package frama-c-lannotate

  1. Overview
  2. Docs

Source file l_logical.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
(**************************************************************************)
(*                                                                        *)
(*  This file is part of the Frama-C's Lannotate plug-in.                 *)
(*                                                                        *)
(*  Copyright (C) 2012-2022                                               *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file LICENSE)                       *)
(*                                                                        *)
(**************************************************************************)

open Cil_types
open Utils
open Ast_const
open Exp_builder

let array_to_string l r = l ^ ",\n" ^ r

(**
   Generate labels for n-CC coverage from a Boolean expression.
   And puts them all in a single block statement.
*)
let gen_labels_ncc mk_label n (bexpr : exp) : stmt =
  let loc = bexpr.eloc in
  let atoms = atomic_conditions bexpr in
  let natoms = List.length atoms in
  Options.debug "%d atoms in @[%a@]" natoms Printer.pp_exp bexpr;

  (* Compute subsets of m atoms *)
  let n = if n <= 0 then natoms else min n natoms in
  let subsets = combine n atoms in
  Options.debug "%d subsets of %d atoms" (List.length subsets) n;

  (* For each signed subset of atoms, *)
  let for_signed_subset (acc : stmt list) (signed_subset : exp list) : stmt list =
    (* Get conjunction as an expression*)
    let exp = join LAnd signed_subset in
    (* Create a label and put it in front of acc *)
    mk_label exp [] loc :: acc
  in

  (* For each subset of atoms, *)
  let for_subset (acc : stmt list) (subset : exp list) : stmt list =
    (* Compute signed subsets *)
    let signed_subsets = sign_combine ~pos:(fun id -> id) ~neg:lnot subset in
    (* Create labels for each signed subset (taken in rev. order)
       and put them in rev. in front of acc (N.B. [rev rev l = l]) *)
    List.fold_left for_signed_subset acc signed_subsets
  in
  List.rev (List.fold_left for_subset [] subsets)
  |> Stmt_builder.block

(** Generate DC labels for the given Boolean formula *)
let gen_labels_dc mk_label bexpr =
  let loc = bexpr.eloc in
  let l1 = mk_label bexpr [] loc in
  let l2 = mk_label (lnot bexpr) [] loc in
  Stmt_builder.block [l1;l2]

(** Generate GACC labels for one particular active clause *)
let gen_labels_gacc_for mk_label whole part =
  let loc = whole.eloc in
  let w0 = replace ~whole ~part ~repl:(one ()) in
  let w1 = replace ~whole ~part ~repl:(zero ()) in

  (* rather than to test w0 != w1, do (w0 && !w1) || (!w0 && w1) *)
  let indep = niff w0 w1 in

  let a_indep = binop LAnd part indep in
  let na_indep = binop LAnd (lnot part) indep in

  List.map (fun e -> mk_label e [] loc) [a_indep; na_indep]

let hlab_cacc = ref [| |]

(** Generate GACC labels for the given Boolean formula *)
let gen_labels_gacc mk_label bexpr =
  atomic_conditions bexpr
  |> List.map (gen_labels_gacc_for mk_label bexpr)
  |> List.flatten
  |> Stmt_builder.block

(** Generate CACC labels for one particular active clause *)
let gen_labels_cacc_for mk_label whole part =
  Annotators.label_function_vinfo := !Annotators.pc_label_bindings;
  let loc = whole.eloc in
  let w0 = replace ~whole ~part ~repl:(one ()) in
  let w1 = replace ~whole ~part ~repl:(zero ()) in

  let binding_id = Annotators.next_binding () in

  (* rather than to test w0 != w1, do (w0 && !w1) || (!w0 && w1) *)
  let indep = niff w0 w1 in

  let a_indep = binop LAnd part (Cil.copy_exp indep) in
  let na_indep = binop LAnd (lnot part) (Cil.copy_exp indep) in

  let l = mk_label a_indep [integer binding_id; integer 1 ; mk (Const (CStr "pa")) ; whole] loc in
  let idl = Annotators.getCurrentLabelId () in
  let r = mk_label na_indep [integer binding_id; integer 1 ; mk (Const (CStr "pb")) ; whole] loc in
  let idr = Annotators.getCurrentLabelId () in

  hlab_cacc := Array.append !hlab_cacc [| (idl,idr) |];
  Annotators.label_function_vinfo := !Annotators.pc_label;
  [ l ; r ]

(** Generate CACC labels for the given Boolean formula *)
let gen_labels_cacc mk_label bexpr =
  atomic_conditions bexpr
  |> List.map (gen_labels_cacc_for mk_label bexpr)
  |> List.flatten
  |> Stmt_builder.block

(** Generate CACC hyperlabels *)
let couple_to_string c = Annotators.next_hl() ^ ") <l" ^ (string_of_int (fst c)) ^ ".l" ^ (string_of_int (snd c)) ^ "|;pa!=pb;>"

let store_hyperlabel_data out str =
  let formatter = Format.formatter_of_out_channel out in
  Format.fprintf formatter "%s@." str

let gen_hyperlabels_cacc = ref (fun () ->
    let data_filename = (Filename.chop_extension (Annotators.get_file_name ())) ^ ".hyperlabels" in
    Options.feedback "write hyperlabel data (to %s)" data_filename;
    let out = open_out_gen [Open_creat; Open_append] 0o644 data_filename in
    store_hyperlabel_data out  (Array.fold_right array_to_string (Array.map couple_to_string !hlab_cacc) "");
    close_out out)



let hlab_racc = ref [| |]

let handle_list_l la a = List.concat [ la ; [  mk (Const (CStr ("cA" ^ (string_of_int ((List.length la) / 2 + 1))))) ; a ] ]
let handle_list_r la a = List.concat [ la ; [  mk (Const (CStr ("cB" ^ (string_of_int ((List.length la) / 2 + 1))))) ; a ] ]

(** Generate RACC labels for one particular active clause *)
let gen_labels_racc_for mk_label whole atoms part =
  Annotators.label_function_vinfo := !Annotators.pc_label_bindings;
  let loc = whole.eloc in
  let w0 = replace ~whole ~part ~repl:(one ()) in
  let w1 = replace ~whole ~part ~repl:(zero ()) in

  let binding_id = Annotators.next_binding () in

  (* rather than to test w0 != w1, do (w0 && !w1) || (!w0 && w1) *)
  let indep = niff w0 w1 in

  let a_indep = binop LAnd part indep in
  let na_indep = binop LAnd (lnot part) indep in

  let atoms_without_current = List.filter (fun a -> part <> a) atoms in
  let l = mk_label a_indep (List.concat [[integer binding_id; integer (List.length atoms_without_current)] ; List.fold_left handle_list_l [] atoms_without_current]) loc in
  let idl = Annotators.getCurrentLabelId () in
  let r = mk_label na_indep (List.concat [[integer binding_id; integer (List.length atoms_without_current)] ; List.fold_left handle_list_r [] atoms_without_current]) loc in
  let idr = Annotators.getCurrentLabelId () in

  hlab_racc := Array.append !hlab_racc [| (idl,(idr,(List.length atoms_without_current))) |];
  Annotators.label_function_vinfo := !Annotators.pc_label;
  [ l ; r ]

(** Generate RACC labels for the given Boolean formula *)
let gen_labels_racc mk_label bexpr =
  let atoms = atomic_conditions bexpr in
  List.map (gen_labels_racc_for mk_label bexpr atoms) atoms
  |> List.flatten
  |> Stmt_builder.block

(** Generate RACC hyperlabels *)
let rec generate_equalities i =
  match i with
  | 0 -> " "
  | 1 -> "cA1 == cB1"
  | _ -> (generate_equalities (i-1)) ^ " && " ^ "cA" ^ (string_of_int i)  ^ "== cB" ^ (string_of_int i)

let couple_to_string c =
  Annotators.next_hl() ^ ") <l"
  ^ (string_of_int (fst c)) ^ ".l"
  ^ (string_of_int (fst (snd c)))
  ^ "|;"
  ^ generate_equalities (snd (snd c))
  ^ ";>"

let gen_hyperlabels_racc = ref (fun () ->
    let data_filename = (Filename.chop_extension (Annotators.get_file_name ())) ^ ".hyperlabels" in
    Options.feedback "write hyperlabel data (to %s)" data_filename;
    let out = open_out_gen [Open_creat; Open_append] 0o644 data_filename in
    store_hyperlabel_data out  (Array.fold_right array_to_string (Array.map couple_to_string !hlab_racc) "");
    close_out out)




(** Generate GICC labels for the given Boolean formula *)
let gen_labels_gicc_for mk_label whole part =
  let loc = whole.eloc in
  (* Compute negative and positive Shannon's factors wrt to part *)
  let factor0 = replace ~whole ~part ~repl:(one ()) in
  let factor1 = replace ~whole ~part ~repl:(one ()) in
  (* Check the inactivity of part *)
  let inactive = iff factor0 factor1 in

  let true_inactive = binop LAnd part inactive in
  let false_inactive = binop LAnd (lnot part) inactive in
  let true_inactive_true = binop LAnd true_inactive whole in
  let true_inactive_false = binop LAnd true_inactive (lnot whole) in
  let false_inactive_true = binop LAnd false_inactive whole in
  let false_inactive_false = binop LAnd false_inactive (lnot whole) in
  List.map (fun e -> mk_label e [] loc) [
    true_inactive_true;
    true_inactive_false;
    false_inactive_true;
    false_inactive_false;
  ]

(** Generate GICC labels for the given Boolean formula *)
let gen_labels_gicc mk_label bexpr =
  atomic_conditions bexpr
  |> List.map (gen_labels_gicc_for mk_label bexpr)
  |> List.flatten
  |> Stmt_builder.block

(** Visotor that will store all limits expressions *)
class visitExp = object(self)
  inherit Visitor.frama_c_inplace
  val mutable bexprs = []
  method get_exprs () = bexprs

  method private mk_limit cond exp =
    (* Example
       cond : a < b
       exp : (a - b) + 1
       posComp : exp <= int_delta
       negComp : -exp <= int_delta
       abs : posComp && negComp
       ret: cond && abs
       cf. COQ proof in file LIMIT_proof.v
    *)
    let delta = Options.LimitDelta.get () in
    let posComp = binop Le exp (integer delta) in
    let negComp = binop Le (neg exp) (integer delta) in
    let abs = binop LAnd posComp negComp in
    binop LAnd cond abs

  method! vexpr cond =
    match cond.enode with
    | BinOp ((Lt | Le | Gt | Ge) as op, e1, e2, _) ->
      ignore (Visitor.visitFramacExpr (self :> Visitor.frama_c_visitor) e1);
      ignore (Visitor.visitFramacExpr (self :> Visitor.frama_c_visitor) e2);
      let e = binop MinusA e1 e2 in
      let isInt = Cil.isIntegralType (Cil.typeOf e) in
      if isInt then begin
        begin match op with
          | Lt ->
            let to_zero = binop PlusA e (one()) in
            let new_exp = self#mk_limit cond to_zero in
            bexprs <- new_exp :: bexprs
          | Gt ->
            let to_zero = binop MinusA e (one()) in
            let new_exp = self#mk_limit cond to_zero in
            bexprs <- new_exp :: bexprs
          | Le | Ge ->
            let new_exp = self#mk_limit cond e in
            bexprs <- new_exp :: bexprs
          | _ -> ()
        end
      end;
      Cil.SkipChildren
    | _ -> Cil.DoChildren
end

(** Generate Limit labels for the given Boolean formula *)
let gen_labels_limit mk_label bexpr =
  let loc = bexpr.eloc in
  let ve = new visitExp in
  ignore (Visitor.visitFramacExpr (ve :> Visitor.frama_c_visitor) bexpr);
  List.map (fun exp -> mk_label exp [] loc) (ve#get_exprs())
  |> Stmt_builder.block

(**
   Frama-C in-place visitor that injects labels at each condition/boolean
   expression using some injection function
*)
class visitor gen_labels all_boolean = object(self)
  inherit Visitor.frama_c_inplace

  val mutable bexprs = []

  method! vfunc dec =
    if Annotators.shouldInstrumentFun dec.svar then
      Cil.DoChildren
    else
      Cil.SkipChildren

  method! vstmt_aux stmt =
    match stmt.skind with
    | If (e, thenb, elseb, loc) ->
      let labels_stmt = gen_labels e in
      (* handle visits manually to skip visit of e *)
      let thenb = Visitor.visitFramacBlock (self :> Visitor.frama_c_visitor) thenb in
      let elseb = Visitor.visitFramacBlock (self :> Visitor.frama_c_visitor) elseb in
      stmt.skind <- Block (Cil.mkBlock [labels_stmt; Stmt_builder.mk (If (e, thenb, elseb, loc))]);
      Cil.SkipChildren
    | _ ->
      if all_boolean then
        Cil.DoChildrenPost (fun stmt ->
            match bexprs with
            | [] -> stmt
            | _ ->
              let labels = List.rev_map gen_labels bexprs in
              bexprs <- [];
              stmt.skind <- Block (Cil.mkBlock (labels @ [Stmt_builder.mk stmt.skind]));
              stmt
          )
      else
        Cil.DoChildren

  method! vinst instr =
    if is_label instr then Cil.SkipChildren
    else Cil.DoChildren

  method! vexpr expr =
    if all_boolean && is_boolean expr then begin
      bexprs <- expr :: bexprs;
      Cil.SkipChildren
    end else
      Cil.DoChildren
end

(** Generic condition/boolean expression annotator *)
let apply gen_labels all_boolean file =
  Visitor.visitFramacFileSameGlobals (new visitor gen_labels all_boolean :> Visitor.frama_c_visitor) file


(** n-CC condition/boolean expression annotator *)
let apply_ncc mk_label n all_boolean file =
  Options.debug "n-Condition Coverage config: n=%d, all booleans=%B" n all_boolean;
  apply (gen_labels_ncc mk_label n) all_boolean file


(**
   Condition coverage annotator, special case of n-CC for n=1
*)
module CC = Annotators.Register (struct
    let name = "CC"
    let help = "Condition Coverage"

    let apply mk_label file =
      apply_ncc mk_label 1 (Options.AllBoolExps.get ()) file
  end)

(**
   n-wise condition coverage annotator
*)
module NCC = Annotators.Register (struct
    let name = "NCC"
    let help = "n-wise Condition Coverage"

    let apply mk_label file =
      apply_ncc mk_label (Options.N.get ()) (Options.AllBoolExps.get ()) file
  end)

(**
   Multiple condition coverage annotator, special case of n-CC for n=infinite
   (coded zero)
*)
module MCC = Annotators.Register (struct
    let name = "MCC"
    let help = "Multiple Condition Coverage"

    let apply mk_label file =
      apply_ncc mk_label 0 (Options.AllBoolExps.get ()) file
  end)

(**
   Decision Coverage annotator
*)
module DC = Annotators.Register (struct
    let name = "DC"
    let help = "Decision Coverage"

    let apply mk_label file =
      apply (gen_labels_dc mk_label) (Options.AllBoolExps.get ()) file
  end)

(**
   General Active Clause Coverage annotator
*)
module GACC = Annotators.Register (struct
    let name = "GACC"
    let help = "General Active Clause Coverage (weakened MCDC)"

    let apply mk_label file =
      apply (gen_labels_gacc mk_label) (Options.AllBoolExps.get ()) file
  end)


(**
   Correlated Active Clause Coverage annotator
*)
module CACC = Annotators.Register (struct
    let name = "CACC"
    let help = "Correlated Active Clause Coverage (masking MCDC)"
    let apply mk_label file =
      apply (gen_labels_cacc mk_label) (Options.AllBoolExps.get ()) file;
      !gen_hyperlabels_cacc ()
  end)


(**
   Restricted Active Clause Coverage annotator
*)
module RACC = Annotators.Register (struct
    let name = "RACC"
    let help = "Restricted Active Clause Coverage (strong MCDC)"
    let apply mk_label file =
      apply (gen_labels_racc mk_label) (Options.AllBoolExps.get ()) file;
      !gen_hyperlabels_racc ()
  end)



(**
   General Inactive Clause Coverage annotator
*)
module GICC = Annotators.Register (struct
    let name = "GICC"
    let help = "General Inactive Clause Coverage"
    let apply mk_label file =
      apply (gen_labels_gicc mk_label) (Options.AllBoolExps.get ()) file

  end)


(**
   Limit Coverage annotator
*)
module Limit = Annotators.Register (struct
    let name = "LIMIT"
    let help = "Limit Coverage"
    let apply mk_label file =
      apply (gen_labels_limit mk_label) (Options.AllBoolExps.get ()) file
  end)
OCaml

Innovation. Community. Security.