package forester

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Analysis.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
(*
 * SPDX-FileCopyrightText: 2024 The Forester Project Contributors
 *
 * SPDX-License-Identifier: GPL-3.0-or-later
 *
 *)

open Forester_prelude
open Forester_compiler
open Forester_core

module Item = struct
  type t =
    | Path of Trie.path
    | Addr of string
  let addr str = Addr str
  let path p = Path p
end

open struct
  module R = Resolver
  module Sc = R.Scope
  module L = Lsp.Types
  module S = Algaeff.Sequencer.Make(struct
    type t = Item.t Range.located
  end)
end

let flatten (tree : Code.t) : Code.t =
  List.concat_map Code.children tree

let paths_in_bindings =
  List.map (fun (_, x) -> [x])

(* This function should not descend into the nodes!*)
let paths : Code.node Range.located -> _ = function
  | {value; loc;} ->
    match value with
    | Ident path
    | Open (path)
    | Put (path, _)
    | Default (path, _)
    | Get path
    | Alloc path
    | Namespace (path, _) ->
      Some ([path], loc)
    | Def (path, bindings, _)
    | Let (path, bindings, _) ->
      Some (path :: paths_in_bindings bindings, loc)
    | Patch {self; _}
    | Object {self; _;} ->
      Option.map (fun x -> [[x]], loc) self
    | Fun (bindings, _) -> Some (paths_in_bindings bindings, loc)
    | Subtree _
    | Group _
    | Scope _
    | Math _
    | Dx_sequent _
    | Dx_const_uri _
    | Dx_const_content _
    | Dx_query _
    | Dx_prop _
    | Text _
    | Verbatim _
    | Hash_ident _
    | Xml_ident _
    | Call _
    | Import _
    | Decl_xmlns _
    | Dx_var _
    | Comment _
    | Error _ ->
      None

let extract_addr (node : Code.node Range.located) =
  match node.value with
  | Group (Braces, [{value = Text addr; _}])
  | Group (Parens, [{value = Text addr; _}])
  | Text addr
  | Import (_, addr) ->
    Some (Range.{value = addr; loc = node.loc})
  | Subtree (addr, _) ->
    Option.map (fun s -> Range.{value = s; loc = node.loc}) addr
  | _ -> None

let rec analyse (node : Code.node Range.located) =
  begin
    let@ {value; loc} = Option.iter @~ extract_addr node in
    S.yield ({value = Item.addr value; loc});
  end;
  begin
    let@ paths, loc = Option.iter @~ paths node in
    let@ path = List.iter @~ paths in
    S.yield ({value = Item.path path; loc});
  end;
  let children = Code.children node in
  List.iter analyse children

let analyse_syntax nodes =
  let@ () = S.run in
  List.iter analyse nodes

let contains = fun
    ~(position : Lsp.Types.Position.t)
    (loc : Range.t option)
  ->
  let L.Position.{line = cursor_line; character = cursor_character} = position in
  match loc with
  | Some loc ->
    begin
      match Range.view loc with
      | `Range (start, end_) ->
        let start_pos = Lsp_shims.Loc.lsp_pos_of_pos start in
        let end_pos = Lsp_shims.Loc.lsp_pos_of_pos end_ in
        let at_or_after_start =
          cursor_line < end_pos.line
          || (cursor_line = start_pos.line && start_pos.character <= cursor_character)
        in
        let before_or_at_end =
          end_pos.line > cursor_line
          || (cursor_line = end_pos.line && cursor_character <= end_pos.character)
        in
        at_or_after_start && before_or_at_end
      | _ -> false
    end
  | None -> false

let rec node_at
  : type a. position: L.Position.t -> children: (a Range.located -> a Range.located list) -> a Range.located list -> a Range.located option
= fun ~position ~children code ->
  match List.find_opt (fun Range.{loc; _} -> contains ~position loc) code with
  | None -> None
  | Some n ->
    match (node_at ~position ~children) (children n) with
    | Some inner -> Some inner
    | None -> Some n

let get_enclosing_code_group ~position tree =
  let rec go ~position nodes =
    match List.find_opt (fun Range.{loc; _} -> contains ~position loc) nodes with
    | None -> None
    | Some n ->
      match n.value with
      | (Code.Group (delim, t)) ->
        begin
          match go ~position t with
          | None -> Some Asai.Range.{value = (delim, t); loc = n.loc}
          | Some t -> Some t
        end
      | _ ->
        (go ~position) (Code.children n)
  in
  match Tree.to_code tree with
  | None -> None
  | Some code ->
    go ~position code.nodes

let get_enclosing_syn_group ~position tree =
  let rec go ~position nodes =
    match List.find_opt (fun Range.{loc; _} -> contains ~position loc) nodes with
    | None -> None
    | Some n ->
      match n.value with
      | (Syn.Group (delim, children)) ->
        begin
          match go ~position children with
          | None -> Some Asai.Range.{value = (delim, children); loc = n.loc}
          | Some t -> Some t
        end
      | _ ->
        go ~position (Syn.children n)
  in
  match Tree.to_syn tree with
  | None -> None
  | Some syn ->
    go ~position syn.nodes

let enclosing_group_start
    ~position
    ~(enclosing_group : position: L.Position.t -> Tree.t -> (delim * 'a) Range.located option)
    (tree : Tree.t)
  =
  match enclosing_group ~position tree with
  | None -> Some position
  | Some {loc; value = _} ->
    let start =
      Option.map (function
        | `Range (start, _) -> start
        | `End_of_file pos -> pos
      ) @@
        Option.map Range.view loc
    in
    Option.map
      (Lsp_shims.Loc.lsp_pos_of_pos)
      start

let find_with_prev ~position =
  let rec go prev = function
    | [] -> None
    | x :: xs -> if contains ~position Asai.Range.(x.loc) then Some (prev, x) else go (Some x) xs
  in
  go None

module Context = struct
  (* Kind of like a zipper where you can only go backwards? *)
  type 'a t =
    | Prev of 'a * 'a
    | Parent of 'a
    | Top of 'a
end

let parent_or_prev_at
  : type a. position: L.Position.t ->
  children: (a Range.located -> a Range.located list) ->
  a Range.located list ->
  a Range.located Context.t option
= fun ~position ~children code ->
  let go ~position ~children nodes =
    match find_with_prev ~position nodes with
    | None -> None
    | Some (None, node) ->
      begin
        match (node_at ~position ~children) (children node) with
        | Some inner ->
          (* go ~position ~children (children inner) *)
          Some (Context.Top inner)
        | None -> Some (Top node)
      end
    | Some (Some prev, node) ->
      match (node_at ~position ~children) (children node) with
      | None -> Some (Prev (prev, node))
      | Some inner ->
        Some (Top inner)
  in
  go ~position ~children code

let parent_or_prev_at_code ~position = parent_or_prev_at ~position ~children: Code.children
let parent_or_prev_at_syn ~position = parent_or_prev_at ~position ~children: Syn.children

let node_at_code ~position = node_at ~position ~children: Code.children
let node_at_syn ~position = node_at ~position ~children: Syn.children

let get_visible ~forest ~position code =
  Sc.run ~init_visible: Expand.initial_visible_trie @@ fun () ->
  let open Effect.Deep in
  match_with
    (Expand.expand_eff ~forest)
    code
    {
      retc = (fun _ -> Sc.get_visible ());
      exnc = raise;
      effc = fun (type a) (eff : a Effect.t) ->
        match eff with
        | Expand.Entered_range range ->
          Option.some @@ fun (k : (a, _) continuation) ->
          if contains ~position range then
            Sc.get_visible ()
          else
            continue k ()
        | _ -> None
    }

let addr_at ~(position : Lsp.Types.Position.t) (code : _ list) : _ Range.located option =
  Option.bind (node_at ~position ~children: Code.children code) extract_addr

exception Found of string

let word_at ~position (doc : Lsp.Text_document.t) =
  let L.Position.{line; character;} = position in
  let line = List.nth_opt (String.split_on_char '\n' (Lsp.Text_document.text doc)) line in
  match line with
  | None -> None
  | Some line ->
    let words = String.split_on_char ' ' line in
    try
      let acc = ref 0 in
      List.iter
        (fun word ->
          let length = String.length word in
          if !acc + length + 1 > character then raise (Found word)
          else acc := !acc + length + 1
        )
        words;
      None
    with
      | Found str -> Some str

let word_before ~position (doc : Lsp.Text_document.t) =
  let L.Position.{line; character;} = position in
  let line = List.nth_opt (String.split_on_char '\n' (Lsp.Text_document.text doc)) line in
  match line with
  | None -> None
  | Some line ->
    try
      let until_cursor = String.sub line 0 character in
      let words = List.rev @@ String.split_on_char ' ' until_cursor in
      Some (List.hd words)
    with
      | _ -> None
OCaml

Innovation. Community. Security.