package gpr

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file interfaces.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
(* File: interfaces.ml

   OCaml-GPR - Gaussian Processes for OCaml

     Copyright (C) 2009-  Markus Mottl
     email: markus.mottl@gmail.com
     WWW:   http://www.ocaml.info

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public License
   along with this library; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*)

open Core
open Lacaml.D

open Utils

(** {6 Representations of (sparse) derivative matrices} *)

(** Representation of indices into sparse matrices *)
module Sparse_indices = Int_vec

(** Derivative representations for both symmetric and unsymmetric matrices.

  - Dense: matrix is dense.
  - Sparse_rows: matrix is zero everywhere except for rows whose
    index is stored in the sparse index argument.  The rows in the
    matrix correspond to the given indices.
  - Const: matrix is constant everywhere.
  - Factor: matrix is the non-derived matrix times the given factor
    (useful with exponential functions).
*)
type common_mat_deriv = [
  | `Dense of mat
  | `Sparse_rows of mat * Sparse_indices.t
  | `Const of float
  | `Factor of float
]

(** Only general matrices support sparse column representations.

  - Sparse_cols: matrix is zero everywhere except for columns whose
    index is stored in the sparse index argument.  The columns in
    the matrix correspond to the given indices.
*)
type mat_deriv = [
  | common_mat_deriv
  | `Sparse_cols of mat * Sparse_indices.t
]

(** Only symmetric (square) matrices support diagonal vectors and
    diagonal constants as derivatives.

  - Diag_vec: matrix is zero everywhere except for the diagonal
    whose values are given in the argument.
  - Diag_const: matrix is zero everywhere except for the diagonal
    whose values are set to the given constant.

  Note that sparse rows do not need to compute or store all elements
  for symmetric matrices.  Entries that have already appeared in
  previous rows by symmetry can be left uninitialized.
*)
type symm_mat_deriv = [
  | common_mat_deriv
  | `Diag_vec of vec
  | `Diag_const of float
]

(** Derivatives of diagonal matrices.

  - Vec: the derivatives of the diagonal given in a dense vector.
  - Sparse_vec: matrix is zero everywhere except at those indices
    along the diagonal that are mentioned in the sparse indices
    argument.  The element associated with such an index is stored
    in the vector argument.
  - Const: the derivative of the diagonal matrix is a constant.
  - Factor: the derivative of the diagonal is the the non-derived
    diagonal matrix times the given factor (useful with exponential
    functions).
*)
type diag_deriv = [
  | `Vec of vec
  | `Sparse_vec of vec * Sparse_indices.t
  | `Const of float
  | `Factor of float
]


(** Specifications of covariance functions (= kernels) and their derivatives *)
module Specs = struct

  (** Signature of kernels and their parameters *)
  module type Kernel = sig
    (** Type of kernel *)
    type t

    (** Type of kernel parameters *)
    type params

    (** [create params] @return kernel given parameters [params]. *)
    val create : params -> t

    (** [get_params kernel] @return parameters used to parameterize [kernel]. *)
    val get_params : t -> params
  end

  (** Evaluation of covariance functions *)
  module type Eval = sig

    (** Kernel used for evaluation *)
    module Kernel : Kernel

    (** Signature for evaluating inducing inputs *)
    module Inducing : sig
      type t

      (** [get_n_points inducing] @return number of inducing points. *)
      val get_n_points : t -> int

      (** [calc_upper kernel inducing] @return upper triangle of
          covariance matrix of [inducing] inputs given [kernel]. *)
      val calc_upper : Kernel.t -> t -> mat
    end

    (** Signature for evaluating single inputs *)
    module Input : sig
      type t  (** Type of input point *)

      (** [eval kernel input inducing] @return (row) vector of covariance
          evaluations between [input] and [inducing] inputs given
          [kernel]. *)
      val eval : Kernel.t -> t -> Inducing.t -> vec

      (** [weighted_eval kernel input inducing ~coeffs] @return
          [coeff]-weighted sum of covariances between [input] and
          [inducing] inputs given [kernel]. *)
      val weighted_eval : Kernel.t -> t -> Inducing.t -> coeffs : vec -> float

      (** [eval_one kernel point] @return variance of [point] given [kernel]. *)
      val eval_one : Kernel.t -> t -> float
    end

    (** Signature for evaluating multiple inputs *)
    module Inputs : sig
      type t  (** Type of input points *)

      (** [create inputs] @return inputs given an array of single [inputs]. *)
      val create : Input.t array -> t

      (** [get_n_points inputs] @return number of input points. *)
      val get_n_points : t -> int

      (** [choose_subset inputs indexes] @return subset of input
          points from [inputs] having [indexes]. *)
      val choose_subset : t -> Int_vec.t -> t

      (** [create_inducing kernel inputs] @return inducing points
          made from [inputs] and given [kernel]. *)
      val create_inducing : Kernel.t -> t -> Inducing.t

      (** [create_default_kernel_params inputs ~n_inducing] @return
          default kernel parameters to be used with [n_inducing]
          inducing points and [inputs]. *)
      val create_default_kernel_params : t -> n_inducing : int -> Kernel.params

      (** [calc_upper kernel inputs] @return upper triangle of
          covariance matrix of [inputs] given [kernel]. *)
      val calc_upper : Kernel.t -> t -> mat

      (** [calc_diag kernel inputs] @return diagonal of
          covariance matrix of [inputs] given [kernel]. *)
      val calc_diag : Kernel.t -> t -> vec

      (** [calc_cross kernel ~inputs ~inducing] @return cross-covariance
          matrix of [inputs] (indexing rows) and [inducing] points
          (indexing columns). *)
      val calc_cross : Kernel.t -> inputs : t -> inducing : Inducing.t -> mat

      (** [weighted_eval kernel ~inputs ~inducing ~coeffs] @return
          vector of [coeff]-weighted sums of covariances between
          [inputs] and [inducing] inputs given [kernel]. *)
      val weighted_eval :
        Kernel.t -> inputs : t -> inducing : Inducing.t -> coeffs : vec -> vec
    end
  end

  (** Derivatives of covariance functions *)
  module type Deriv = sig

    (** Derivatives always require evaluation functions *)
    module Eval : Eval

    (** Hyper parameters that have derivatives *)
    module Hyper : sig
      type t  (** Type of hyper parameter *)

      (** [get_all kernel inducing inputs] @return array of all hyper
          parameters of [kernel] and/or ([inducing]) [inputs] for which
          derivatives can be computed. *)
      val get_all : Eval.Kernel.t -> Eval.Inducing.t -> Eval.Inputs.t -> t array

      (** [get_value kernel inducing inputs hyper] @return value of hyper
          parameter [hyper] of [kernel] and/or ([inducing]) [inputs]. *)
      val get_value :
        Eval.Kernel.t -> Eval.Inducing.t -> Eval.Inputs.t -> t -> float

      (** [set_values kernel inducing inputs hypers values] @return triple
          of [(kernel, inducing, inputs)] in which [hypers] have been
          substituted with [values] position-wise. *)
      val set_values :
        Eval.Kernel.t -> Eval.Inducing.t -> Eval.Inputs.t -> t array -> vec ->
        Eval.Kernel.t * Eval.Inducing.t * Eval.Inputs.t
    end

    (** Derivatives of the covariance matrix of inducing inputs *)
    module Inducing : sig
      type upper  (** Representation of precomputed data for calculating the
                      upper triangle of the derivative of the covariance matrix
                      of inducing inputs. *)

      (** [calc_shared_upper kernel inducing] @return the pair [(eval, upper)],
          where [eval] is the upper triangle of the covariance matrix of
          inducing inputs for [kernel], and [upper] is the precomputed data
          needed for taking derivatives. *)
      val calc_shared_upper : Eval.Kernel.t -> Eval.Inducing.t -> mat * upper

      (** [calc_deriv_upper upper hyper] @return the derivative of the
          (symmetric) covariance matrix of inducing inputs given precomputed
          data [upper] and the [hyper]-variable. *)
      val calc_deriv_upper : upper -> Hyper.t -> symm_mat_deriv
    end

    (** Derivatives of the (cross-) covariance matrix of inputs. *)
    module Inputs : sig
      type diag  (** Representation of precomputed data for calculating the
                     derivative of the diagonal of the covariance matrix of
                     inputs. *)

      type cross  (** Representation of precomputed data for calculating the
                      derivative of the cross-covariance matrix between inputs
                      and inducing inputs. *)

      (** [calc_shared_diag kernel inputs] @return the pair [(eval, diag)],
          where [eval] is the diagonal of the covariance matrix of [inputs] for
          [kernel], and [diag] is the precomputed data needed for taking
          derivatives. *)
      val calc_shared_diag : Eval.Kernel.t -> Eval.Inputs.t -> vec * diag

      (** [calc_shared_cross kernel ~inputs ~inducing] @return the pair [(eval,
          cross)], where [eval] is the cross-covariance matrix of inputs and
          inducing inputs for [kernel], and [diag] is the precomputed data
          needed for taking derivatives. *)
      val calc_shared_cross :
        Eval.Kernel.t -> inputs : Eval.Inputs.t -> inducing : Eval.Inducing.t ->
        mat * cross

      (** [calc_deriv_diag diag hyper] @return the derivative of the
          diagonal of the covariance matrix of inputs given precomputed data
          [diag] and the [hyper]-variable. *)
      val calc_deriv_diag : diag -> Hyper.t -> diag_deriv

      (** [calc_deriv_cross cross hyper] @return the derivative of the
          cross-covariance matrix of the inputs and inducing inputs given
          precomputed data [cross] and the [hyper]-variable. *)
      val calc_deriv_cross : cross -> Hyper.t -> mat_deriv
    end
  end

  (** Derivatives of inputs for global optimization. *)
  module type Optimizer = sig

    (** Derivatives always require evaluation functions *)
    module Eval : Eval

    (** Input parameters that have derivatives *)
    module Var : sig
      type t  (** Type of input parameter *)
    end

    module Input : sig
      (** [get_vars input] @return array of all input parameters for which
          derivatives can be computed given [input]. *)
      val get_vars : Eval.Input.t -> Var.t array

      (** [get_value input var] @return value of input parameter [var] for
          [input]. *)
      val get_value : Eval.Input.t -> Var.t -> float

      (** [set_values input vars values] @return input in which [vars] have been
          substituted with [values] position-wise. *)
      val set_values : Eval.Input.t -> Var.t array -> vec -> Eval.Input.t
    end

    module Inputs : sig
      (** [get_vars inputs] @return array of all input parameters for which
          derivatives can be computed given [inputs]. *)
      val get_vars : Eval.Inputs.t -> Var.t array

      (** [get_value inputs var] @return value of input parameter [var] for
          [inputs]. *)
      val get_value : Eval.Inputs.t -> Var.t -> float

      (** [set_values inputs vars values] @return inputs in which [vars] have
          been substituted with [values] position-wise. *)
      val set_values : Eval.Inputs.t -> Var.t array -> vec -> Eval.Inputs.t
    end
  end
end

(** Signatures for learning sparse Gaussian processes with inducing inputs *)
module Sigs = struct

  (** Modules for learning without derivatives of covariance functions. *)
  module type Eval = sig

    (** Specification of covariance function *)
    module Spec : Specs.Eval

    (** Evaluating inducing inputs *)
    module Inducing : sig
      type t  (** Type of inducing inputs *)

      (** [choose_n_first_inputs kernel inputs ~n_inducing] @return the first
          [n_inducing] inputs in [inputs] as inducing points given [kernel]. *)
      val choose_n_first_inputs :
        Spec.Kernel.t -> Spec.Inputs.t -> n_inducing : int -> Spec.Inducing.t

      (** [choose_n_random_inputs ?rnd_state kernel inputs ~n_inducing] @return
          [n_inducing] random inputs in [inputs] as inducing points given
          [kernel] and (optional) random state [rnd_state].

          @param rnd_state default = default used by the Random module
      *)
      val choose_n_random_inputs :
        ?rnd_state : Random.State.t ->
        Spec.Kernel.t ->
        Spec.Inputs.t ->
        n_inducing : int ->
        Spec.Inducing.t

      (** [calc kernel inducing_points] @return inducing inputs (= precomputed
          data) prepared using [inducing_points] and [kernel]. *)
      val calc : Spec.Kernel.t -> Spec.Inducing.t -> t

      (** [get_points kernel inducing] @return inducing points associated with
          the prepared [inducing] inputs. *)
      val get_points : t -> Spec.Inducing.t
    end

    (** Evaluating single inputs *)
    module Input : sig
      type t  (** Type of single input *)

      (** [calc inducing point] @return input (= precomputed
          data) prepared using [inducing] inputs and input [point]. *)
      val calc : Inducing.t -> Spec.Input.t -> t
    end

    (** Evaluating (multiple) inputs *)
    module Inputs : sig
      type t  (** Type of (multiple) inputs *)

      (** [create_default_kernel points] @return a default kernel given input
          [points] and [n_inducing] inducing inputs. *)
      val create_default_kernel :
        Spec.Inputs.t -> n_inducing : int -> Spec.Kernel.t

      (** [create points inducing] @return inputs (= precomputed
          data) prepared using [inducing] inputs and input [points]. *)
      val calc : Spec.Inputs.t -> Inducing.t -> t

      (** [get_points kernel inputs] @return points associated with
          the prepared [inputs]. *)
      val get_points : t -> Spec.Inputs.t
    end

    (** (Untrained) model - does not require targets *)
    module Model : sig
      type t  (** Type of models *)

      type co_variance_coeffs  (** Type of covariance coefficients *)

      (** [calc inputs ~sigma2] @return model given [inputs] and noise level
          [sigma2] (= variance, i.e. squared standard deviation). *)
      val calc : Inputs.t -> sigma2 : float -> t

      (** [update_sigma2 model sigma2] @return model by updating [model] with
          new noise level [sigma2]. *)
      val update_sigma2 : t -> float -> t

      (** [calc_log_evidence model] @return the contribution to the log evidence
          (= log marginal likelihood) of [model]. *)
      val calc_log_evidence : t -> float

      (** [calc_co_variance_coeffs model] @return the coefficients
          required for computing posterior (co-)variances for [model]. *)
      val calc_co_variance_coeffs : t -> co_variance_coeffs

      (** [get_kernel model] @return the kernel associated with [model]. *)
      val get_kernel : t -> Spec.Kernel.t

      (** [get_sigma2 model] @return the noise level associated with [model]. *)
      val get_sigma2 : t -> float

      (** [get_inputs model] @return the inputs associated with [model]. *)
      val get_inputs : t -> Inputs.t

      (** [get_inputs model] @return the inducing inputs associated with
          [model]. *)
      val get_inducing : t -> Inducing.t
    end

    (** Trained model - requires targets *)
    module Trained : sig
      type t  (** Type of trained models *)

      (** [calc model ~targets] @return trained model given [model] and
          [targets]. *)
      val calc : Model.t -> targets : vec -> t

      (** [calc_mean_coeffs trained] @return the vector of coefficients for
          computing posterior means. *)
      val calc_mean_coeffs : t -> vec

      (** [calc_log_evidence trained] @return the log evidence for the trained
          model (includes contribution to log evidence by underlying model). *)
      val calc_log_evidence : t -> float

      (** [get_model trained] @return the model associated with the [trained]
          model. *)
      val get_model : t -> Model.t

      (** [get_targets trained] @return targets used for training [trained]. *)
      val get_targets : t -> vec
    end

    (** Statistics derived from trained models *)
    module Stats : sig
      (** Type of full statistics *)
      type t = {
        n_samples : int;  (** Number of samples used for training *)
        target_variance : float;  (** Variance of targets *)
        sse : float;   (** Sum of squared errors *)
        mse : float;  (** Mean sum of squared errors *)
        rmse : float;  (** Root mean sum of squared errors *)
        smse : float;  (** Standardized mean squared error *)
        msll : float;  (** Mean standardized log loss *)
        mad : float;  (** Mean absolute deviation *)
        maxad : float;  (** Maximum absolute deviation *)
      }

      (** [calc_n_samples trained] @return number of samples used for training
          [trained]. *)
      val calc_n_samples : Trained.t -> int

      (** [calc_target_variance trained] @return variance of targets used for
          training [trained]. *)
      val calc_target_variance : Trained.t -> float

      (** [calc_sse trained] @return the sum of squared errors of the [trained]
          model. *)
      val calc_sse : Trained.t -> float

      (** [calc_mse trained] @return the mean sum of squared errors of the
          [trained] model. *)
      val calc_mse : Trained.t -> float

      (** [calc_sse trained] @return the root of the mean sum of squared errors
          of the [trained] model. *)
      val calc_rmse : Trained.t -> float

      (** [calc_smse trained] @return the standardized mean squared error of the
          [trained] model.  This is equivalent to the mean squared error divided
          by the target variance. *)
      val calc_smse : Trained.t -> float

      (** [calc_msll trained] @return the mean standardized log loss.  This
          is equivalent to subtracting the log evidence of the trained model
          from the log evidence of a normal distribution fit to the targets, and
          dividing the result by the number of samples. *)
      val calc_msll : Trained.t -> float

      (** [calc_mad trained] @return the mean absolute deviation
          of the [trained] model. *)
      val calc_mad : Trained.t -> float

      (** [calc_mad trained] @return the maximum absolute deviation
          of the [trained] model. *)
      val calc_maxad : Trained.t -> float

      (** [calc trained] @return the full set of statistics associated with
          the [trained] model. *)
      val calc : Trained.t -> t
    end

    (** Module for making mean predictions *)
    module Mean_predictor : sig
      type t  (** Type of mean predictors *)

      (** [calc inducing_points ~coeffs] @return a mean predictor given
          [inducing_points] and coefficients [coeffs]. *)
      val calc : Spec.Inducing.t -> coeffs : vec -> t

      (** [calc_trained trained] @return a mean predictor given the [trained]
          model. *)
      val calc_trained : Trained.t -> t

      (** [get_inducing mean_predictor] @return inducing points associated with
          [mean_predictor]. *)
      val get_inducing : t -> Spec.Inducing.t

      (** [get_coeffs mean_predictor] @return coefficients associated with
          [mean_predictor]. *)
      val get_coeffs : t -> vec
    end

    (** Posterior mean for a single input *)
    module Mean : sig
      type t  (** Type of mean *)

      (** [calc mean_predictor input] @return mean for [input] given
          [mean_predictor]. *)
      val calc : Mean_predictor.t -> Input.t -> t

      (** [get mean] @return the mean as a float. *)
      val get : t -> float
    end

    (** Posterior means for (multiple) inputs *)
    module Means : sig
      type t  (** Type of means *)

      (** [calc mean_predictor inputs] @return means for [inputs] given
          [mean_predictor]. *)
      val calc : Mean_predictor.t -> Inputs.t -> t

      (** [get means] @return the means as a vector. *)
      val get : t -> vec
    end

    (** Module for making (co-)variance predictions *)
    module Co_variance_predictor : sig
      type t  (** Type of (co-)variance predictor *)

      (** [calc kernel inducing_points co_variance_coeffs] @return (co-)variance
          predictor given [kernel], [inducing_points], and the (co-)variance
          coefficients [co_variance_coeffs]. *)
      val calc :
        Spec.Kernel.t -> Spec.Inducing.t -> Model.co_variance_coeffs -> t

      (** [calc_model model] @return (co-)variance predictor given the
          (untrained) [model]. *)
      val calc_model : Model.t -> t
    end

    (** Posterior variance for a single input *)
    module Variance : sig
      type t  (** Type of variance *)

      (** [calc co_variance_predictor ~sigma2 input] @return variance for
          [input] given [mean_predictor] and noise level [sigma2]. *)
      val calc : Co_variance_predictor.t -> sigma2 : float -> Input.t -> t

      (** [get ?predictive variance] @return the [variance] as a float.
          If [predictive] is [true], then the noise level will be added.

          @param predictive default = [true]
      *)
      val get : ?predictive : bool -> t -> float
    end

    (** Posterior variances for (multiple) inputs *)
    module Variances : sig
      type t  (** Type of variances *)

      (** [calc_model_inputs model] @return variances for all inputs used in
          [model]. *)
      val calc_model_inputs : Model.t -> t

      (** [calc co_variance_predictor ~sigma2 inputs] @return variances for
          [inputs] given [co_variance_predictor] and noise level [sigma2]. *)
      val calc : Co_variance_predictor.t -> sigma2 : float -> Inputs.t -> t

      (** [get ?predictive variances] @return the [variances] as a vector.
          If [predictive] is [true], then the noise level will be added.

          @param predictive default = [true]
      *)
      val get : ?predictive : bool -> t -> vec
    end

    (** Posterior covariances *)
    module Covariances : sig
      type t  (** Type of covariances *)

      (** [calc_model_inputs model] @return covariances for all inputs used in
          [model].  This may be extremely expensive (O(N^2)) for large numbers
          of model inputs. *)
      val calc_model_inputs : Model.t -> t

      (** [calc co_variance_predictor ~sigma2 inputs] @return posterior
          covariances for [inputs] given [co_variance_predictor] and noise level
          [sigma2].  This may be extremely expensive (O(N^2)) for large numbers
          of inputs. *)
      val calc : Co_variance_predictor.t -> sigma2 : float -> Inputs.t -> t

      (** [get ?predictive covariances] @return the [covariances] as a matrix.
          If [predictive] is [true], then the noise level will be added (to the
          diagonal only).

          @param predictive default = [true]
      *)
      val get : ?predictive : bool -> t -> mat

      (** [get_variances covariances] @return the variances in [covariances]. *)
      val get_variances : t -> Variances.t
    end

    (** Module for sampling single points from the posterior distribution *)
    module Sampler : sig
      type t  (** Type of sampler *)

      (** [calc ?predictive mean variance] @return sampler given [mean] and
          [variance].  If [predictive] is true, the samples will be noisy. *)
      val calc : ?predictive : bool -> Mean.t -> Variance.t -> t

      (** [sample ?rng sampler] @return a sample from the posterior distribution
          given [sampler] and GSL random number generator [rng].

          @param rng default = GSL default
      *)
      val sample : ?rng : Gsl.Rng.t -> t -> float

      (** [samples ?rng sampler ~n] @return [n] samples from the posterior
          distribution given [sampler].

          @param rng default = GSL default
      *)
      val samples : ?rng : Gsl.Rng.t -> t -> n : int -> vec
    end

    (** Module for sampling (multiple) points from the posterior distribution
        accounting for their covariance *)
    module Cov_sampler : sig
      type t  (** Type of covariance sampler *)

      (** [calc ?predictive mean variance] @return sampler given [means] and
          [covariances].  If [predictive] is true, the samples will be noisy. *)
      val calc : ?predictive : bool -> Means.t -> Covariances.t -> t

      (** [sample ?rng sampler] @return a sample vector from the posterior
          distribution given [sampler] and GSL random number generator [rng].

          @param rng default = GSL default
      *)
      val sample : ?rng : Gsl.Rng.t -> t -> vec

      (** [samples ?rng sampler ~n] @return matrix of [n] sample vectors (stored
          row-wise) from the posterior distribution given [sampler].

          @param rng default = GSL default
      *)
      val samples : ?rng : Gsl.Rng.t -> t -> n : int -> mat
    end
  end

  (** Modules for learning with derivatives of the log evidence (evidence
      maximization framework) *)
  module type Deriv = sig

    (** Sub-modules for learning without derivatives. *)
    module Eval : Eval

    (** Sub-modules for learning with derivatives. *)
    module Deriv : sig

      (** Specification of covariance function derivatives *)
      module Spec : Specs.Deriv with module Eval = Eval.Spec

      (** Module for inducing inputs with derivatives *)
      module Inducing : sig
        type t  (** Type of inducing inputs with derivatives *)

        (** [calc kernel inducing_points] @return inducing inputs with
            derivative information given [kernel] and [inducing_points]. *)
        val calc : Eval.Spec.Kernel.t -> Eval.Spec.Inducing.t -> t

        (** [calc_eval inducing] @return inducing inputs without derivative
            information. *)
        val calc_eval : t -> Eval.Inducing.t
      end

      (** Module for inputs with derivatives *)
      module Inputs : sig
        type t  (** Type of inputs with derivatives *)

        (** [calc inducing points] @return inputs with derivative information
            given [inducing] inputs and input [points]. *)
        val calc : Inducing.t -> Eval.Spec.Inputs.t -> t

        (** [calc_eval inputs] @return inputs without derivative information. *)
        val calc_eval : t -> Eval.Inputs.t
      end

      (** (Untrained) model with derivative information *)
      module Model : sig
        (** Type of models with derivatives *)
        type t

        (** Type of models for general hyper parameters *)
        type hyper_t

        (** [calc inputs ~sigma2] @return model with derivative information
            given [inputs] and noise level [sigma2]. *)
        val calc : Inputs.t -> sigma2 : float -> t

        (** [update_sigma2 model sigma2] @return model with derivative
            information by updating [model] with new noise level [sigma2]. *)
        val update_sigma2 : t -> float -> t

        (** [calc_eval model] @return model without derivative information given
            [model]. *)
        val calc_eval : t -> Eval.Model.t

        (** [calc_log_evidence_sigma2 model] @return the derivative of the
            log evidence of [model] with respect to the noise level (sigma2). *)
        val calc_log_evidence_sigma2 : t -> float

        (** [prepare_hyper model] @return the model prepared for calculating
            derivatives for arbitrary hyper parameters. *)
        val prepare_hyper : t -> hyper_t

        (** [calc_log_evidence hyper_t hyper] @return the derivative of the log
            evidence given prepared model [hyper_t] with respect to the [hyper]
            variable. *)
        val calc_log_evidence : hyper_t -> Spec.Hyper.t -> float
      end

      (** Trained model with derivative information *)
      module Trained : sig
        (** Type of trained models with derivatives *)
        type t

        (** Type of trained models for general hyper parameters *)
        type hyper_t

        (** [calc model ~targets] @return trained model with derivative
            information given the untrained [model] and [targets]. *)
        val calc : Model.t -> targets : vec -> t

        (** [calc_eval trained] @return trained model without derivative
            information given [trained]. *)
        val calc_eval : t -> Eval.Trained.t

        (** [calc_log_evidence_sigma2 trained] @return the derivative of the
            log evidence for the [trained] model with respect to the noise level
            (sigma2).  This includes the contribution to the derivative by
            [model]. *)
        val calc_log_evidence_sigma2 : t -> float

        (** [prepare_hyper trained] @return the trained model prepared for
            calculating derivatives for arbitrary hyper parameters. *)
        val prepare_hyper : t -> hyper_t

        (** [calc_log_evidence hyper_t hyper] @return the derivative of the log
            evidence given prepared, trained model [hyper_t] with respect to the
            [hyper] variable. *)
        val calc_log_evidence : hyper_t -> Spec.Hyper.t -> float
      end

      (** Module for testing derivative code *)
      module Test : sig
        (** [check_deriv_hyper ?eps ?tol kernel inducing_points points hyper]
            will raise [Failure] if the derivative code provided in the
            specification of the covariance function given parameter [hyper],
            the [kernel], [inducing_points] and input [points] exceeds the
            tolerance [tol] when compared to finite differences using epsilon
            [eps].  The failure exception will contain details on which
            derivative matrix was incorrect and indicate the matrix element.

            @param eps default = [1e-8]
            @param tol default = [1e-2]
        *)
        val check_deriv_hyper :
          ?eps : float ->
          ?tol : float ->
          Eval.Spec.Kernel.t ->
          Eval.Spec.Inducing.t ->
          Eval.Spec.Inputs.t ->
          Spec.Hyper.t ->
          unit

        (** [self_test ?eps ?tol kernel inducing_points points ~sigma2 ~targets
            hyper] will raise [Failure] if the internal derivative code for the
            log evidence given parameter [hyper], the [kernel],
            [inducing_points], input [points], noise level [sigma2] and
            [targets] exceeds the tolerance [tol] when compared to finite
            differences using epsilon [eps].

            @param eps default = [1e-8]
            @param tol default = [1e-2]
        *)
        val self_test :
          ?eps : float ->
          ?tol : float ->
          Eval.Spec.Kernel.t ->
          Eval.Spec.Inducing.t ->
          Eval.Spec.Inputs.t ->
          sigma2 : float ->
          targets : vec ->
          [ `Sigma2 | `Hyper of Spec.Hyper.t ] ->
          unit
      end

      (** Optimization module for evidence maximization *)
      module Optim : sig

        (** Optimization with the GNU Scientific library (GSL) *)
        module Gsl : sig
          (** [Optim_exception exn] is raised when an internal exception occurs,
              e.g. because GSL fails, or because a callback raised it. *)
          exception Optim_exception of exn

          (** [train ?step ?tol ?epsabs ?report_trained_model
              ?report_gradient_norm ?kernel ?sigma2 ?inducing ?n_rand_inducing
              ?learn_sigma2 ?hypers ~inputs ~targets ()] takes the optional
              initial optimizer step size [step], the optimizer line search
              tolerance [tol], the minimum gradient norm [epsabs] to achieve by
              the optimizer, callbacks for reporting intermediate results
              [report_trained_model] and [report_gradient_norm], an optional
              [kernel], noise level [sigma2], inducing inputs [inducing], number
              of randomly chosen inducing inputs [n_rand_inducing], a flag for
              whether the noise level should be learnt [learn_sigma2], an array
              of optional hyper parameters [hypers] which should be optimized,
              and the [inputs] and [targets].

              @return the trained model obtained by evidence maximization (=
              type II maximum likelihood).

              @param step default = [1e-1]
              @param tol default = [1e-1]
              @param epsabs default = [1e-1]
              @param report_trained_model default = ignored
              @param report_gradient_norm default = ignored
              @param kernel default = default kernel computed from specification
              @param sigma2 default = target variance
              @param inducing default = randomly selected subset of inputs
              @param n_rand_inducing default = 10% of inputs, at most 1000
              @param learn_sigma2 default = [true]
              @param hypers default = all hyper parameters
          *)
          val train :
            ?step : float ->
            ?tol : float ->
            ?epsabs : float ->
            ?report_trained_model : (iter : int -> Eval.Trained.t -> unit) ->
            ?report_gradient_norm : (iter : int -> float -> unit) ->
            ?kernel : Eval.Spec.Kernel.t ->
            ?sigma2 : float ->
            ?inducing : Eval.Spec.Inducing.t ->
            ?n_rand_inducing : int ->
            ?learn_sigma2 : bool ->
            ?hypers : Spec.Hyper.t array ->
            inputs : Eval.Spec.Inputs.t ->
            targets : vec ->
            unit ->
            Eval.Trained.t
        end

        module SGD : sig
          type t

          val create :
            ?tau : float ->
            ?eta0 : float ->
            ?step : int ->
            ?kernel : Eval.Spec.Kernel.t ->
            ?sigma2 : float ->
            ?inducing : Eval.Spec.Inducing.t ->
            ?n_rand_inducing : int ->
            ?learn_sigma2 : bool ->
            ?hypers : Spec.Hyper.t array ->
            inputs : Eval.Spec.Inputs.t ->
            targets : vec ->
            unit ->
            t

          val step : t -> t
          val gradient_norm : t -> float
          val get_trained : t -> Eval.Trained.t

          val get_eta : t -> float
          val get_step : t -> int

          val test :
            ?epsabs : float ->
            ?max_iter : int ->
            ?report : (t -> unit) ->
            t ->
            t
        end

        module SMD : sig
          type t

          val create :
            ?eps : float ->
            ?lambda : float ->
            ?mu : float ->
            ?eta0 : vec ->
            ?nu0 : vec ->
            ?kernel : Eval.Spec.Kernel.t ->
            ?sigma2 : float ->
            ?inducing : Eval.Spec.Inducing.t ->
            ?n_rand_inducing : int ->
            ?learn_sigma2 : bool ->
            ?hypers : Spec.Hyper.t array ->
            inputs : Eval.Spec.Inputs.t ->
            targets : vec ->
            unit ->
            t

          val step : t -> t
          val gradient_norm : t -> float
          val get_trained : t -> Eval.Trained.t

          val get_eta : t -> vec
          val get_nu : t -> vec

          val test :
            ?epsabs : float ->
            ?max_iter : int ->
            ?report : (t -> unit) ->
            t ->
            t
        end
      end

(*
      (** Online learning *)
      module Online : sig
        type t

        val sgd :
          ?capacity : int ->
          ?eta0 : float -> ?tau : float -> Spec.Eval.Kernel.t -> t

        val smd :
          ?capacity : int ->
          ?eta0 : vec -> ?mu : float -> ?lam : float -> Spec.Eval.Kernel.t -> t

        val train : t -> Spec.Eval.Input.t -> target : float -> t

        val calc_mean_predictor : t -> Eval.Mean_predictor.t
        val calc_co_variance_predictor : t -> Eval.Co_variance_predictor.t
      end
*)

    end

  end

  (** Modules for global optimization *)
  module type Optimizer = sig

    (** Sub-modules for learning without derivatives. *)
    module Eval : Eval

    (** Sub-modules for global optimization. *)
    module Optimizer : sig
      module Spec : Specs.Optimizer with module Eval = Eval.Spec

      type t

      val create : ?max_memory : int -> Spec.Eval.Kernel.t -> t

      val learn : t -> (Spec.Eval.Input.t * float) array -> t

      val calc_mpi_criterion : t -> Spec.Eval.Input.t -> float

      val calc_mpi_deriv : t -> Spec.Eval.Input.t
    end
  end
end
OCaml

Innovation. Community. Security.