package goblint-cil
A front-end for the C programming language that facilitates program analysis and transformation
Install
Dune Dependency
Authors
Maintainers
Sources
1.8.0.tar.gz
md5=796ad26120b5c6b939a57e8623088aef
sha512=01a58ac6d928afead21c8a97af5865715114cd0562234d1d4aef9e4ac5d91415d040a15927c52cb896dbb39a53e915627f498ebe2d026a548c3ff597682041b2
doc/src/goblint-cil.pta/setp.ml.html
Source file setp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
(* * * Copyright (c) 2001-2002, * John Kodumal <jkodumal@eecs.berkeley.edu> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of the contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *) (***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (* $Id$ *) (* Sets over ordered types *) module type PolyOrderedType = sig type 'a t val compare: 'a t -> 'a t -> int end module type S = sig type 'a elt type 'a t val empty: 'a t val is_empty: 'a t -> bool val mem: 'a elt -> 'a t -> bool val add: 'a elt -> 'a t -> 'a t val singleton: 'a elt -> 'a t val remove: 'a elt -> 'a t -> 'a t val union: 'a t -> 'a t -> 'a t val inter: 'a t -> 'a t -> 'a t val diff: 'a t -> 'a t -> 'a t val compare: 'a t -> 'a t -> int val equal: 'a t -> 'a t -> bool val subset: 'a t -> 'a t -> bool val iter: ('a elt -> unit) -> 'a t -> unit val fold: ('a elt -> 'b -> 'b) -> 'a t -> 'b -> 'b val for_all: ('a elt -> bool) -> 'a t -> bool val exists: ('a elt -> bool) -> 'a t -> bool val filter: ('a elt -> bool) -> 'a t -> 'a t val partition: ('a elt -> bool) -> 'a t -> 'a t * 'a t val cardinal: 'a t -> int val elements: 'a t -> 'a elt list val min_elt: 'a t -> 'a elt val max_elt: 'a t -> 'a elt val choose: 'a t -> 'a elt end module Make(Ord: PolyOrderedType) = struct type 'a elt = 'a Ord.t type 'a t = Empty | Node of 'a t * 'a elt * 'a t * int (* Sets are represented by balanced binary trees (the heights of the children differ by at most 2 *) let height = function Empty -> 0 | Node(_, _, _, h) -> h (* Creates a new node with left son l, value x and right son r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l x r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1)) (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l x r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Set.bal" | Node(ll, lv, lr, _) -> if height ll >= height lr then create ll lv (create lr x r) else begin match lr with Empty -> invalid_arg "Set.bal" | Node(lrl, lrv, lrr, _)-> create (create ll lv lrl) lrv (create lrr x r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Set.bal" | Node(rl, rv, rr, _) -> if height rr >= height rl then create (create l x rl) rv rr else begin match rl with Empty -> invalid_arg "Set.bal" | Node(rll, rlv, rlr, _) -> create (create l x rll) rlv (create rlr rv rr) end end else Node(l, x, r, (if hl >= hr then hl + 1 else hr + 1)) (* Same as bal, but repeat rebalancing until the final result is balanced. *) let rec join l x r = match bal l x r with Empty -> invalid_arg "Set.join" | Node(l', x', r', _) as t' -> let d = height l' - height r' in if d < -2 || d > 2 then join l' x' r' else t' (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assumes | height l - height r | <= 2. *) let rec merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> bal l1 v1 (bal (merge r1 l2) v2 r2) (* Same as merge, but does not assume anything about l and r. *) let rec concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> join l1 v1 (join (concat r1 l2) v2 r2) (* Splitting *) let rec split x = function Empty -> (Empty, None, Empty) | Node(l, v, r, _) -> let c = Ord.compare x v in if c = 0 then (l, Some v, r) else if c < 0 then let (ll, vl, rl) = split x l in (ll, vl, join rl v r) else let (lr, vr, rr) = split x r in (join l v lr, vr, rr) (* Implementation of the set operations *) let empty = Empty let is_empty = function Empty -> true | _ -> false let rec mem x = function Empty -> false | Node(l, v, r, _) -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec add x = function Empty -> Node(Empty, x, Empty, 1) | Node(l, v, r, _) as t -> let c = Ord.compare x v in if c = 0 then t else if c < 0 then bal (add x l) v r else bal l v (add x r) let singleton x = Node(Empty, x, Empty, 1) let rec remove x = function Empty -> Empty | Node(l, v, r, _) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then bal (remove x l) v r else bal l v (remove x r) let rec union s1 s2 = match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> if h1 >= h2 then if h2 = 1 then add v2 s1 else begin let (l2, _, r2) = split v1 s2 in join (union l1 l2) v1 (union r1 r2) end else if h1 = 1 then add v1 s2 else begin let (l1, _, r1) = split v2 s1 in join (union l1 l2) v2 (union r1 r2) end let rec inter s1 s2 = match (s1, s2) with (Empty, t2) -> Empty | (t1, Empty) -> Empty | (Node(l1, v1, r1, _), t2) -> match split v1 t2 with (l2, None, r2) -> concat (inter l1 l2) (inter r1 r2) | (l2, Some _, r2) -> join (inter l1 l2) v1 (inter r1 r2) let rec diff s1 s2 = match (s1, s2) with (Empty, t2) -> Empty | (t1, Empty) -> t1 | (Node(l1, v1, r1, _), t2) -> match split v1 t2 with (l2, None, r2) -> join (diff l1 l2) v1 (diff r1 r2) | (l2, Some _, r2) -> concat (diff l1 l2) (diff r1 r2) let rec compare_aux l1 l2 = match (l1, l2) with ([], []) -> 0 | ([], _) -> -1 | (_, []) -> 1 | (Empty :: t1, Empty :: t2) -> compare_aux t1 t2 | (Node(Empty, v1, r1, _) :: t1, Node(Empty, v2, r2, _) :: t2) -> let c = Ord.compare v1 v2 in if c <> 0 then c else compare_aux (r1::t1) (r2::t2) | (Node(l1, v1, r1, _) :: t1, t2) -> compare_aux (l1 :: Node(Empty, v1, r1, 0) :: t1) t2 | (t1, Node(l2, v2, r2, _) :: t2) -> compare_aux t1 (l2 :: Node(Empty, v2, r2, 0) :: t2) let compare s1 s2 = compare_aux [s1] [s2] let equal s1 s2 = compare s1 s2 = 0 let rec subset s1 s2 = match (s1, s2) with Empty, _ -> true | _, Empty -> false | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> let c = Ord.compare v1 v2 in if c = 0 then subset l1 l2 && subset r1 r2 else if c < 0 then subset (Node (l1, v1, Empty, 0)) l2 && subset r1 t2 else subset (Node (Empty, v1, r1, 0)) r2 && subset l1 t2 let rec iter f = function Empty -> () | Node(l, v, r, _) -> iter f l; f v; iter f r let rec fold f s accu = match s with Empty -> accu | Node(l, v, r, _) -> fold f l (f v (fold f r accu)) let rec for_all p = function Empty -> true | Node(l, v, r, _) -> p v && for_all p l && for_all p r let rec exists p = function Empty -> false | Node(l, v, r, _) -> p v || exists p l || exists p r let filter p s = let rec filt accu = function | Empty -> accu | Node(l, v, r, _) -> filt (filt (if p v then add v accu else accu) l) r in filt Empty s let partition p s = let rec part (t, f as accu) = function | Empty -> accu | Node(l, v, r, _) -> part (part (if p v then (add v t, f) else (t, add v f)) l) r in part (Empty, Empty) s let rec cardinal = function Empty -> 0 | Node(l, v, r, _) -> cardinal l + 1 + cardinal r let rec elements_aux accu = function Empty -> accu | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let rec min_elt = function Empty -> raise Not_found | Node(Empty, v, r, _) -> v | Node(l, v, r, _) -> min_elt l let rec max_elt = function Empty -> raise Not_found | Node(l, v, Empty, _) -> v | Node(l, v, r, _) -> max_elt r let choose = min_elt end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>