package guile

  1. Overview
  2. Docs

Source file guile.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
(*
GNU Guile OCaml Bindings

Copyright (C) 2021  Kiran Gopinathan

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*)

type scm = Raw.scm

let init_with f =
  ignore @@ Raw.scm_with_guile (fun v -> f (); v) Ctypes.null

let with_continuation_barrier f =
  ignore @@ Raw.scm_with_continuation_barrier (fun v -> f (); v) Ctypes.null

let init () =
  Raw.scm_init_guile ()

let shell () =
  Raw.scm_shell Sys.argv

let load filename = Raw.scm_primitive_load filename

let eol: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scm_eol)
let undefined: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scm_undefined)

let (=) l r = Raw.scm_is_eq l r

module Bool = struct

  let t: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scml_bool_t)
  let f: scm = Ctypes.ptr_of_raw_address (Ctypes.Intptr.to_nativeint Raw.Bindings.scml_bool_f)

  let boolean_p v = Raw.scm_boolean_p v
  let is_bool v = Raw.scm_is_bool v

  let not v = Raw.scm_not v

  let to_raw v = Raw.scm_from_bool v
  let from_raw v = Raw.scm_to_bool v

end

module Number = struct
  let number_p v = Raw.scm_number_p v
  let is_number v = Raw.scm_is_number v

  let integer_p v = Raw.scm_integer_p v
  let is_integer v = Raw.scm_is_integer v

  let exact_integer_p v = Raw.scm_exact_integer_p v
  let is_exact_integer v = Raw.scm_is_exact_integer v

  let char_from_raw v = Raw.scm_to_char v
  let schar_from_raw v = Raw.scm_to_schar v
  let uchar_from_raw v = Raw.scm_to_uchar v
  let short_from_raw v = Raw.scm_to_short v
  let ushort_from_raw v = Raw.scm_to_ushort v
  let int_from_raw v = Raw.scm_to_int v
  let uint_from_raw v = Raw.scm_to_uint v
  let long_from_raw v = Raw.scm_to_long v
  let ulong_from_raw v = Raw.scm_to_ulong v
  let long_long_from_raw v = Raw.scm_to_long_long v
  let ulong_long_from_raw v = Raw.scm_to_ulong_long v
  let size_t_from_raw v = Raw.scm_to_size_t v

  let char_to_raw v = Raw.scm_from_char v
  let schar_to_raw v = Raw.scm_from_schar v
  let uchar_to_raw v = Raw.scm_from_uchar v
  let short_to_raw v = Raw.scm_from_short v
  let ushort_to_raw v = Raw.scm_from_ushort v
  let int_to_raw v = Raw.scm_from_int v
  let uint_to_raw v = Raw.scm_from_uint v
  let long_to_raw v = Raw.scm_from_long v
  let ulong_to_raw v = Raw.scm_from_ulong v
  let long_long_to_raw v = Raw.scm_from_long_long v
  let ulong_long_to_raw v = Raw.scm_from_ulong_long v
  let size_t_to_raw v = Raw.scm_from_size_t v
  module Float = struct

    let real_p v = Raw.scm_real_p v

    let is_real v = Raw.scm_is_real v

    let rationalp v = Raw.scm_rational_p v
    let is_rational v = Raw.scm_is_rational v

    let rationalize v = Raw.scm_rationalize v

    let inf_p v = Raw.scm_inf_p v
    let nan_p v = Raw.scm_nan_p v

    let finite_p v = Raw.scm_finite_p v

    let nan v = Raw.scm_nan v
    let inf v = Raw.scm_inf v

    let numerator v = Raw.scm_numerator v
    let denominator v = Raw.scm_denominator v

    let from_raw v = Raw.scm_to_double v
    let to_raw v = Raw.scm_from_double v

  end

  module Complex = struct

    let complex_p v = Raw.scm_complex_p v

    let is_complex v = Raw.scm_is_complex v

  end

  let exact_p v = Raw.scm_exact_p v
  let is_exact v = Raw.scm_is_exact v

  let inexact_p v = Raw.scm_inexact_p v
  let is_inexact v = Raw.scm_is_inexact v

  let inexact_to_exact v = Raw.scm_inexact_to_exact v
  let exact_to_inexact v = Raw.scm_exact_to_inexact v

end

module Pair = struct

  let cons hd tl = Raw.scm_cons hd tl

  let car pair = Raw.scm_car pair
  let cdr pair = Raw.scm_cdr pair

  let caar pair = Raw.scm_caar pair
  let cadr pair = Raw.scm_cadr pair
  let cdar pair = Raw.scm_cdar pair

  let hd pair = car pair
  let tl pair = cdr pair

  let set_car pair vl = Raw.scm_setcar pair vl
  let set_cdr pair vl = Raw.scm_setcdr pair vl


  let is_cons x = Raw.scm_is_pair x

  let is_ncons x = not (is_cons x)

end

module List = struct

  let is_null = Raw.scm_is_null

  let of_raw f scm = 
    let rec of_list acc f scm =
      if is_null scm
      then List.rev acc
      else begin
        if not @@ Pair.is_cons scm then
          failwith "found non-list construction";
        let hd = Pair.car scm in
        let tl = Pair.cdr scm in
        of_list (f hd :: acc) f tl
      end in
    of_list [] f scm

  let rec to_raw f = function
    | [] -> eol
    | [x] -> Raw.scm_list_1 (f x)
    | [x1;x2] -> Raw.scm_list_2 (f x1) (f x2)
    | [x1;x2;x3] -> Raw.scm_list_3 (f x1) (f x2) (f x3)
    | [x1;x2;x3;x4] -> Raw.scm_list_4 (f x1) (f x2) (f x3) (f x4)
    | [x1;x2;x3;x4;x5] -> Raw.scm_list_5 (f x1) (f x2) (f x3) (f x4) (f x5)
    | hd :: tl -> Raw.scm_cons (f hd) (to_raw f tl)

end

module Char = struct

  let char_p v = Raw.scm_char_p v

  let is_char v = char_p v |> Bool.from_raw

  let alphabetic_p v = Raw.scm_char_alphabetic_p v
  let is_alphabetic v = alphabetic_p v |> Bool.from_raw

  let numeric_p v = Raw.scm_char_numeric_p v
  let is_numeric v = numeric_p v |> Bool.from_raw

  let whitespace_p v = Raw.scm_char_whitespace_p v
  let is_whitespace v = whitespace_p v |> Bool.from_raw

  let upper_case_p v = Raw.scm_char_upper_case_p v
  let is_upper_case v = upper_case_p v |> Bool.from_raw

  let lower_case_p v = Raw.scm_char_lower_case_p v
  let is_lower_case v = lower_case_p v |> Bool.from_raw

  let is_both_p v = Raw.scm_char_is_both_p v
  let is_both v = is_both_p v |> Bool.from_raw

  let general_category_p v = Raw.scm_char_general_category v
  let is_general_category v = general_category_p v |> Bool.from_raw

  let from_raw = Number.char_from_raw
  let to_raw = Number.char_to_raw

end

module String = struct

  let string_p v = Raw.scm_string_p v
  let is_string v = Raw.scm_is_string v
  let is_empty v = Raw.scm_string_null_p v

  let string ls = Raw.scm_string (List.to_raw Char.to_raw ls)

  let len s = Raw.scm_string_length s |> Number.int_from_raw

  let to_raw s = Raw.scm_from_locale_string s
  let from_raw s =
    let len = (len s) in
    let buf = Ctypes.CArray.make Ctypes.char len in
    let _ = Raw.scm_to_locale_stringbuf s (Ctypes.CArray.start buf) (Unsigned.Size_t.of_int len) in
    Ctypes.string_from_ptr (Ctypes.CArray.start buf) ~length:len

end

module Symbol = struct

  let symbol_p v = Raw.scm_symbol_p v
  let is_symbol v = symbol_p v |> Bool.from_raw

  let to_raw s = Raw.scm_string_from_utf8_symbol s
  let from_raw s = Raw.scm_symbol_to_string s |> String.from_raw

  let gensym s = Raw.scm_gensym (to_raw s)

end

module Error = struct

  let error ?key ?fn_name message =
    let key = match key with None -> Symbol.to_raw "ocaml-guile" | Some key -> key in
    Raw.scm_error key fn_name (Some message) eol Bool.f

  let catch ~tag f on_catch =
    ignore @@ Raw.scm_c_catch
      tag (fun null -> f (); null) Ctypes.null
      (fun null key args -> on_catch key args; null) Ctypes.null

end

module Functions = struct

  let safe_fun1 name f v =
    try f v with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun2 name f v1 v2 =
    try f v1 v2 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun3 name f v1 v2 v3 =
    try f v1 v2 v3 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun4 name f v1 v2 v3 v4 =
    try f v1 v2 v3 v4 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun5 name f v1 v2 v3 v4 v5 =
    try f v1 v2 v3 v4 v5 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun6 name f v1 v2 v3 v4 v5 v6 =
    try f v1 v2 v3 v4 v5 v6 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun7 name f v1 v2 v3 v4 v5 v6 v7 =
    try f v1 v2 v3 v4 v5 v6 v7 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun8 name f v1 v2 v3 v4 v5 v6 v7 v8 =
    try f v1 v2 v3 v4 v5 v6 v7 v8 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun9 name f v1 v2 v3 v4 v5 v6 v7 v8 v9 =
    try f v1 v2 v3 v4 v5 v6 v7 v8 v9 with e -> Error.error ~fn_name:name (Printexc.to_string e)
  let safe_fun10 name f v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 =
    try f v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 with e -> Error.error ~fn_name:name (Printexc.to_string e)

  let register_fun1 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_1 fname ?no_opt ?rst (safe_fun1 fname f)
  let register_fun2 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_2 fname ?no_opt ?rst (safe_fun2 fname f)
  let register_fun3 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm) -> scm = 
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_3 fname ?no_opt ?rst (safe_fun3 fname f)
  let register_fun4 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_4 fname ?no_opt ?rst (safe_fun4 fname f)
  let register_fun5 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_5 fname ?no_opt ?rst (safe_fun5 fname f)
  let register_fun6 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_6 fname ?no_opt ?rst (safe_fun6 fname f)
  let register_fun7 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_7 fname ?no_opt ?rst (safe_fun7 fname f)
  let register_fun8 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_8 fname ?no_opt ?rst (safe_fun8 fname f)
  let register_fun9 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_9 fname ?no_opt ?rst (safe_fun9 fname f)
  let register_fun10 : string -> ?no_opt:int -> ?rst: bool -> (scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm -> scm) -> scm =
    fun fname ?no_opt ?rst f -> Raw.scm_define_gsubr_10 fname ?no_opt ?rst (safe_fun10 fname f)

end

let eval ?state s =
  let state = match state with Some state -> state | None -> Raw.scm_interaction_environment () in
  Raw.scm_eval s state

let eval_string s = Raw.scm_eval_string (String.to_raw s)

let to_string ?printer v =
  let printer = Option.value ~default:undefined printer in
  Raw.scm_object_to_string v printer
  |> String.from_raw

module Sexp = struct

  let rec to_raw : Sexplib.Sexp.t -> scm =
    function
    | Atom a when Stdlib.(String.get a 0 = '"') ->
      String.to_raw Stdlib.(String.sub a 1 (String.length a - 2))
    | Atom a ->
      begin match int_of_string_opt a with
      | Some n -> Number.int_to_raw n
      | None -> match float_of_string_opt a with
          Some f -> Number.Float.to_raw f
        | None -> Symbol.to_raw a
      end
    | List elts ->
      List.to_raw to_raw elts

  let rec from_raw : scm -> Sexplib.Sexp.t = fun s ->
    if Pair.is_cons s
    then loop [] s
    else Sexplib.Sexp.Atom (to_string s)
  and loop acc s =
    if Pair.is_cons s
    then
      let hd = Pair.hd s in
      let tl = Pair.tl s in
      loop (from_raw hd :: acc) tl
    else if List.is_null s
    then Sexplib.Sexp.List (Stdlib.List.rev acc)
    else Sexplib.Sexp.List (Stdlib.List.rev (from_raw s :: acc))

end

module Module = struct

  let resolve v = Raw.scm_resolve_module v

  let with_current_module ~modl f =
    ignore @@ Raw.scm_call_with_current_module modl (fun null -> f (); null) Ctypes.null

  let lookup_variable ~modl name = Raw.scm_variable modl name

  let lookup ~modl name = Raw.scm_variable_ref modl name

  let is_defined ?modl name =
    let modl = Option.value modl ~default:undefined in
    Raw.scm_defined_p (Symbol.to_raw name) modl |> Bool.from_raw

  let define_module name f = Raw.scm_define_module name (fun null -> f (); null) Ctypes.null

  let define name vl = Raw.scm_define name vl

  let use v = Raw.scm_use_module v

  let export name  = Raw.scm_export name Ctypes.null
  
end
OCaml

Innovation. Community. Security.