package goblint-cil

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file dataflow.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

module IH = Inthash
module E = Errormsg

open Cil
open Pretty

(** A framework for data flow analysis for CIL code.  Before using
    this framework, you must initialize the Control-flow Graph for your
    program, e.g using {!Cfg.computeFileCFG} *)

type 't action =
    Default (** The default action *)
  | Done of 't (** Do not do the default action. Use this result *)
  | Post of ('t -> 't) (** The default action, followed by the given
                          transformer *)

type 't stmtaction =
    SDefault   (** The default action *)
  | SDone      (** Do not visit this statement or its successors *)
  | SUse of 't (** Visit the instructions and successors of this statement
                  as usual, but use the specified state instead of the
                  one that was passed to doStmt *)

(* For if statements *)
type 't guardaction =
    GDefault      (** The default state *)
  | GUse of 't    (** Use this data for the branch *)
  | GUnreachable  (** The branch will never be taken. *)


(******************************************************************
 **********
 **********         FORWARDS
 **********
 ********************************************************************)

module type ForwardsTransfer = sig
  val name: string (** For debugging purposes, the name of the analysis *)

  val debug: bool ref (** Whether to turn on debugging *)

  type t  (** The type of the data we compute for each block start. May be
             imperative.  *)

  val copy: t -> t
  (** Make a deep copy of the data *)


  val stmtStartData: t Inthash.t
  (** For each statement id, the data at the start. Not found in the hash
     table means nothing is known about the state at this point. At the end
     of the analysis this means that the block is not reachable. *)

  val pretty: unit -> t -> Pretty.doc
  (** Pretty-print the state *)

  val computeFirstPredecessor: Cil.stmt -> t -> t
  (** Give the first value for a predecessors, compute the value to be set
     for the block *)

  val combinePredecessors: Cil.stmt -> old:t -> t -> t option
  (** Take some old data for the start of a statement, and some new data for
     the same point. Return None if the combination is identical to the old
     data. Otherwise, compute the combination, and return it. *)

  val doInstr: Cil.instr -> t -> t action
  (** The (forwards) transfer function for an instruction. The
     {!Cil.currentLoc} is set before calling this. The default action is to
     continue with the state unchanged. *)

  val doStmt: Cil.stmt -> t -> t stmtaction
  (** The (forwards) transfer function for a statement. The {!Cil.currentLoc}
     is set before calling this. The default action is to do the instructions
     in this statement, if applicable, and continue with the successors. *)

  val doGuard: Cil.exp -> t -> t guardaction
  (** Generate the successor to an If statement assuming the given expression
      is nonzero.  Analyses that don't need guard information can return
      GDefault; this is equivalent to returning GUse of the input.
      A return value of GUnreachable indicates that this half of the branch
      will not be taken and should not be explored.  This will be called
      twice per If, once for "then" and once for "else".
    *)

  val filterStmt: Cil.stmt -> bool
  (** Whether to put this statement in the worklist. This is called when a
     block would normally be put in the worklist. *)

end


module ForwardsDataFlow =
  functor (T : ForwardsTransfer) ->
  struct

    (** Keep a worklist of statements to process. It is best to keep a queue,
       because this way it is more likely that we are going to process all
       predecessors of a statement before the statement itself. *)
    let worklist: Cil.stmt Queue.t = Queue.create ()

    (** We call this function when we have encountered a statement, with some
       state. *)
    let reachedStatement (s: stmt) (d: T.t) : unit =
      let loc = get_stmtLoc s.skind in
      if loc != locUnknown then
        currentLoc := get_stmtLoc s.skind;
      (* see if we know about it already *)
      E.pushContext (fun _ -> dprintf "Reached statement %d with %a"
          s.sid T.pretty d);
      let newdata: T.t option =
        try
          let old = IH.find T.stmtStartData s.sid in
          match T.combinePredecessors s ~old:old d with
            None -> (* We are done here *)
              if !T.debug then
                ignore (E.log "FF(%s): reached stmt %d with %a\n  implies the old state %a\n"
                          T.name s.sid T.pretty d T.pretty old);
              None
          | Some d' -> begin
              (* We have changed the data *)
              if !T.debug then
                ignore (E.log "FF(%s): weaken data for block %d: %a\n"
                          T.name s.sid T.pretty d');
              Some d'
          end
        with Not_found -> (* was bottom before *)
          let d' = T.computeFirstPredecessor s d in
          if !T.debug then
            ignore (E.log "FF(%s): set data for block %d: %a\n"
                      T.name s.sid T.pretty d');
          Some d'
      in
      E.popContext ();
      match newdata with
        None -> ()
      | Some d' ->
          IH.replace T.stmtStartData s.sid d';
          if T.filterStmt s &&
            not (Queue.fold (fun exists s' -> exists || s'.sid = s.sid)
                            false
                            worklist) then
            Queue.add s worklist


    (** Get the two successors of an If statement *)
    let ifSuccs (s:stmt) : stmt * stmt =
      let fstStmt blk = match blk.bstmts with
          [] -> Cil.dummyStmt
        | fst::_ -> fst
      in
      match s.skind with
        If(e, b1, b2, _, _) ->
          let thenSucc = fstStmt b1 in
          let elseSucc = fstStmt b2 in
          let oneFallthrough () =
            let fallthrough =
              List.filter
                (fun s' -> thenSucc != s' && elseSucc != s')
                s.succs
            in
            match fallthrough with
              [] -> E.s (bug "Bad CFG: missing fallthrough for If.")
            | [s'] -> s'
            | _ ->  E.s (bug "Bad CFG: multiple fallthrough for If.")
          in
          (* If thenSucc or elseSucc is Cil.dummyStmt, it's an empty block.
             So the successor is the statement after the if *)
          let stmtOrFallthrough s' =
            if s' == Cil.dummyStmt then
              oneFallthrough ()
            else
              s'
          in
          (stmtOrFallthrough thenSucc,
           stmtOrFallthrough elseSucc)

      | _-> E.s (bug "ifSuccs on a non-If Statement.")

    (** Process a statement *)
    let processStmt (s: stmt) : unit =
      currentLoc := get_stmtLoc s.skind;
      if !T.debug then
        ignore (E.log "FF(%s).stmt %d at %t\n" T.name s.sid d_thisloc);

      (* It must be the case that the block has some data *)
      let init: T.t =
         try T.copy (IH.find T.stmtStartData s.sid)
         with Not_found ->
            E.s (E.bug "FF(%s): processing block without data" T.name)
      in

      (* See what the custom says *)
      match T.doStmt s init with
        SDone  -> ()
      | (SDefault | SUse _) as act -> begin
          let curr = match act with
              SDefault -> init
            | SUse d -> d
            | SDone -> E.s (bug "SDone")
          in
          (* Do the instructions in order *)
          let handleInstruction (s: T.t) (i: instr) : T.t =
            currentLoc := get_instrLoc i;

            (* Now handle the instruction itself *)
            let s' =
              let action = T.doInstr i s in
              match action with
               | Done s' -> s'
               | Default -> s (* do nothing *)
               | Post f -> f s
            in
            s'
          in

          let after: T.t =
            match s.skind with
              Instr il ->
                (* Handle instructions starting with the first one *)
                List.fold_left handleInstruction curr il

            | Goto _ | ComputedGoto _ | Break _ | Continue _ | If _
            | Switch _ | Loop _ | Return _ | Block _ -> curr
          in
          currentLoc := get_stmtLoc s.skind;

          (* Handle If guards *)
          let succsToReach = match s.skind with
              If (e, _, _, _, _) -> begin
                let not_e = UnOp(LNot, e, intType) in
                let thenGuard = T.doGuard e after in
                let elseGuard = T.doGuard not_e after in
                if thenGuard = GDefault && elseGuard = GDefault then
                  (* this is the common case *)
                  s.succs
                else begin
                  let doBranch succ guard =
                    match guard with
                      GDefault -> reachedStatement succ after
                    | GUse d ->  reachedStatement succ d
                    | GUnreachable ->
                        if !T.debug then
                          ignore (E.log "FF(%s): Not exploring branch to %d\n"
                                    T.name succ.sid);

                        ()
                  in
                  let thenSucc, elseSucc = ifSuccs s  in
                  doBranch thenSucc thenGuard;
                  doBranch elseSucc elseGuard;
                  []
                end
              end
            | _ -> s.succs
          in
          (* Reach the successors *)
          List.iter (fun s' -> reachedStatement s' after) succsToReach;

      end




          (** Compute the data flow. Must have the CFG initialized *)
    let compute (sources: stmt list) =
      Queue.clear worklist;
      List.iter (fun s -> Queue.add s worklist) sources;

      (* All initial stmts must have non-bottom data *)
      List.iter (fun s ->
         if not (IH.mem T.stmtStartData s.sid) then
           E.s (E.error "FF(%s): initial stmt %d does not have data"
                  T.name s.sid))
         sources;
      if !T.debug then
        ignore (E.log "\nFF(%s): processing\n"
                  T.name);
      let rec fixedpoint () =
        if !T.debug && not (Queue.is_empty worklist) then
          ignore (E.log "FF(%s): worklist= %a\n"
                    T.name
                    (docList (fun s -> num s.sid))
                    (List.rev
                       (Queue.fold (fun acc s -> s :: acc) [] worklist)));
        let keepgoing =
          try
            let s = Queue.take worklist in
            processStmt s;
            true
          with Queue.Empty ->
            if !T.debug then
              ignore (E.log "FF(%s): done\n\n" T.name);
            false
        in
        if keepgoing then
          fixedpoint ()
      in
      fixedpoint ()

  end



(******************************************************************
 **********
 **********         BACKWARDS
 **********
 ********************************************************************)
module type BackwardsTransfer = sig
  val name: string (* For debugging purposes, the name of the analysis *)

  val debug: bool ref (** Whether to turn on debugging *)

  type t  (** The type of the data we compute for each block start. In many
             presentations of backwards data flow analysis we maintain the
             data at the block end. This is not easy to do with JVML because
             a block has many exceptional ends. So we maintain the data for
             the statement start. *)

  val pretty: unit -> t -> Pretty.doc (** Pretty-print the state *)

  val stmtStartData: t Inthash.t
  (** For each block id, the data at the start. This data structure must be
     initialized with the initial data for each block *)

  val funcExitData: t
  (** The data at function exit.  Used for statements with no successors.
      This is usually bottom, since we'll also use doStmt on Return
      statements. *)

  val combineStmtStartData: Cil.stmt -> old:t -> t -> t option
  (** When the analysis reaches the start of a block, combine the old data
     with the one we have just computed. Return None if the combination is
     the same as the old data, otherwise return the combination. In the
     latter case, the predecessors of the statement are put on the working
     list. *)


  val combineSuccessors: t -> t -> t
  (** Take the data from two successors and combine it *)


  val doStmt: Cil.stmt -> t action
  (** The (backwards) transfer function for a branch. The {!Cil.currentLoc} is
     set before calling this. If it returns None, then we have some default
     handling. Otherwise, the returned data is the data before the branch
     (not considering the exception handlers) *)

  val doInstr: Cil.instr -> t -> t action
  (** The (backwards) transfer function for an instruction. The
     {!Cil.currentLoc} is set before calling this. If it returns None, then we
     have some default handling. Otherwise, the returned data is the data
     before the branch (not considering the exception handlers) *)

  val filterStmt: Cil.stmt -> Cil.stmt -> bool
  (** Whether to put this predecessor block in the worklist. We give the
     predecessor and the block whose predecessor we are (and whose data has
     changed)  *)

end

module BackwardsDataFlow =
  functor (T : BackwardsTransfer) ->
  struct

    let getStmtStartData (s: stmt) : T.t =
      try IH.find T.stmtStartData s.sid
      with Not_found ->
        E.s (E.bug "BF(%s): stmtStartData is not initialized for %d: %a"
               T.name s.sid d_stmt s)

    (** Process a statement and return true if the set of live return
       addresses on its entry has changed. *)
    let processStmt (s: stmt) : bool =
      if !T.debug then
        ignore (E.log "FF(%s).stmt %d\n" T.name s.sid);


      (* Find the state before the branch *)
      currentLoc := get_stmtLoc s.skind;
      let d: T.t =
        match T.doStmt s with
           Done d -> d
         | (Default | Post _) as action -> begin
             (* Do the default one. Combine the successors *)
             let res =
               match s.succs with
                 [] -> T.funcExitData
               | fst :: rest ->
                   List.fold_left (fun acc succ ->
                     T.combineSuccessors acc (getStmtStartData succ))
                     (getStmtStartData fst)
                     rest
             in
             (* Now do the instructions *)
             let res' =
               match s.skind with
                 Instr il ->
                   (* Now scan the instructions in reverse order. This may
                      Stack_overflow on very long blocks ! *)
                   let handleInstruction (i: instr) (s: T.t) : T.t =
                     currentLoc := get_instrLoc i;
                     (* First handle the instruction itself *)
                     let action = T.doInstr i s in
                     match action with
                     | Done s' -> s'
                     | Default -> s (* do nothing *)
                     | Post f -> f s
                   in
                   (* Handle instructions starting with the last one *)
                   List.fold_right handleInstruction il res

               | _ -> res
             in
             match action with
               Post f -> f res'
             | _ -> res'
         end
      in

      (* See if the state has changed. The only changes are that it may grow.*)
      let s0 = getStmtStartData s in

      match T.combineStmtStartData s ~old:s0 d with
        None -> (* The old data is good enough *)
          false

      | Some d' ->
          (* We have changed the data *)
          if !T.debug then
            ignore (E.log "BF(%s): set data for block %d: %a\n"
                      T.name s.sid T.pretty d');
          IH.replace T.stmtStartData s.sid d';
          true


          (** Compute the data flow. Must have the CFG initialized *)
    let compute (sinks: stmt list) =
      let worklist: Cil.stmt Queue.t = Queue.create () in
      List.iter (fun s -> Queue.add s worklist) sinks;
      if !T.debug && not (Queue.is_empty worklist) then
        ignore (E.log "\nBF(%s): processing\n"
                  T.name);
      let rec fixedpoint () =
        if !T.debug &&  not (Queue.is_empty worklist) then
          ignore (E.log "BF(%s): worklist= %a\n"
                    T.name
                    (docList (fun s -> num s.sid))
                    (List.rev
                       (Queue.fold (fun acc s -> s :: acc) [] worklist)));
        let keepgoing =
          try
            let s = Queue.take worklist in
            let changes = processStmt s in
            if changes then begin
              (* We must add all predecessors of block b, only if not already
                 in and if the filter accepts them. *)
              List.iter
                (fun p ->
                   if not (Queue.fold (fun exists s' -> exists || p.sid = s'.sid)
                             false worklist) &&
                     T.filterStmt p s then
                       Queue.add p worklist)
                s.preds;
            end;
            true

          with Queue.Empty ->
            if !T.debug then
              ignore (E.log "BF(%s): done\n\n" T.name);
            false
        in
        if keepgoing then
          fixedpoint ();
      in
      fixedpoint ();

  end


(** Helper utility that finds all of the statements of a function.
  It also lists the return statments (including statements that
  fall through the end of a void function).  Useful when you need an
  initial set of statements for BackwardsDataFlow.compute. *)
let sink_stmts = ref []
let all_stmts = ref []
let sinkFinder = object(self)
  inherit nopCilVisitor

  method! vstmt s =
    all_stmts := s ::(!all_stmts);
    match s.succs with
      [] -> (sink_stmts := s :: (!sink_stmts);
	     DoChildren)
    | _ -> DoChildren

end

(* returns (all_stmts, return_stmts).   *)
let find_stmts (fdec:fundec) : (stmt list * stmt list) =
  ignore(visitCilFunction (sinkFinder) fdec);
  let all = !all_stmts in
  let ret = !sink_stmts in
  all_stmts := [];
  sink_stmts := [];
  all, ret
OCaml

Innovation. Community. Security.