Source file cov_se_fat.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
open Interfaces
open Utils
open Core
open Lacaml.D
let option_map ~f = function None -> None | Some v -> Some (f v)
let option_iter ~f = function None -> () | Some v -> f v
module Params = struct
type params = {
d : int;
log_sf2 : float;
tproj : mat option;
log_hetero_skedasticity : vec option;
log_multiscales_m05 : mat option;
}
type t = params
let create (params : params) =
let check v_dim name v =
let n = v_dim v in
if n <> params.d then
failwithf
"Cov_se_fat.Params.create: %s projection (%d) disagrees \
with target dimension d (%d)" name n params.d ()
in
option_iter params.tproj ~f:(check Mat.dim2 "tproj");
params
end
module Eval = struct
module Kernel = struct
type params = Params.t
type t = {
params : params;
sf2 : float;
hetero_skedasticity : vec option;
multiscales : mat option;
}
let create params =
let hetero_skedasticity =
option_map params.Params.log_hetero_skedasticity ~f:(Vec.map exp)
in
let multiscales =
let f v = exp v +. 0.5 in
option_map params.Params.log_multiscales_m05 ~f:(Mat.map f)
in
{
params;
sf2 = exp params.Params.log_sf2;
hetero_skedasticity;
multiscales;
}
let get_params k = k.params
end
let calc_res_el ~log_sf2 tmp =
let x = tmp.x in
tmp.x <- 0.;
exp (log_sf2 -. 0.5 *. x)
let calc_upper_vanilla k mat =
let { Kernel.sf2; params = { Params.d; log_sf2 } } = k in
let n = Mat.dim2 mat in
let res = Mat.create n n in
let tmp = { x = 0. } in
for c = 1 to n do
for r = 1 to c - 1 do
for i = 1 to d do
let diff = mat.{i, r} -. mat.{i, c} in
tmp.x <- tmp.x +. diff *. diff
done;
res.{r, c} <- calc_res_el ~log_sf2 tmp;
done;
res.{c, c} <- sf2;
done;
res
let update_tmp_sum ~tmp ~diff ~scale =
tmp.x <- tmp.x +. diff *. (diff /. scale) +. log scale
module Inducing = struct
type t = mat
let get_n_points = Mat.dim2
let calc_upper k inducing =
let m = Mat.dim2 inducing in
let res =
match k.Kernel.multiscales with
| None -> calc_upper_vanilla k inducing
| Some multiscales ->
let { Kernel.params = { Params.d; log_sf2 } } = k in
let res = Mat.create m m in
let tmp = { x = 0. } in
for c = 1 to m do
for r = 1 to c - 1 do
for i = 1 to d do
let diff = inducing.{i, r} -. inducing.{i, c} in
let scale = multiscales.{i, r} +. multiscales.{i, c} -. 1. in
update_tmp_sum ~tmp ~diff ~scale
done;
res.{r, c} <- calc_res_el ~log_sf2 tmp
done;
for i = 1 to d do
let multiscale = multiscales.{i, c} in
tmp.x <- tmp.x +. log (multiscale +. multiscale -. 1.)
done;
res.{c, c} <- calc_res_el ~log_sf2 tmp;
done;
res
in
match k.Kernel.hetero_skedasticity with
| None -> res
| Some hetero_skedasticity ->
for i = 1 to m do
res.{i, i} <- res.{i, i} +. hetero_skedasticity.{i}
done;
res
end
module Input = struct
type t = vec
let eval k input inducing =
let
{ Kernel.multiscales; params = { Params.d; log_sf2; tproj } } = k
in
let projection =
match tproj with
| None -> input
| Some tproj -> gemv ~trans:`T tproj input
in
let m = Mat.dim2 inducing in
let res = Vec.create m in
let tmp = { x = 0. } in
begin match multiscales with
| None ->
for c = 1 to m do
for i = 1 to d do
let diff = projection.{i} -. inducing.{i, c} in
tmp.x <- tmp.x +. diff *. diff
done;
res.{c} <- calc_res_el ~log_sf2 tmp;
done;
| Some multiscales ->
for c = 1 to m do
for i = 1 to d do
let diff = projection.{i} -. inducing.{i, c} in
let scale = multiscales.{i, c} in
update_tmp_sum ~tmp ~diff ~scale
done;
res.{c} <- calc_res_el ~log_sf2 tmp;
done;
end;
res
let weighted_eval k input inducing ~coeffs =
dot (eval k input inducing) coeffs
let eval_one k _input = k.Kernel.sf2
end
module Inputs = struct
type t = mat
let create = Mat.of_col_vecs
let get_n_points = Mat.dim2
let choose_subset = choose_cols
let create_default_kernel_params inputs ~n_inducing =
let big_dim = Mat.dim1 inputs in
let n_inputs = Mat.dim2 inputs in
let d = min big_dim 10 in
let tproj = Mat.create big_dim d in
let factor = float n_inputs /. float big_dim in
for r = 1 to big_dim do
let sum_ref = ref 0. in
for c = 1 to n_inputs do sum_ref := !sum_ref +. inputs.{r, c} done;
let mean_factor = factor /. !sum_ref in
for c = 1 to d do
tproj.{r, c} <- mean_factor *. (Random.float 2. -. 1.)
done;
done;
{
Params.
d;
log_sf2 = Random.float 2. -. 1.;
tproj = Some tproj;
log_hetero_skedasticity = Some (Vec.make n_inducing ~-.5.);
log_multiscales_m05 = Some (Mat.make0 d n_inducing);
}
let project k inputs =
match k.Kernel.params.Params.tproj with
| None -> inputs
| Some tproj -> gemm ~transa:`T tproj inputs
let create_inducing = project
let calc_upper k inputs = calc_upper_vanilla k (project k inputs)
let calc_diag k inputs = Vec.make (Mat.dim2 inputs) k.Kernel.sf2
let calc_cross_with_projections k ~projections ~inducing =
let { Kernel.multiscales; params = { Params.d; log_sf2 } } = k in
let m = Mat.dim2 inducing in
let n = Mat.dim2 projections in
let res = Mat.create n m in
let tmp = { x = 0. } in
begin match multiscales with
| None ->
for c = 1 to m do
for r = 1 to n do
for i = 1 to d do
let diff = projections.{i, r} -. inducing.{i, c} in
tmp.x <- tmp.x +. diff *. diff
done;
res.{r, c} <- calc_res_el ~log_sf2 tmp;
done;
done;
| Some multiscales ->
for c = 1 to m do
for r = 1 to n do
for i = 1 to d do
let diff = projections.{i, r} -. inducing.{i, c} in
let scale = multiscales.{i, c} in
update_tmp_sum ~tmp ~diff ~scale;
done;
res.{r, c} <- calc_res_el ~log_sf2 tmp;
done;
done;
end;
res
let calc_cross k ~inputs ~inducing =
let projections = project k inputs in
calc_cross_with_projections k ~projections ~inducing
let weighted_eval k ~inputs ~inducing ~coeffs =
gemv (calc_cross k ~inputs ~inducing) coeffs
end
end
module Proj_hyper = struct type t = { big_dim : int; small_dim : int } end
module Dim_hyper = struct type t = int end
module Inducing_hyper = struct type t = { ind : int; dim : int } end
module Hyper_repr = struct
type t = [
| `Log_sf2
| `Proj of Proj_hyper.t
| `Log_hetero_skedasticity of Dim_hyper.t
| `Log_multiscale_m05 of Inducing_hyper.t
| `Inducing_hyper of Inducing_hyper.t
]
end
module Deriv = struct
module Eval = Eval
module Hyper = struct
type t = Hyper_repr.t
let get_all { Eval.Kernel.params } inducing _inputs =
let
{ Params.d; tproj; log_hetero_skedasticity; log_multiscales_m05 } =
params
in
let m = Mat.dim2 inducing in
let n_mandatory_hypers = 1 + d * m in
let n_hypers_ref = ref n_mandatory_hypers in
let update_count_mat maybe_mat =
option_iter maybe_mat ~f:(fun mat ->
n_hypers_ref := !n_hypers_ref + Mat.dim1 mat * Mat.dim2 mat)
in
let update_count_vec maybe_vec =
option_iter maybe_vec ~f:(fun vec ->
n_hypers_ref := !n_hypers_ref + Vec.dim vec)
in
update_count_mat tproj;
update_count_vec log_hetero_skedasticity;
update_count_mat log_multiscales_m05;
let n_hypers = !n_hypers_ref in
let hypers = Array.create ~len:n_hypers `Log_sf2 in
for ind = 1 to m do
let indd = (ind - 1) * d in
for dim = 1 to d do
let inducing_hyper = { Inducing_hyper.ind; dim } in
hypers.(indd + dim) <- `Inducing_hyper inducing_hyper
done
done;
let pos_ref = ref n_mandatory_hypers in
option_iter tproj ~f:(fun tproj ->
let dim = Mat.dim1 tproj in
for big_dim = 1 to dim do
for small_dim = 1 to d do
let pos = !pos_ref in
pos_ref := pos + 1;
hypers.(pos) <- `Proj { Proj_hyper.big_dim; small_dim };
done;
done);
option_iter log_hetero_skedasticity ~f:(fun log_hetero_skedasticity ->
let m = Vec.dim log_hetero_skedasticity in
for i = 1 to m do
let pos = !pos_ref in
pos_ref := pos + 1;
hypers.(pos) <- `Log_hetero_skedasticity i;
done);
option_iter log_multiscales_m05 ~f:(fun log_multiscales_m05 ->
for ind = 1 to Mat.dim2 log_multiscales_m05 do
for dim = 1 to d do
let pos = !pos_ref in
pos_ref := pos + 1;
hypers.(pos) <- `Log_multiscale_m05 { Inducing_hyper.ind; dim };
done;
done);
hypers
let option_get_value name = function
| None ->
failwithf "Deriv.Hyper.option_get_value: %s not supported" name ()
| Some v -> v
let get_value { Eval.Kernel.params } inducing _inputs = function
| `Log_sf2 -> params.Params.log_sf2
| `Proj { Proj_hyper.big_dim; small_dim } ->
(option_get_value "tproj" params.Params.tproj).{big_dim, small_dim}
| `Log_hetero_skedasticity dim ->
(option_get_value "log_hetero_skedasticity"
params.Params.log_hetero_skedasticity).{dim}
| `Log_multiscale_m05 { Inducing_hyper.ind; dim } ->
(option_get_value
"log_multiscales_m05" params.Params.log_multiscales_m05).{dim, ind}
| `Inducing_hyper { Inducing_hyper.ind; dim } -> inducing.{dim, ind}
let set_values { Eval.Kernel.params } inducing inputs hypers values =
let log_sf2_ref = ref params.Params.log_sf2 in
let lazy_opt name f opt_v = lazy (f (option_get_value name opt_v)) in
let tproj_lazy = lazy_opt "tproj" lacpy params.Params.tproj in
let log_hetero_skedasticity_lazy =
lazy_opt "log_hetero_skedasticity"
copy params.Params.log_hetero_skedasticity
in
let log_multiscales_m05_lazy =
lazy_opt "log_multiscales_m05" lacpy params.Params.log_multiscales_m05
in
let inducing_lazy = lazy (lacpy inducing) in
for i = 1 to Array.length hypers do
match hypers.(i - 1) with
| `Log_sf2 -> log_sf2_ref := values.{i}
| `Proj { Proj_hyper.big_dim; small_dim } ->
(Lazy.force tproj_lazy).{big_dim, small_dim} <- values.{i}
| `Log_hetero_skedasticity dim ->
(Lazy.force log_hetero_skedasticity_lazy).{dim} <- values.{i}
| `Log_multiscale_m05 { Inducing_hyper.ind; dim } ->
(Lazy.force log_multiscales_m05_lazy).{dim, ind} <- values.{i}
| `Inducing_hyper { Inducing_hyper.ind; dim } ->
(Lazy.force inducing_lazy).{dim, ind} <- values.{i}
done;
let lift_opt lazy_value value =
if Lazy.is_val lazy_value then Some (Lazy.force lazy_value)
else value
in
let lift lazy_value value =
if Lazy.is_val lazy_value then Lazy.force lazy_value
else value
in
let new_kernel =
Eval.Kernel.create
{
Params.
d = params.Params.d;
log_sf2 = !log_sf2_ref;
tproj = lift_opt tproj_lazy params.Params.tproj;
log_hetero_skedasticity =
lift_opt log_hetero_skedasticity_lazy
params.Params.log_hetero_skedasticity;
log_multiscales_m05 =
lift_opt
log_multiscales_m05_lazy params.Params.log_multiscales_m05;
}
in
let new_inducing = lift inducing_lazy inducing in
new_kernel, new_inducing, inputs
end
type deriv_common = { kernel : Eval.Kernel.t; eval_mat : mat }
module Inducing = struct
type upper = Eval.Inducing.t * deriv_common
let calc_shared_upper kernel inducing =
let eval_mat = Eval.Inducing.calc_upper kernel inducing in
eval_mat, (inducing, { kernel; eval_mat })
let calc_deriv_upper (inducing, { kernel; eval_mat }) hyper =
match hyper with
| `Log_sf2 ->
begin
match kernel.Eval.Kernel.hetero_skedasticity with
| None -> `Factor 1.
| Some hetero_skedasticity ->
let res = lacpy eval_mat in
for i = 1 to Mat.dim1 res do
res.{i, i} <- res.{i, i} -. hetero_skedasticity.{i}
done;
`Dense res
end
| `Proj _ -> `Const 0.
| `Log_hetero_skedasticity dim ->
begin
match kernel.Eval.Kernel.hetero_skedasticity with
| None ->
failwith (
"Cov_se_fat.Deriv.Inducing.calc_deriv_upper: \
heteroskedastic modeling disabled, \
cannot calculate derivative")
| Some hetero_skedasticity ->
let deriv = Vec.make0 (Vec.dim hetero_skedasticity) in
deriv.{dim} <- hetero_skedasticity.{dim};
`Diag_vec deriv
end
| `Log_multiscale_m05 { Inducing_hyper.ind; dim } ->
begin match kernel.Eval.Kernel.multiscales with
| None ->
failwith (
"Cov_se_fat.Deriv.Inducing.calc_deriv_upper: \
multiscale modeling disabled, cannot calculate derivative")
| Some multiscales ->
let m = Mat.dim2 eval_mat in
let res = Mat.create 1 m in
let inducing_dim = inducing.{dim, ind} in
let multiscale = multiscales.{dim, ind} in
let multiscale_const = multiscale -. 1. in
let h = 0.5 in
let multiscale_h = h -. multiscale in
let multiscale_factor = h *. multiscale_h in
for i = 1 to ind - 1 do
let diff = inducing.{dim, i} -. inducing_dim in
let iscale = 1. /. (multiscales.{dim, i} +. multiscale_const) in
let sdiff = diff *. iscale in
let sdiff2 = sdiff *. sdiff in
let inner = (iscale -. sdiff2) *. multiscale_factor in
res.{1, i} <- inner *. eval_mat.{i, ind}
done;
begin match kernel.Eval.Kernel.hetero_skedasticity with
| None ->
res.{1, ind} <-
multiscale_h /. (multiscale +. multiscale_const)
*. eval_mat.{ind, ind};
| Some hetero_skedasticity ->
res.{1, ind} <-
multiscale_h /. (multiscale +. multiscale_const)
*. (eval_mat.{ind, ind} -. hetero_skedasticity.{ind});
end;
for i = ind + 1 to m do
let diff = inducing.{dim, i} -. inducing_dim in
let iscale = 1. /. (multiscales.{dim, i} +. multiscale_const) in
let sdiff = diff *. iscale in
let sdiff2 = sdiff *. sdiff in
let inner = (iscale -. sdiff2) *. multiscale_factor in
res.{1, i} <- inner *. eval_mat.{ind, i}
done;
let rows = Sparse_indices.create 1 in
rows.{1} <- ind;
`Sparse_rows (res, rows)
end
| `Inducing_hyper { Inducing_hyper.ind; dim } ->
let m = Mat.dim2 eval_mat in
let res = Mat.create 1 m in
let inducing_dim = inducing.{dim, ind} in
begin match kernel.Eval.Kernel.multiscales with
| None ->
for i = 1 to ind - 1 do
let diff = inducing.{dim, i} -. inducing_dim in
res.{1, i} <- diff *. eval_mat.{i, ind}
done;
res.{1, ind} <- 0.;
for i = ind + 1 to m do
let diff = inducing.{dim, i} -. inducing_dim in
res.{1, i} <- diff *. eval_mat.{ind, i}
done
| Some multiscales ->
let multiscale_const = multiscales.{dim, ind} -. 1. in
for i = 1 to ind - 1 do
let diff = inducing.{dim, i} -. inducing_dim in
let scale = multiscales.{dim, i} +. multiscale_const in
res.{1, i} <- diff /. scale *. eval_mat.{i, ind}
done;
res.{1, ind} <- 0.;
for i = ind + 1 to m do
let diff = inducing.{dim, i} -. inducing_dim in
let scale = multiscales.{dim, i} +. multiscale_const in
res.{1, i} <- diff /. scale *. eval_mat.{ind, i}
done;
end;
let rows = Sparse_indices.create 1 in
rows.{1} <- ind;
`Sparse_rows (res, rows)
end
module Inputs = struct
type diag = Eval.Kernel.t
let calc_shared_diag k diag_eval_inputs =
Eval.Inputs.calc_diag k diag_eval_inputs, k
let calc_deriv_diag _diag = function
| `Log_sf2 -> `Factor 1.
| `Proj _ | `Log_hetero_skedasticity _ | `Log_multiscale_m05 _
| `Inducing_hyper _ -> `Const 0.
module Cross = struct
type t = {
common : deriv_common;
inputs : Eval.Inputs.t;
inducing : Eval.Inducing.t;
projections : Eval.Inducing.t;
}
end
type cross = Cross.t
let calc_shared_cross kernel ~inputs ~inducing =
let projections = Eval.Inputs.project kernel inputs in
let eval_mat =
Eval.Inputs.calc_cross_with_projections kernel ~projections ~inducing
in
let shared =
{ Cross.common = { kernel; eval_mat }; inputs; inducing; projections }
in
eval_mat, shared
let check_tproj_available = function
| None ->
failwith
"Cov_se_fat.Deriv.Inputs.calc_deriv_cross: \
tproj disabled, cannot calculate derivative"
| Some _ -> ()
let calc_deriv_cross cross hyper =
let
{ Cross.common = { kernel; eval_mat }; inputs; inducing; projections } =
cross
in
match hyper with
| `Log_sf2 -> `Factor 1.
| `Proj { Proj_hyper.big_dim; small_dim } ->
check_tproj_available kernel.Eval.Kernel.params.Params.tproj;
let m = Mat.dim2 inducing in
let n = Mat.dim2 inputs in
let res = Mat.create n m in
begin match kernel.Eval.Kernel.multiscales with
| None ->
for c = 1 to m do
let ind_el = inducing.{small_dim, c} in
for r = 1 to n do
let alpha = inputs.{big_dim, r} in
let proj = projections.{small_dim, r} in
res.{r, c} <- alpha *. (ind_el -. proj) *. eval_mat.{r, c}
done
done;
| Some multiscales ->
for c = 1 to m do
let ind_el = inducing.{small_dim, c} in
let multiscale = multiscales.{small_dim, c} in
for r = 1 to n do
let alpha = inputs.{big_dim, r} in
let proj = projections.{small_dim, r} in
res.{r, c} <-
alpha *. ((ind_el -. proj) /. multiscale) *. eval_mat.{r, c}
done
done;
end;
`Dense res
| `Log_hetero_skedasticity _ -> `Const 0.
| `Log_multiscale_m05 { Inducing_hyper.ind; dim } ->
begin match kernel.Eval.Kernel.multiscales with
| None ->
failwith (
"Cov_se_fat.Deriv.Inputs.calc_deriv_cross: \
multiscale modeling disabled, cannot calculate derivative")
| Some multiscales ->
let n = Mat.dim1 eval_mat in
let res = Mat.create n 1 in
let inducing_dim = inducing.{dim, ind} in
let multiscale = multiscales.{dim, ind} in
let h = 0.5 in
let multiscale_h = h -. multiscale in
let multiscale_factor = h *. multiscale_h in
for r = 1 to n do
let diff = projections.{dim, r} -. inducing_dim in
let iscale = 1. /. multiscales.{dim, ind} in
let sdiff = diff *. iscale in
let sdiff2 = sdiff *. sdiff in
let inner = (iscale -. sdiff2) *. multiscale_factor in
res.{r, 1} <- inner *. eval_mat.{r, ind}
done;
let cols = Sparse_indices.create 1 in
cols.{1} <- ind;
`Sparse_cols (res, cols)
end
| `Inducing_hyper { Inducing_hyper.ind; dim } ->
let n = Mat.dim1 eval_mat in
let res = Mat.create n 1 in
let inducing_dim = inducing.{dim, ind} in
begin match kernel.Eval.Kernel.multiscales with
| None ->
for r = 1 to n do
let diff = projections.{dim, r} -. inducing_dim in
res.{r, 1} <- diff *. eval_mat.{r, ind}
done;
| Some multiscales ->
let multiscale_factor = 1. /. multiscales.{dim, ind} in
for r = 1 to n do
let diff = projections.{dim, r} -. inducing_dim in
res.{r, 1} <- multiscale_factor *. diff *. eval_mat.{r, ind}
done;
end;
let cols = Sparse_indices.create 1 in
cols.{1} <- ind;
`Sparse_cols (res, cols)
end
end