package goblint-cil
A front-end for the C programming language that facilitates program analysis and transformation
Install
Dune Dependency
Authors
Maintainers
Sources
1.8.0.tar.gz
md5=796ad26120b5c6b939a57e8623088aef
sha512=01a58ac6d928afead21c8a97af5865715114cd0562234d1d4aef9e4ac5d91415d040a15927c52cb896dbb39a53e915627f498ebe2d026a548c3ff597682041b2
doc/src/goblint-cil.pta/steensgaard.ml.html
Source file steensgaard.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
(* * * Copyright (c) 2001-2002, * John Kodumal <jkodumal@eecs.berkeley.edu> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of the contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *) (***********************************************************************) (* *) (* *) (* This file is currently unused by CIL. It is included in the *) (* distribution for reference only. *) (* *) (* *) (***********************************************************************) (***********************************************************************) (* *) (* Type Declarations *) (* *) (***********************************************************************) exception Inconsistent of string exception Bad_cache exception No_contents exception Bad_proj exception Bad_type_copy exception Instantiation_cycle module U = Uref module S = Setp module H = Hashtbl module Q = Queue (** Polarity kinds-- positive, negative, or nonpolar. *) type polarity = Pos | Neg | Non (** Label bounds. The polymorphic type is a hack for recursive modules *) type 'a bound = {index : int; info : 'a} (** The 'a type may in general contain urefs, which makes Stdlib.compare incorrect. However, the bounds will always be correct because if two tau's get unified, their cached instantiations will be re-entered into the worklist, ensuring that any labels find the new bounds *) module Bound = struct type 'a t = 'a bound let compare (x : 'a t) (y : 'a t) = Stdlib.compare x y end module B = S.Make(Bound) type 'a boundset = 'a B.t (** Constants, which identify elements in points-to sets *) type constant = int * string module Constant = struct type t = constant let compare ((xid,_) : t) ((yid,_) : t) = Stdlib.compare xid yid end module C = Set.Make(Constant) (** Sets of constants. Set union is used when two labels containing constant sets are unified *) type constantset = C.t type lblinfo = { mutable l_name: string; (** Name of this label *) mutable aliases: constantset; (** Set of constants (tags) for checking aliases *) p_bounds: label boundset U.uref; (** Set of umatched (p) lower bounds *) n_bounds: label boundset U.uref; (** Set of unmatched (n) lower bounds *) mutable p_cached: bool; (** Flag indicating whether all reachable p edges have been locally cached *) mutable n_cached: bool; (** Flag indicating whether all reachable n edges have been locally cached *) mutable on_path: bool; (** For cycle detection during reachability queries *) } (** Constructor labels *) and label = lblinfo U.uref (** The type of lvalues. *) type lvalue = { l: label; contents: tau } (** Data for variables. *) and vinfo = { v_name: string; mutable v_global: bool; v_cache: cache } (** Data for ref constructors. *) and rinfo = { rl: label; mutable r_global: bool; points_to: tau; r_cache: cache } (** Data for fun constructors. *) and finfo = { fl: label; mutable f_global: bool; args: tau list ref; ret: tau; f_cache: cache } (* Data for pairs. Note there is no label. *) and pinfo = { mutable p_global: bool; ptr: tau; lam: tau; p_cache: cache } (** Type constructors discovered by type inference *) and tinfo = Wild | Var of vinfo | Ref of rinfo | Fun of finfo | Pair of pinfo (** The top-level points-to type. *) and tau = tinfo U.uref (** The instantiation constraint cache. The index is used as a key. *) and cache = (int,polarity * tau) H.t (* Type of semi-unification constraints *) type su_constraint = Instantiation of tau * (int * polarity) * tau | Unification of tau * tau (** Association lists, used for printing recursive types. The first element is a type that has been visited. The second element is the string representation of that type (so far). If the string option is set, then this type occurs within itself, and is associated with the recursive var name stored in the option. When walking a type, add it to an association list. Example : suppose we have the constraint 'a = ref('a). The type is unified via cyclic unification, and would loop infinitely if we attempted to print it. What we want to do is print the type u rv. ref(rv). This is accomplished in the following manner: -- ref('a) is visited. It is not in the association list, so it is added and the string "ref(" is stored in the second element. We recurse to print the first argument of the constructor. -- In the recursive call, we see that 'a (or ref('a)) is already in the association list, so the type is recursive. We check the string option, which is None, meaning that this is the first recurrence of the type. We create a new recursive variable, rv and set the string option to 'rv. Next, we prepend u rv. to the string representation we have seen before, "ref(", and return "rv" as the string representation of this type. -- The string so far is "u rv.ref(". The recursive call returns, and we complete the type by printing the result of the call, "rv", and ")" In a type where the recursive variable appears twice, e.g. 'a = pair('a,'a), the second time we hit 'a, the string option will be set, so we know to reuse the same recursive variable name. *) type association = tau * string ref * string option ref (***********************************************************************) (* *) (* Global Variables *) (* *) (***********************************************************************) (** Print the instantiations constraints (loops with cyclic structures). *) let print_constraints : bool ref = ref false (** Solve constraints as they are introduced. If this is false, constraints are solved in batch fashion at calls to solveConstraints. *) let solve_online : bool ref = ref true (** If true, print all constraints (including induced) and show additional debug output. *) let debug = ref false let debug_constraints = debug (** If true, print out extra verbose debug information (including contents of label sets *) let verbose_debug = ref false (** If true, make the flow step a no-op *) let no_flow = ref false let no_sub = ref false (** If true, do not add instantiation constraints *) let analyze_mono = ref false (** A counter for generating unique integers. *) let counter : int ref = ref 0 (** A list of equality constraints. *) let eq_worklist : su_constraint Q.t = Q.create() (** A list of instantiation constraints. *) let inst_worklist : su_constraint Q.t = Q.create() (***********************************************************************) (* *) (* Utility Functions *) (* *) (***********************************************************************) (** Consistency check for inferred types *) let pair_or_var (t : tau) = match (U.deref t) with | Pair _ -> true | Var _ -> true | _ -> false let ref_or_var (t : tau) = match (U.deref t) with | Ref _ -> true | Var _ -> true | _ -> false let fun_or_var (t : tau) = match (U.deref t) with | Fun _ -> true | Var _ -> true | _ -> false (** Generate a unique integer. *) let fresh_index () : int = incr counter; !counter (** Negate a polarity. *) let negate (p : polarity) : polarity = match p with | Pos -> Neg | Neg -> Pos | Non -> Non (** Compute the least-upper-bounds of two polarities. *) let lub (p,p' : polarity * polarity) : polarity = match p with | Pos -> begin match p' with | Pos -> Pos | _ -> Non end | Neg -> begin match p' with | Neg -> Neg | _ -> Non end | Non -> Non (** Extract the cache from a type *) let get_cache (t : tau) : cache = match U.deref t with | Wild -> raise Bad_cache | Var v -> v.v_cache | Ref r -> r.r_cache | Pair p -> p.p_cache | Fun f -> f.f_cache (** Determine whether or not a type is global *) let get_global (t : tau) : bool = match U.deref t with | Wild -> false | Var v -> v.v_global | Ref r -> r.r_global | Pair p -> p.p_global | Fun f -> f.f_global (** Return true if a type is monomorphic (global). *) let global_tau = get_global let global_lvalue lv = get_global lv.contents (** Return true if e is a member of l (according to uref equality) *) let rec ulist_mem e l = match l with | [] -> false | h :: t -> if (U.equal(h,e)) then true else ulist_mem e t (** Convert a polarity to a string *) let string_of_polarity p = match p with | Pos -> "+" | Neg -> "-" | Non -> "T" (** Convert a label to a string, short representation *) let string_of_label2 (l : label) : string = "\"" ^ (U.deref l).l_name ^ "\"" (** Convert a label to a string, long representation *) let string_of_label (l : label ) : string = let rec constset_to_string = function | (_,s) :: [] -> s | (_,s) :: t -> s ^ "," ^ (constset_to_string t) | [] -> "" in let aliases = constset_to_string (C.elements ((U.deref l).aliases)) in if ( (aliases = "") || (not !verbose_debug)) then string_of_label2 l else aliases (** Return true if the element [e] is present in the association list *) let rec assoc_list_mem (e : tau) (l : association list) = match l with | [] -> None | (h,s,so) :: t -> if (U.equal(h,e)) then (Some (s,so)) else assoc_list_mem e t (** Given a tau, create a unique recursive variable name. This should always return the same name for a given tau *) let fresh_recvar_name (t : tau) : string = match U.deref t with | Pair p -> "rvp" ^ string_of_int((Hashtbl.hash p)) | Ref r -> "rvr" ^ string_of_int((Hashtbl.hash r)) | Fun f -> "rvf" ^ string_of_int((Hashtbl.hash f)) | _ -> raise (Inconsistent ("recvar_name")) (** Return a string representation of a tau, using association lists. *) let string_of_tau (t : tau ) : string = let tau_map : association list ref = ref [] in let rec string_of_tau' t = match (assoc_list_mem t (!tau_map)) with | Some (s,so) -> (* recursive type. see if a var name has been set *) begin match (!so) with | None -> begin let rv = fresh_recvar_name(t) in s := "u " ^ rv ^ "." ^ (!s); so := Some (rv); rv end | Some rv -> rv end | None -> (* type's not recursive. Add it to the assoc list and cont. *) let s = ref "" in let so : string option ref = ref None in begin tau_map := (t,s,so) :: (!tau_map); (match (U.deref t) with | Wild -> s := "_"; | Var v -> s := v.v_name; | Pair p -> begin assert (ref_or_var(p.ptr)); assert (fun_or_var(p.lam)); s := "{"; s := (!s) ^ (string_of_tau' p.ptr); s := (!s) ^ ","; s := (!s) ^ (string_of_tau' p.lam); s := (!s) ^"}" end | Ref r -> begin assert(pair_or_var(r.points_to)); s := "ref(|"; s := (!s) ^ (string_of_label r.rl); s := (!s) ^ "|,"; s := (!s) ^ (string_of_tau' r.points_to); s := (!s) ^ ")" end | Fun f -> begin assert(pair_or_var(f.ret)); let rec string_of_args = function | h :: [] -> begin assert(pair_or_var(h)); s := (!s) ^ (string_of_tau' h) end | h :: t -> begin assert(pair_or_var(h)); s := (!s) ^ (string_of_tau' h) ^ ","; string_of_args t end | [] -> () in s := "fun(|"; s := (!s) ^ (string_of_label f.fl); s := (!s) ^ "|,"; s := (!s) ^ "<"; if (List.length !(f.args) > 0) then string_of_args !(f.args) else s := (!s) ^ "void"; s := (!s) ^">,"; s := (!s) ^ (string_of_tau' f.ret); s := (!s) ^ ")" end); tau_map := List.tl (!tau_map); !s end in string_of_tau' t (** Convert an lvalue to a string *) let string_of_lvalue (lv : lvalue) : string = let contents = (string_of_tau(lv.contents)) in let l = (string_of_label lv.l) in assert(pair_or_var(lv.contents)); Printf.sprintf "[%s]^(%s)" contents l (** Print a list of tau elements, comma separated *) let print_tau_list (l : tau list) : unit = let t_strings = Util.list_map string_of_tau l in let rec print_t_strings = function | h :: [] -> print_string h; print_newline(); | h :: t -> print_string h; print_string ", "; print_t_strings t | [] -> () in print_t_strings t_strings (** Print a constraint. *) let print_constraint (c : su_constraint) = match c with | Unification (t,t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in Printf.printf "%s == %s\n" lhs rhs | Instantiation (t,(i,p),t') -> let lhs = string_of_tau t in let rhs = string_of_tau t' in let index = string_of_int i in let pol = string_of_polarity p in Printf.printf "%s <={%s,%s} %s\n" lhs index pol rhs (* If [positive] is true, return the p-edge bounds, otherwise, return the n-edge bounds. *) let get_bounds (positive : bool) (l : label) : label boundset U.uref = if (positive) then (U.deref l).p_bounds else (U.deref l).n_bounds (** Used for cycle detection during the flow step. Returns true if the label [l] is found on the current path. *) let on_path (l : label) : bool = (U.deref l).on_path (** Used for cycle detection during the flow step. Identifies [l] as being on/off the current path. *) let set_on_path (l : label) (b : bool) : unit = (U.deref l).on_path <- b (** Make the type a global type *) let set_global (t : tau) (b : bool) : bool = if (!debug && b) then Printf.printf "Setting a new global : %s\n" (string_of_tau t); begin assert ( (not (get_global(t)) ) || b ); (match U.deref t with | Wild -> () | Var v -> v.v_global <- b | Ref r -> r.r_global <- b | Pair p -> p.p_global <- b | Fun f -> f.f_global <- b); b end (** Return a label's bounds as a string *) let string_of_bounds (is_pos : bool) (l : label) : string = let bounds = if (is_pos) then U.deref ((U.deref l).p_bounds) else U.deref ((U.deref l).n_bounds) in B.fold (fun b -> fun res -> res ^ (string_of_label2 b.info) ^ " " ) bounds "" (***********************************************************************) (* *) (* Type Operations -- these do not create any constraints *) (* *) (***********************************************************************) let wild_val = U.uref Wild (** The wild (don't care) value. *) let wild () : tau = wild_val (** Create an lvalue with label [lbl] and tau contents [t]. *) let make_lval (lbl,t : label * tau) : lvalue = {l = lbl; contents = t} (** Create a new label with name [name]. Also adds a fresh constant with name [name] to this label's aliases set. *) let make_label (name : string) : label = U.uref { l_name = name; aliases = (C.add (fresh_index(),name) C.empty); p_bounds = U.uref (B.empty); n_bounds = U.uref (B.empty); p_cached = false; n_cached = false; on_path = false } (** Create a new label with an unspecified name and an empty alias set. *) let fresh_label () : label = U.uref { l_name = "l_" ^ (string_of_int (fresh_index())); aliases = (C.empty); p_bounds = U.uref (B.empty); n_bounds = U.uref (B.empty); p_cached = false; n_cached = false; on_path = false } (** Create a fresh bound. *) let make_bound (i,a : int * 'a) : 'a bound = {index = i; info = a } (** Create a fresh named variable with name '[name]. *) let make_var (b: bool) (name : string) : tau = U.uref (Var {v_name = ("'" ^name); v_global = b; v_cache = H.create 4}) (** Create a fresh unnamed variable (name will be 'fv). *) let fresh_var () : tau = make_var false ("fv" ^ (string_of_int (fresh_index())) ) (** Create a fresh unnamed variable (name will be 'fi). *) let fresh_var_i () : tau = make_var false ("fi" ^ (string_of_int (fresh_index())) ) (** Create a Fun constructor. *) let make_fun (lbl,a,r : label * (tau list) * tau) : tau = U.uref (Fun {fl = lbl ; f_global = false; args = ref a; ret = r; f_cache = H.create 4}) (** Create a Ref constructor. *) let make_ref (lbl,pt : label * tau) : tau = U.uref (Ref {rl = lbl ; r_global = false; points_to = pt; r_cache = H.create 4}) (** Create a Pair constructor. *) let make_pair (p,f : tau * tau) : tau = U.uref (Pair {ptr = p; p_global = false; lam = f; p_cache = H.create 4}) (** Copy the toplevel constructor of [t], putting fresh variables in each argument of the constructor. *) let copy_toplevel (t : tau) : tau = match U.deref t with | Pair _ -> make_pair (fresh_var_i(), fresh_var_i()) | Ref _ -> make_ref (fresh_label(),fresh_var_i()) | Fun f -> let fresh_fn = fun _ -> fresh_var_i() in make_fun (fresh_label(), Util.list_map fresh_fn !(f.args) , fresh_var_i()) | _ -> raise Bad_type_copy let pad_args (l,l' : (tau list ref) * (tau list ref)) : unit = let padding = ref ((List.length (!l)) - (List.length (!l'))) in if (!padding == 0) then () else let to_pad = if (!padding > 0) then l' else (padding := -(!padding);l) in for _ = 1 to (!padding) do to_pad := (!to_pad) @ [fresh_var()] done (***********************************************************************) (* *) (* Constraint Generation/ Resolution *) (* *) (***********************************************************************) (** Returns true if the constraint has no effect, i.e. either the left-hand side or the right-hand side is wild. *) let wild_constraint (t,t' : tau * tau) : bool = let ti,ti' = U.deref t, U.deref t' in match ti,ti' with | Wild, _ -> true | _, Wild -> true | _ -> false exception Cycle_found (** Cycle detection between instantiations. Returns true if there is a cycle from t to t' *) let exists_cycle (t,t' : tau * tau) : bool = let visited : tau list ref = ref [] in let rec exists_cycle' t = if (ulist_mem t (!visited)) then begin (* print_string "Instantiation cycle found :"; print_tau_list (!visited); print_newline(); print_string (string_of_tau t); print_newline(); *) (* raise Instantiation_cycle *) (* visited := List.tl (!visited) *) (* check *) end else begin visited := t :: (!visited); if (U.equal(t,t')) then raise Cycle_found else H.iter (fun _ -> fun (_,t'') -> if (U.equal (t,t'')) then () else ignore (exists_cycle' t'') ) (get_cache t) ; visited := List.tl (!visited) end in try exists_cycle' t; false with | Cycle_found -> true exception Subterm (** Returns true if [t'] is a proper subterm of [t] *) let proper_subterm (t,t') = let visited : tau list ref = ref [] in let rec proper_subterm' t = if (ulist_mem t (!visited)) then () (* recursive type *) else if (U.equal (t,t')) then raise Subterm else begin visited := t :: (!visited); ( match (U.deref t) with | Wild -> () | Var _ -> () | Ref r -> proper_subterm' r.points_to | Pair p -> proper_subterm' p.ptr; proper_subterm' p.lam | Fun f -> proper_subterm' f.ret; List.iter (proper_subterm') !(f.args) ); visited := List.tl (!visited) end in try if (U.equal(t,t')) then false else begin proper_subterm' t; false end with | Subterm -> true (** The extended occurs check. Search for a cycle of instantiations from [t] to [t']. If such a cycle exists, check to see that [t'] is a proper subterm of [t]. If it is, then return true *) let eoc (t,t') : bool = if (exists_cycle(t,t') && proper_subterm(t,t')) then begin if (!debug) then Printf.printf "Occurs check : %s occurs within %s\n" (string_of_tau t') (string_of_tau t) else (); true end else false (** Resolve an instantiation constraint *) let rec instantiate_int (t,(i,p),t' : tau * (int * polarity) * tau) = if ( wild_constraint(t,t') || (not (store(t,(i,p),t'))) || U.equal(t,t') ) then () else let ti,ti' = U.deref t, U.deref t' in match ti,ti' with | Ref r, Ref r' -> instantiate_ref(r,(i,p),r') | Fun f, Fun f' -> instantiate_fun(f,(i,p),f') | Pair pr, Pair pr' -> begin add_constraint_int (Instantiation (pr.ptr,(i,p),pr'.ptr)); add_constraint_int (Instantiation (pr.lam,(i,p),pr'.lam)) end | Var v, _ -> () | _,Var v' -> if eoc(t,t') then add_constraint_int (Unification (t,t')) else begin unstore(t,i); add_constraint_int (Unification ((copy_toplevel t),t')); add_constraint_int (Instantiation (t,(i,p),t')) end | _ -> raise (Inconsistent("instantiate")) (** Apply instantiations to the ref's label, and structurally down the type. Contents of ref constructors are instantiated with polarity Non. *) and instantiate_ref (ri,(i,p),ri') : unit = add_constraint_int (Instantiation(ri.points_to,(i,Non),ri'.points_to)); instantiate_label (ri.rl,(i,p),ri'.rl) (** Apply instantiations to the fun's label, and structurally down the type. Flip the polarity for the function's args. If the lengths of the argument lists don't match, extend the shorter list as necessary. *) and instantiate_fun (fi,(i,p),fi') : unit = pad_args (fi.args, fi'.args); assert(List.length !(fi.args) == List.length !(fi'.args)); add_constraint_int (Instantiation (fi.ret,(i,p),fi'.ret)); List.iter2 (fun t ->fun t' -> add_constraint_int (Instantiation(t,(i,negate p),t'))) !(fi.args) !(fi'.args); instantiate_label (fi.fl,(i,p),fi'.fl) (** Instantiate a label. Update the label's bounds with new flow edges. *) and instantiate_label (l,(i,p),l' : label * (int * polarity) * label) : unit = if (!debug) then Printf.printf "%s <= {%d,%s} %s\n" (string_of_label l) i (string_of_polarity p) (string_of_label l'); let li,li' = U.deref l, U.deref l' in match p with | Pos -> U.update (li'.p_bounds, B.add(make_bound (i,l)) (U.deref li'.p_bounds) ) | Neg -> U.update (li.n_bounds, B.add(make_bound (i,l')) (U.deref li.n_bounds) ) | Non -> begin U.update (li'.p_bounds, B.add(make_bound (i,l)) (U.deref li'.p_bounds) ); U.update (li.n_bounds, B.add(make_bound (i,l')) (U.deref li.n_bounds) ) end (** Resolve a unification constraint. Does the uref unification after grabbing a copy of the information before the two infos are unified. The other interesting feature of this function is the way 'globalness' is propagated. If a non-global is unified with a global, the non-global becomes global. If the ecr became global, there is a problem because none of its cached instantiations know that the type became monomorphic. In this case, they must be re-inserted via merge-cache. Merge-cache always reinserts cached instantiations from the non-ecr type, i.e. the type that was 'killed' by the unification. *) and unify_int (t,t' : tau * tau) : unit = if (wild_constraint(t,t') || U.equal(t,t')) then () else let ti, ti' = U.deref t, U.deref t' in begin U.unify combine (t,t'); match ti,ti' with | Var v, _ -> begin if (set_global t' (v.v_global || (get_global t'))) then (H.iter (merge_cache t') (get_cache t')) else (); H.iter (merge_cache t') v.v_cache end | _, Var v -> begin if (set_global t (v.v_global || (get_global t))) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) v.v_cache end | Ref r, Ref r' -> begin if (set_global t (r.r_global || r'.r_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) r'.r_cache; unify_ref(r,r') end | Fun f, Fun f' -> begin if (set_global t (f.f_global || f'.f_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) f'.f_cache; unify_fun (f,f'); end | Pair p, Pair p' -> begin if (set_global t (p.p_global || p'.p_global)) then (H.iter (merge_cache t) (get_cache t)) else (); H.iter (merge_cache t) p'.p_cache; add_constraint_int (Unification (p.ptr,p'.ptr)); add_constraint_int (Unification (p.lam,p'.lam)) end | _ -> raise (Inconsistent("unify")) end (** Unify the ref's label, and apply unification structurally down the type. *) and unify_ref (ri,ri' : rinfo * rinfo) : unit = add_constraint_int (Unification (ri.points_to,ri'.points_to)); unify_label(ri.rl,ri'.rl) (** Unify the fun's label, and apply unification structurally down the type, at arguments and return value. When combining two lists of different lengths, always choose the longer list for the representative. *) and unify_fun (li,li' : finfo * finfo) : unit = let rec union_args = function | _, [] -> false | [], _ -> true | h :: t, h' :: t' -> add_constraint_int (Unification (h,h')); union_args(t,t') in begin unify_label(li.fl,li'.fl); add_constraint_int (Unification (li.ret,li'.ret)); if (union_args(!(li.args),!(li'.args))) then li.args := !(li'.args); end (** Unify two labels, combining the set of constants denoting aliases. *) and unify_label (l,l' : label * label) : unit = let pick_name (li,li' : lblinfo * lblinfo) = if ( (String.length li.l_name) > 1 && (String.sub (li.l_name) 0 2) = "l_") then li.l_name <- li'.l_name else () in let combine_label (li,li' : lblinfo *lblinfo) : lblinfo = let p_bounds = U.deref (li.p_bounds) in let p_bounds' = U.deref (li'.p_bounds) in let n_bounds = U.deref (li.n_bounds) in let n_bounds' = U.deref (li'.n_bounds) in begin pick_name(li,li'); li.aliases <- C.union (li.aliases) (li'.aliases); U.update (li.p_bounds, (B.union p_bounds p_bounds')); U.update (li.n_bounds, (B.union n_bounds n_bounds')); li end in(* if (!debug) then begin Printf.printf "Unifying %s with %s...\n" (string_of_label l) (string_of_label l'); Printf.printf "pbounds : %s\n" (string_of_bounds true l); Printf.printf "nbounds : %s\n" (string_of_bounds false l); Printf.printf "pbounds : %s\n" (string_of_bounds true l'); Printf.printf "nbounds : %s\n\n" (string_of_bounds false l') end; *) U.unify combine_label (l,l') (* if (!debug) then begin Printf.printf "pbounds : %s\n" (string_of_bounds true l); Printf.printf "nbounds : %s\n" (string_of_bounds false l) end *) (** Re-assert a cached instantiation constraint, since the old type was killed by a unification *) and merge_cache (rep : tau) (i : int) (p,t' : polarity * tau) : unit = add_constraint_int (Instantiation (rep,(i,p),t')) (** Pick the representative info for two tinfo's. This function prefers the first argument when both arguments are the same structure, but when one type is a structure and the other is a var, it picks the structure. *) and combine (ti,ti' : tinfo * tinfo) : tinfo = match ti,ti' with | Var _, _ -> ti' | _,_ -> ti (** Add a new constraint induced by other constraints. *) and add_constraint_int (c : su_constraint) = if (!print_constraints && !debug) then print_constraint c else (); begin match c with | Instantiation _ -> Q.add c inst_worklist | Unification _ -> Q.add c eq_worklist end; if (!debug) then solve_constraints() else () (** Add a new constraint introduced through this module's interface (a top-level constraint). *) and add_constraint (c : su_constraint) = begin add_constraint_int (c); if (!print_constraints && not (!debug)) then print_constraint c else (); if (!solve_online) then solve_constraints() else () end (* Fetch constraints, preferring equalities. *) and fetch_constraint () : su_constraint option = if (Q.length eq_worklist > 0) then Some (Q.take eq_worklist) else if (Q.length inst_worklist > 0) then Some (Q.take inst_worklist) else None (** Returns the target of a cached instantiation, if it exists. *) and target (t,i,p : tau * int * polarity) : (polarity * tau) option = let cache = get_cache t in if (global_tau t) then Some (Non,t) else try Some (H.find cache i) with | Not_found -> None (** Caches a new instantiation, or applies well-formedness. *) and store ( t,(i,p),t' : tau * (int * polarity) * tau) : bool = let cache = get_cache t in match target(t,i,p) with | Some (p'',t'') -> if (U.equal (t',t'') && (lub(p,p'') = p'')) then false else begin add_constraint_int (Unification (t',t'')); H.replace cache i (lub(p,p''),t''); (* add a new forced instantiation as well *) if (lub(p,p'') = p'') then () else begin unstore(t,i); add_constraint_int (Instantiation (t,(i,lub(p,p'')),t'')) end; false end | None -> begin H.add cache i (p,t'); true end (** Remove a cached instantiation. Used when type structure changes *) and unstore (t,i : tau * int) = let cache = get_cache t in H.remove cache i (** The main solver loop. *) and solve_constraints () : unit = match fetch_constraint () with | Some c -> begin (match c with | Instantiation (t,(i,p),t') -> instantiate_int (t,(i,p),t') | Unification (t,t') -> unify_int (t,t') ); solve_constraints() end | None -> () (***********************************************************************) (* *) (* Interface Functions *) (* *) (***********************************************************************) (** Return the contents of the lvalue. *) let rvalue (lv : lvalue) : tau = lv.contents (** Dereference the rvalue. If it does not have enough structure to support the operation, then the correct structure is added via new unification constraints. *) let rec deref (t : tau) : lvalue = match U.deref t with | Pair p -> ( match U.deref (p.ptr) with | Var _ -> begin (* let points_to = make_pair(fresh_var(),fresh_var()) in *) let points_to = fresh_var() in let l = fresh_label() in let r = make_ref(l,points_to) in add_constraint (Unification (p.ptr,r)); make_lval(l, points_to) end | Ref r -> make_lval(r.rl, r.points_to) | _ -> raise (Inconsistent("deref")) ) | Var v -> begin add_constraint (Unification (t,make_pair(fresh_var(),fresh_var()))); deref t end | _ -> raise (Inconsistent("deref -- no top level pair")) (** Form the union of [t] and [t']. *) let join (t : tau) (t' : tau) : tau = let t'' = fresh_var() in add_constraint (Unification (t,t'')); add_constraint (Unification (t',t'')); t'' (** Form the union of a list [tl], expected to be the initializers of some structure or array type. *) let join_inits (tl : tau list) : tau = let t' = fresh_var() in begin List.iter (function t'' -> add_constraint (Unification(t',t''))) tl; t' end (** Take the address of an lvalue. Does not add constraints. *) let address (lv : lvalue) : tau = make_pair (make_ref (lv.l, lv.contents), fresh_var() ) (** Instantiate a type with index i. By default, uses positive polarity. Adds an instantiation constraint. *) let instantiate (lv : lvalue) (i : int) : lvalue = if (!analyze_mono) then lv else begin let l' = fresh_label () in let t' = fresh_var_i () in instantiate_label(lv.l,(i,Pos),l'); add_constraint (Instantiation (lv.contents,(i,Pos),t')); make_lval(l',t') (* check -- fresh label ?? *) end (** Constraint generated from assigning [t] to [lv]. *) let assign (lv : lvalue) (t : tau) : unit = add_constraint (Unification (lv.contents,t)) (** Project out the first (ref) component or a pair. If the argument [t] has no discovered structure, raise No_contents. *) let proj_ref (t : tau) : tau = match U.deref t with | Pair p -> p.ptr | Var v -> raise No_contents | _ -> raise Bad_proj (* Project out the second (fun) component of a pair. If the argument [t] has no discovered structure, create it on the fly by adding constraints. *) let proj_fun (t : tau) : tau = match U.deref t with | Pair p -> p.lam | Var v -> let p,f = fresh_var(), fresh_var() in add_constraint (Unification (t,make_pair(p,f))); f | _ -> raise Bad_proj let get_args (t : tau) : tau list ref = match U.deref t with | Fun f -> f.args | _ -> raise (Inconsistent("get_args")) (** Function type [t] is applied to the arguments [actuals]. Unifies the actuals with the formals of [t]. If no functions have been discovered for [t] yet, create a fresh one and unify it with t. The result is the return value of the function. *) let apply (t : tau) (al : tau list) : tau = let f = proj_fun(t) in let actuals = ref al in let formals,ret = match U.deref f with | Fun fi -> (fi.args),fi.ret | Var v -> let new_l,new_ret,new_args = fresh_label(), fresh_var (), Util.list_map (function _ -> fresh_var()) (!actuals) in let new_fun = make_fun(new_l,new_args,new_ret) in add_constraint (Unification(new_fun,f)); (get_args new_fun,new_ret) | Ref _ -> raise (Inconsistent ("apply_ref")) | Pair _ -> raise (Inconsistent ("apply_pair")) | Wild -> raise (Inconsistent("apply_wild")) in pad_args(formals,actuals); List.iter2 (fun actual -> fun formal -> add_constraint (Unification (actual,formal)) ) !actuals !formals; ret (** Create a new function type with name [name], list of formal arguments [formals], and return value [ret]. Adds no constraints. *) let make_function (name : string) (formals : lvalue list) (ret : tau) : tau = let f = make_fun(make_label(name),Util.list_map (fun x -> rvalue x) formals, ret) in make_pair(fresh_var(),f) (** Create an lvalue. If [is_global] is true, the lvalue will be treated monomorphically. *) let make_lvalue (is_global : bool) (name : string) : lvalue = if (!debug && is_global) then Printf.printf "Making global lvalue : %s\n" name else (); make_lval(make_label(name), make_var is_global name) (** Create a fresh non-global named variable. *) let make_fresh (name : string) : tau = make_var false (name) (** The default type for constants. *) let bottom () : tau = make_var false ("bottom") (** Unify the result of a function with its return value. *) let return (t : tau) (t' : tau) = add_constraint (Unification (t,t')) (***********************************************************************) (* *) (* Query/Extract Solutions *) (* *) (***********************************************************************) (** Unify the data stored in two label bounds. *) let combine_lbounds (s,s' : label boundset * label boundset) = B.union s s' (** Truncates a list of urefs [l] to those elements up to and including the first occurence of the specified element [elt]. *) let truncate l elt = let keep = ref true in List.filter (fun x -> if (not (!keep)) then false else begin if (U.equal(x,elt)) then keep := false else (); true end ) l let debug_cycle_bounds is_pos c = let rec debug_cycle_bounds' = function | h :: [] -> Printf.printf "%s --> %s\n" (string_of_bounds is_pos h) (string_of_label2 h) | h :: t -> begin Printf.printf "%s --> %s\n" (string_of_bounds is_pos h) (string_of_label2 h); debug_cycle_bounds' t end | [] -> () in debug_cycle_bounds' c (** For debugging, print a cycle of instantiations *) let debug_cycle (is_pos,c,l,p) = let kind = if is_pos then "P" else "N" in let rec string_of_cycle = function | h :: [] -> string_of_label2 h | [] -> "" | h :: t -> Printf.sprintf "%s,%s" (string_of_label2 h) (string_of_cycle t) in Printf.printf "Collapsing %s cycle around %s:\n" kind (string_of_label2 l); Printf.printf "Elements are: %s\n" (string_of_cycle c); Printf.printf "Per-element bounds:\n"; debug_cycle_bounds is_pos c; Printf.printf "Full path is: %s" (string_of_cycle p); print_newline() (** Compute pos or neg flow, depending on [is_pos]. Searches for cycles in the instantiations (can these even occur?) and unifies either the positive or negative edge sets for the labels on the cycle. Note that this does not ever unify the labels themselves. The return is the new bounds of the argument label *) let rec flow (is_pos : bool) (path : label list) (l : label) : label boundset = let collapse_cycle () = let cycle = truncate path l in debug_cycle (is_pos,cycle,l,path); List.iter (fun x -> U.unify combine_lbounds ((get_bounds is_pos x),get_bounds is_pos l) ) cycle in if (on_path l) then begin collapse_cycle (); (* set_on_path l false; *) B.empty end else if ( (is_pos && (U.deref l).p_cached) || ( (not is_pos) && (U.deref l).n_cached) ) then begin U.deref (get_bounds is_pos l) end else begin let newbounds = ref B.empty in let base = get_bounds is_pos l in set_on_path l true; if (is_pos) then (U.deref l).p_cached <- true else (U.deref l).n_cached <- true; B.iter (fun x -> if (U.equal(x.info,l)) then () else (newbounds := (B.union (!newbounds) (flow is_pos (l :: path) x.info))) ) (U.deref base); set_on_path l false; U.update (base,(B.union (U.deref base) !newbounds)); U.deref base end (** Compute and cache any positive flow. *) let pos_flow l : constantset = let result = ref C.empty in begin ignore (flow true [] l); B.iter (fun x -> result := C.union (!result) (U.deref(x.info)).aliases ) (U.deref (get_bounds true l)); !result end (** Compute and cache any negative flow. *) let neg_flow l : constantset = let result = ref C.empty in begin ignore (flow false [] l); B.iter (fun x -> result := C.union (!result) (U.deref(x.info)).aliases ) (U.deref (get_bounds false l)); !result end (** Compute and cache any pos-neg flow. Assumes that both pos_flow and neg_flow have been computed for the label [l]. *) let pos_neg_flow(l : label) : constantset = let result = ref C.empty in begin B.iter (fun x -> result := C.union (!result) (pos_flow x.info)) (U.deref (get_bounds false l)); !result end (** Compute a points-to set by computing positive, then negative, then positive-negative flow for a label. *) let points_to_int (lv : lvalue) : constantset = let visited_caches : cache list ref = ref [] in let rec points_to_tau (t : tau) : constantset = try begin match U.deref (proj_ref t) with | Var v -> C.empty | Ref r -> begin let pos = pos_flow r.rl in let neg = neg_flow r.rl in let interproc = C.union (pos_neg_flow r.rl) (C.union pos neg) in C.union ((U.deref(r.rl)).aliases) interproc end | _ -> raise (Inconsistent ("points_to")) end with | No_contents -> begin match (U.deref t) with | Var v -> rebuild_flow v.v_cache | _ -> raise (Inconsistent ("points_to")) end and rebuild_flow (c : cache) : constantset = if (List.mem c (!visited_caches) ) (* cyclic instantiations *) then begin (* visited_caches := List.tl (!visited_caches); *) (* check *) C.empty end else begin visited_caches := c :: (!visited_caches); let result = ref (C.empty) in H.iter (fun _ -> fun(p,t) -> match p with | Pos -> () | _ -> result := C.union (!result) (points_to_tau t) ) c; visited_caches := List.tl (!visited_caches); !result end in if (!no_flow) then (U.deref lv.l).aliases else points_to_tau (lv.contents) let points_to (lv : lvalue) : string list = Util.list_map snd (C.elements (points_to_int lv)) let alias_query (a_progress : bool) (lv : lvalue list) : int * int = (0,0) (* todo *) (* let a_count = ref 0 in let ptsets = Util.list_map points_to_int lv in let total_sets = List.length ptsets in let counted_sets = ref 0 in let record_alias s s' = if (C.is_empty (C.inter s s')) then () else (incr a_count) in let rec check_alias = function | h :: t -> begin List.iter (record_alias h) ptsets; check_alias t end | [] -> () in check_alias ptsets; !a_count *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>