package gsl

  1. Overview
  2. Docs

Source file matrix_complex_flat.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
(* gsl-ocaml - OCaml interface to GSL                       *)
(* Copyright (©) 2002-2012 - Olivier Andrieu                *)
(* Distributed under the terms of the GPL version 3         *)

type complex_mat_flat = 
    { data : float array ;
      off  : int ;
      dim1 : int ;
      dim2 : int ; 
      tda  : int ; }

type matrix = complex_mat_flat

open Gsl_complex

let create ?(init=Complex.zero) dim1 dim2 =
  let mat = { 
    data = Array.make (2 * dim1 * dim2) init.Complex.re ;
    off = 0 ; dim1 = dim1 ; dim2 = dim2 ; tda = dim2 } in
  if init.Complex.im <> init.Complex.re
  then for i=0 to pred (dim1*dim2) do
    mat.data.(2*i+1) <- init.Complex.im
  done ;
  mat
    
let dims mat = 
  (mat.dim1, mat.dim2)

let get m i j =
  let k = 2 * (m.off + i*m.tda + j) in
  complex ~re:m.data.(k) ~im:m.data.(k+1)

let set m i j c =
  let k = 2 * (m.off + i*m.tda + j) in
  m.data.(k) <- c.re ;
  m.data.(k+1) <- c.im

let of_arrays arr = 
  let dim1 = Array.length arr in
  if dim1 = 0 then invalid_arg "of_arrays" ;
  let dim2 = Array.length arr.(0) in
  let tab = Array.make (2 * dim1 * dim2) 0. in
  let mat = { data = tab ; off = 0 ; 
	      dim1 = dim1 ; dim2 = dim2 ; tda = dim2 } in
  for i=0 to pred dim1 do
    let a = arr.(i) in
    for j=0 to pred dim2 do
      set mat i j a.(j)
    done
  done ;
  mat

let to_arrays mat = 
  let arr = Array.make_matrix mat.dim1 mat.dim2 Complex.zero in
  for i=0 to pred mat.dim1 do
    let a = arr.(i) in
    for j=0 to pred mat.dim2 do
      a.(j) <- get mat i j
    done
  done ;
  arr

let of_array arr dim1 dim2 =
  let len = Array.length arr in
  if dim1 * dim2 <> len
  then invalid_arg "of_array" ;
  let tab = Array.make (2 * dim1 * dim2) 0. in
  let mat = { data = tab ; off = 0 ; 
	      dim1 = dim1 ; dim2 = dim2 ; tda = dim2 } in
  for i=0 to pred dim1 do
    for j=0 to pred dim2 do
      set mat i j arr.(i*dim2+j)
    done
  done ;
  mat

let to_array mat = 
  let arr = Array.make (mat.dim1 * mat.dim2) Complex.zero in
  for i=0 to pred mat.dim1 do
    for j=0 to pred mat.dim2 do
      arr.(i*mat.dim2+j) <- get mat i j
    done
  done ;
  arr

let of_complex_array arr dim1 dim2 =
  let len = Array.length arr in
  if 2 * dim1 * dim2 <> len
  then invalid_arg "of_array" ;
  { data = Array.copy arr ; off = 0 ; 
    dim1 = dim1 ; dim2 = dim2 ; tda = dim2 }

let to_complex_array mat =
  if mat.tda = mat.dim2 && mat.off = 0
  then Array.copy mat.data
  else begin
    let tab = Array.make (2*mat.dim1*mat.dim2) 0. in
    for i=0 to pred mat.dim1 do
      for j=0 to pred mat.dim2 do
	      Gsl_complex.set tab (i*mat.dim2 + j) (get mat i j)
      done
    done ;
    tab
  end

let set_all m c =
  for i=0 to pred m.dim1 do
    for j=0 to pred m.dim2 do
      set m i j c
    done
  done

let set_zero m =
  set_all m Complex.zero

let set_id m =
  set_zero m ;
  for i=0 to pred (min m.dim1 m.dim2) do
    set m i i Complex.one
  done

let memcpy ~src:m ~dst:m' =
  if m.dim1 <> m'.dim1 || m.dim2 <> m'.dim2
  then invalid_arg "wrong dimensions" ;
  for i=0 to pred m.dim1 do
    Array.blit 
      m.data  (2 * (m.off + i*m.tda))
      m'.data (2 * (m'.off + i*m'.tda)) (2 * m.dim2)
  done

let copy m = 
  let m' = create m.dim1 m.dim2 in
  memcpy ~src:m ~dst:m';
  m'

let submatrix m ~k1 ~k2 ~n1 ~n2 =
  { m with 
    off = m.off + (k1*m.tda)+k2 ;
    dim1 = n1 ; dim2 = n2 ;
    tda = m.tda ; }
      
let view_complex_array arr ?(off=0) dim1 ?tda dim2 =
  let tda = match tda with
  | None -> dim2
  | Some v -> v in
  let len = Array.length arr in
  if dim1 * tda > len/2 - off || dim2 > tda
  then invalid_arg "view_array" ;
  { data = arr; off = off; dim1 = dim1; dim2 = dim2; tda = tda }

external add : matrix -> matrix -> unit = "ml_gsl_matrix_complex_add"
external sub : matrix -> matrix -> unit = "ml_gsl_matrix_complex_sub"
external mul_elements : matrix -> matrix -> unit = "ml_gsl_matrix_complex_mul"
external div_elements : matrix -> matrix -> unit = "ml_gsl_matrix_complex_div"
external scale : matrix -> float -> unit = "ml_gsl_matrix_complex_scale"
external add_constant : matrix -> float -> unit = "ml_gsl_matrix_complex_add_constant"
external add_diagonal : matrix -> complex -> unit = "ml_gsl_matrix_complex_add_diagonal"
external is_null : matrix -> bool = "ml_gsl_matrix_complex_isnull"

external swap_rows : matrix -> int -> int -> unit = "ml_gsl_matrix_complex_swap_rows"
external swap_columns : matrix -> int -> int -> unit = "ml_gsl_matrix_complex_swap_columns"
external swap_rowcol : matrix -> int -> int -> unit = "ml_gsl_matrix_complex_swap_rowcol"
external transpose : matrix -> matrix -> unit = "ml_gsl_matrix_complex_transpose_memcpy"
external transpose_in_place : matrix -> unit = "ml_gsl_matrix_complex_transpose"

let row m i =
  Vector_complex_flat.view_complex_array
    ~off:(m.off + i * m.tda)
    ~len:m.dim2
    m.data

let column m j =
  Vector_complex_flat.view_complex_array
    ~stride:m.tda
    ~off:(m.off + j)
    ~len:m.dim1
    m.data

let diagonal m =
  Vector_complex_flat.view_complex_array
    ~stride:(m.tda + 1)
    ~off:m.off
    ~len:(min m.dim1 m.dim2)
    m.data

let subdiagonal m k =
  Vector_complex_flat.view_complex_array
    ~stride:(m.tda + 1)
    ~off:(m.off + k * m.tda)
    ~len:(min (m.dim1 - k) m.dim2)
    m.data

let superdiagonal m k =
  Vector_complex_flat.view_complex_array
    ~stride:(m.tda + 1)
    ~off:(m.off + k)
    ~len:(min m.dim1 (m.dim2 - k))
    m.data

let view_vector v ?(off=0) dim1 ?tda dim2 =
  let tda = match tda with
  | None -> dim2
  | Some v -> v in
  let len = Vector_complex_flat.length v in
  if dim1 * tda > len - off || dim2 > tda
  then invalid_arg "view_vector" ;
  { data = v.Vector_complex_flat.data;
    off  = v.Vector_complex_flat.off + off;
    dim1 = dim1; dim2 = dim2; tda = tda }
OCaml

Innovation. Community. Security.