Source file test_calculator2.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
open Fmlib_std
type assoc =
| Left
| Right
type info = int * assoc
module Map:
sig
val find: char -> info
end
=
struct
include Map.Make (Char)
let add_left (c: char) (i: int) (m: 'info t): 'info t =
add c (i, Left) m
let add_right (c: char) (i: int) (m: 'info t): 'info t =
add c (i, Right) m
let map: 'info t =
empty
|> add_left '+' 0
|> add_left '-' 0
|> add_left '*' 1
|> add_left '/' 1
|> add_right '^' 2
let find (c: char): info =
match find_opt c map with
| None ->
assert false
| Some i ->
i
end
module Semantic =
struct
type t = Position.range * string
end
module CP = Character.Make (Unit) (Int) (Semantic)
open CP
type operator = Position.range * char
type operand = Position.range * int
let whitespace: int t =
char ' ' </> char '\n'
|> skip_zero_or_more
|> no_expectations
let lexeme (p: 'a t): 'a t =
let* a = p in
let* _ = whitespace in
return a
let unary_operator: operator t =
lexeme (char '-' |> located)
let binary_operator: operator t =
let op_chars = "+-*/^"
in
one_of_chars op_chars "binary operator"
|>
located
|>
lexeme
let number: operand t =
one_or_more_fold_left
(fun d -> return d)
(fun v d -> 10 * v + d |> return)
digit
|>
located
|>
no_expectations
<?>
"number"
|>
lexeme
let lpar: char t =
lexeme (
map (fun _ -> ')') (char '(')
</>
map (fun _ -> ']') (char '[')
)
<?>
"opening parenthesis '(' or '['"
let rpar (c: char): char t =
lexeme (char c)
let is_left ((_,c1): operator) ((_,c2): operator): bool t =
let (p1, a1) = Map.find c1
and (p2, _ ) = Map.find c2
in
return (
p1 > p2
||
(
p1 = p2
&&
a1 = Left
)
)
let make_unary
(((p1,_), u): operator)
(((_,p2), a): operand)
: operand t
=
assert (u = '-');
return ((p1, p2), (-1) * a)
let power (a: int) (b: int): int =
assert (b <> 0);
let rec pow b res =
if b = 0 then
res
else
pow (b - 1) (a * res)
in
pow b 1
let make_binary
(((p1,_), a): operand)
((_, o): operator)
(((pb,p2), b): operand)
: operand t
=
match o with
| '+' ->
return ((p1,p2), a + b)
| '-' ->
return ((p1,p2), a - b)
| '*' ->
return ((p1,p2), a * b)
| '/' ->
if b = 0 then
fail ((pb, p2), "Division by zero")
else
return ((p1,p2), a / b)
| '^' ->
if b < 0 then
fail ((pb, p2), "Negative exponent")
else
return ((p1,p2), power a b)
| _ ->
assert false
let rec expr (): operand t =
let primary (): operand t =
parenthesized
(fun _ a _ -> return a)
lpar
expr
rpar
</>
number
in
operator_expression
(primary ())
(Some unary_operator)
binary_operator
is_left
make_unary
make_binary
let parse: Parser.t =
make () (let* _ = whitespace in expr () |> map snd)
let%test _ =
let open Parser in
let p = run_on_string " 1 +,2 + 2 " parse
in
has_failed_syntax p
&&
column p = 4
let%test _ =
let open Parser in
let p = run_on_string "[1 + 2 ) + 2 " parse
in
has_failed_syntax p
&&
column p = 7
let%test _ =
let p = Parser.run_on_string " 105 + 10 ^ 3" parse in
Parser.(
has_succeeded p
&&
final p = 1105
)
let%test _ =
let p = Parser.run_on_string "1 + - 2 * 3" parse in
Parser.(
has_succeeded p
&&
final p = -5
)
let%test _ =
let p = Parser.run_on_string "10 - 2 - 3" parse in
Parser.(
has_succeeded p
&&
final p = 5
)
let%test _ =
let p = Parser.run_on_string "1 + 2 ^ - 3" parse in
Parser.(
has_failed_semantic p
&&
let (p1, p2), err = failed_semantic p
in
err = "Negative exponent"
&&
Position.column p1 = 9
&&
Position.column p2 = 12
)
let%test _ =
let p = Parser.run_on_string "1 + 2 ^ [3 / 0] " parse in
Parser.(
has_failed_semantic p
&&
let (p1, p2), err = failed_semantic p
in
err = "Division by zero"
&&
Position.column p1 = 14
&&
Position.column p2 = 15
)