal.last_change simulator.current_step)
  then (
    (* first update in delta step *)
    maybe_invoke_on_change_callbacks signal;
    signal.scheduled_invoke_callbacks <- true;
    schedule_call simulator ~delay:0 ~f:(fun () ->
      maybe_invoke_on_change_callbacks signal);
    signal.last_change <- simulator.current_step;
    signal.last_value <- signal.current_value);
  signal.current_value <- new_current_value
;;

let[@inline] schedule_update
  (type value)
  t
  (signal : value Signal.t)
  (value : value)
  ~delay
  ~process_id
  =
  let (module Value : Value_S with type t = value) = Signal.m signal in
  Value.check_value_compatibility value;
  schedule_call t ~delay ~f:(fun () -> apply_update t signal value ~process_id)
;;

let schedule_external_set t signal value =
  schedule_update ~process_id:Process_id.empty ~delay:0 t signal value
;;

let rec progress_time_to t new_time =
  match Pairing_heap.top t.updates with
  | None -> ()
  | Some next_update ->
    if Int.( = ) (Scheduled_event.time next_update) new_time
    then (
      let new_update = Pairing_heap.pop_exn t.updates in
      Queue.enqueue t.delta_updates new_update;
      progress_time_to t new_time)
;;

let progress_time t =
  (* Move updates for a next time step from [updates] heap to [delta_update] queue
     and bump current_step. *)
  assert (Queue.length t.delta_updates = 0);
  match Pairing_heap.top t.updates with
  | None -> ()
  | Some next_update ->
    let new_time = Scheduled_event.time next_update in
    t.current_step <- { Delta_step.time = new_time; delta = 0 };
    progress_time_to t new_time
;;

let current_time t = Delta_step.time (current_step t)

module Global_state = struct
  let current_process_id : Process_id.t option ref = ref None
  let current_simulator : t option ref = ref None

  let get_current_simulator () =
    match !current_simulator with
    | None -> failwith "no simulation is currently running"
    | Some sim -> sim
  ;;

  let get_current_process_id () =
    match !current_process_id with
    | None -> failwith "no process is currently running"
    | Some id -> id
  ;;
end

let ( !! ) = Signal.read
let ( !& ) = Signal.id

let[@inline] set_after signal value ~delay =
  schedule_update
    (Global_state.get_current_simulator ())
    ~process_id:(Global_state.get_current_process_id ())
    signal
    value
    ~delay
;;

let[@inline] set signal value = set_after ~delay:0 signal value
let ( <--- ) = set_after
let ( <-- ) = set

module Async = struct
  module Let_syntax = Mini_async.Let_syntax.Let_syntax
  module Deferred = Mini_async.Deferred
  module Ivar = Mini_async.Ivar

  let preserve_process_id deferred =
    let current_process_id = !Global_state.current_process_id in
    Global_state.current_process_id := None;
    Deferred.map deferred ~f:(fun x ->
      Global_state.current_process_id := current_process_id;
      x)
  ;;

  let delay time_steps =
    let v = Ivar.create () in
    schedule_call
      (Global_state.get_current_simulator ())
      ~delay:time_steps
      ~f:(Ivar.fill v);
    preserve_process_id (Ivar.read v)
  ;;

  let current_time () = current_time (Global_state.get_current_simulator ())

  let wait_for_change signal_id =
    let v = Ivar.create () in
    Signal_id.add_on_change signal_id (fun () ->
      schedule_call (Global_state.get_current_simulator ()) ~delay:0 ~f:(Ivar.fill v));
    preserve_process_id (Ivar.read v)
  ;;

  let wait_forever () =
    (* Create a deferred that is never filled.  This will never return. *)
    let v = Ivar.create () in
    preserve_process_id (Ivar.read v)
  ;;

  let create_process f =
    let rec run () = Deferred.upon (f ()) run in
    run
  ;;

  let rec forever_helper f = Deferred.upon (f ()) (fun () -> forever_helper f)

  let forever f =
    forever_helper f;
    Ivar.read (Ivar.create ())
  ;;
end

module Change_monitor = struct
  (* Module responsible for waiting until a signal changes its value. *)
  open Async

  type t =
    { mutable is_scheduled : bool
    ; mutable callback : unit -> unit
    ; mutable process_id : Process_id.t
    ; mutable fill_wait_ivar : unit -> unit
    }

  let fill_wait_ivar t () =
    t.is_scheduled <- false;
    Global_state.current_process_id := Some t.process_id;
    t.callback ()
  ;;

  let rec changed t signal_id () =
    if not t.is_scheduled
    then (
      t.is_scheduled <- true;
      schedule_call (Global_state.get_current_simulator ()) ~f:t.fill_wait_ivar ~delay:0);
    Signal_id.add_on_change signal_id (changed t signal_id)
  ;;

  let create signals =
    let t =
      { is_scheduled = false
      ; callback = (fun () -> ())
      ; process_id = Process_id.empty
      ; fill_wait_ivar = (fun () -> failwith "BUG")
      }
    in
    (* optimization to avoid allocating closure *)
    t.fill_wait_ivar <- fill_wait_ivar t;
    List.iter signals ~f:(fun signal_id ->
      Signal_id.add_on_change signal_id (changed t signal_id));
    t
  ;;

  let wait_with_callback t cb =
    t.process_id <- Global_state.get_current_process_id ();
    t.callback <- cb
  ;;

  let wait t =
    let ivar = Ivar.create () in
    wait_with_callback t (Ivar.fill ivar);
    Ivar.read ivar
  ;;
end

module Process = struct
  type t = unit -> unit

  let create sensitivity_list update_f =
    let change_monitor = Change_monitor.create sensitivity_list in
    let rec run () =
      update_f ();
      Change_monitor.wait_with_callback change_monitor run
    in
    run
  ;;
end

let create processes =
  let t =
    { delta_updates = Queue.create ()
    ; delta_updates_now = Queue.create ()
    ; updates = Pairing_heap.create ~cmp:Scheduled_event.compare ()
    ; current_step = Delta_step.zero
    ; current_sequential_id = 1
    ; simulation_callbacks = { at_start_of_time_step = []; at_end_of_time_step = [] }
    }
  in
  (* run initial iteration of all processes *)
  List.iteri processes ~f:(fun process_id process_f ->
    Global_state.current_simulator := Some t;
    Global_state.current_process_id := Some process_id;
    process_f ();
    Global_state.current_simulator := None;
    Global_state.current_process_id := None);
  t
;;

let delta_step t =
  Global_state.current_simulator := Some t;
  t.current_step
    <- { t.current_step with Delta_step.delta = Delta_step.delta t.current_step + 1 };
  let updates = t.delta_updates in
  t.delta_updates <- t.delta_updates_now;
  t.delta_updates_now <- updates;
  (* run scheduled functions - updates signals and runs async delayed deferreds *)
  Queue.iter updates ~f:(fun event -> Scheduled_event.f event ());
  Queue.clear updates;
  (* run triggered processes - based on their sensitivity lists *)
  Global_state.current_process_id := None;
  Global_state.current_simulator := None
;;

let next_scheduled_time t =
  if Queue.length t.delta_updates <> 0
  then Some (current_time t)
  else (
    match Pairing_heap.top t.updates with
    | None -> None
    | Some next_update -> Some (Scheduled_event.time next_update))
;;

let rec step t =
  delta_step t;
  if Queue.length t.delta_updates = 0
  then (
    List.iter t.simulation_callbacks.at_end_of_time_step ~f:(fun f -> f ());
    progress_time t)
  else step t
;;

let step t =
  List.iter t.simulation_callbacks.at_start_of_time_step ~f:(fun f -> f ());
  step t
;;

let rec stabilise t =
  step t;
  if Queue.length t.delta_updates <> 0 then stabilise t
;;

let rec run t ~time_limit =
  step t;
  if current_time t < time_limit && Queue.length t.delta_updates <> 0
  then run t ~time_limit
;;

module Debug = struct
  let print_signal name signal =
    let open Async in
    create_process (fun () ->
      let%map () = wait_for_change (Signal.id signal) in
      printf
        "t=%d %s=%s\n"
        (current_time ())
        name
        (Sexp.to_string (Signal.sexp_of_current_value signal)))
  ;;

  let at_start_of_time_step t f =
    t.simulation_callbacks.at_start_of_time_step
      <- f :: t.simulation_callbacks.at_start_of_time_step
  ;;

  let at_end_of_time_step t f =
    t.simulation_callbacks.at_end_of_time_step
      <- f :: t.simulation_callbacks.at_end_of_time_step
  ;;
end

module Version_signal = struct
  module Version_value = struct
    type t = int [@@deriving sexp_of]

    let ( = ) = Int.( = )
    let resolve_value = `Func (fun ~last_value:_ xs -> List.fold xs ~init:0 ~f:Int.max)
    let check_value_compatibility _ = ()
    let initial_value = 0
  end

  let create () = Signal.create (module Version_value)
  let increment signal = signal <-- !!signal + 1
end

module Expert = struct
  let schedule_call = schedule_call
  let schedule_external_set = schedule_external_set
end
OCaml

Innovation. Community. Security.