package fmlib_parse

  1. Overview
  2. Docs

Source file test_calculator2.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
open Fmlib_std

type assoc =
    | Left
    | Right


type info = int * assoc


module Map:
sig
    val find: char -> info
end
=
struct
    include Map.Make (Char)

    let add_left (c: char) (i: int) (m: 'info t): 'info t =
        add c (i, Left) m

    let add_right (c: char) (i: int) (m: 'info t): 'info t =
        add c (i, Right) m

    let map: 'info t =
        empty
        |> add_left  '+' 0
        |> add_left  '-' 0
        |> add_left  '*' 1
        |> add_left  '/' 1
        |> add_right '^' 2

    let find (c: char): info =
        match find_opt c map with
        | None ->
            assert false (* cannot happen *)
        | Some i ->
            i
end


module Semantic =
struct
    type t = Position.range * string
end


module CP = Character.Make (Unit) (Int) (Semantic)

open CP


type operator = Position.range * char
type operand  = Position.range * int


let whitespace: int t =
    char ' ' </> char '\n'
    |> skip_zero_or_more
    |> no_expectations


let lexeme (p: 'a t): 'a t =
    let* a = p in
    let* _ = whitespace in
    return a


let unary_operator: operator t =
    lexeme (char '-' |> located)


let binary_operator: operator t =
    let op_chars = "+-*/^"
    in
    one_of_chars op_chars "binary operator"
    |>
    located
    |>
    lexeme


let number: operand t =
    one_or_more_fold_left
        (fun d -> return d)
        (fun v d -> 10 * v + d |> return)
        digit
    |>
    located
    |>
    no_expectations
    <?>
    "number"
    |>
    lexeme


let lpar: char t =
    lexeme (
        map (fun _ -> ')') (char '(')
        </>
        map (fun _ -> ']') (char '[')
    )
    <?>
    "opening parenthesis '(' or '['"


let rpar (c: char): char t =
    lexeme (char c)


let is_left ((_,c1): operator) ((_,c2): operator): bool t =
    let (p1, a1) = Map.find c1
    and (p2, _ ) = Map.find c2
    in
    return (
        p1 > p2
        ||
        (
            p1 = p2
            &&
            a1 = Left
        )
    )


let make_unary
        (((p1,_), u): operator)
        (((_,p2), a): operand)
    : operand t
    =
    assert (u = '-');
    return ((p1, p2), (-1) * a)


let power (a: int) (b: int): int =
    assert (b <> 0);
    let rec pow b res =
        if b = 0 then
            res
        else
            pow (b - 1) (a * res)
    in
    pow b 1


let make_binary
        (((p1,_), a): operand)
        ((_, o): operator)
        (((pb,p2), b): operand)
    : operand t
    =
    match o with
    | '+' ->
        return ((p1,p2), a + b)
    | '-' ->
        return ((p1,p2), a - b)
    | '*' ->
        return ((p1,p2), a * b)
    | '/' ->
        if b = 0 then
            fail ((pb, p2), "Division by zero")
        else
            return ((p1,p2), a / b)
    | '^' ->
        if b < 0 then
            fail ((pb, p2), "Negative exponent")
        else
            return ((p1,p2), power a b)
    | _ ->
        assert false (* cannot happen *)



let rec expr (): operand t =
    let primary (): operand t =
        parenthesized
            (fun _ a _ -> return a)
            lpar
            expr
            rpar
        </>
        number
    in
    operator_expression
        (primary ())
        (Some unary_operator)
        binary_operator
        is_left
        make_unary
        make_binary

let parse: Parser.t =
    make () (let* _ = whitespace in expr () |> map snd)









(* Unit Tests
 * ==========
*)




let%test _ =
    let open Parser in
    let p = run_on_string " 1 +,2 + 2 " parse
    in
    has_failed_syntax p
    &&
    column p = 4




let%test _ =
    let open Parser in
    let p = run_on_string "[1 + 2 ) + 2 " parse
    in
    has_failed_syntax p
    &&
    column p = 7




let%test _ =
    let p = Parser.run_on_string " 105 + 10 ^ 3" parse in
    Parser.(
        has_succeeded p
        &&
        final p = 1105
    )




let%test _ =
    let p = Parser.run_on_string "1 + - 2 * 3" parse in
    Parser.(
        has_succeeded p
        &&
        final p = -5
    )




let%test _ =
    let p = Parser.run_on_string "10 - 2 - 3" parse in
    Parser.(
        has_succeeded p
        &&
        final p = 5
    )




let%test _ =
    (*                            01234567890123456789 *)
    let p = Parser.run_on_string "1 + 2 ^  - 3" parse in
    Parser.(
        has_failed_semantic p
        &&
        let (p1, p2), err = failed_semantic p
        in
        err = "Negative exponent"
        &&
        Position.column p1 =  9
        &&
        Position.column p2 = 12
    )





let%test _ =
    (*                            01234567890123456789 *)
    let p = Parser.run_on_string "1 + 2 ^  [3 / 0] " parse in
    Parser.(
        has_failed_semantic p
        &&
        let (p1, p2), err = failed_semantic p
        in
        err = "Division by zero"
        &&
        Position.column p1 = 14
        &&
        Position.column p2 = 15
    )
OCaml

Innovation. Community. Security.