Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
fftw3.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
(* File: fftw3.ml Objective Caml interface for FFTW. Copyright (C) 2005- Christophe Troestler <Christophe.Troestler@umons.ac.be> WWW: https://math.umons.ac.be/anum/software/ This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1 as published by the Free Software Foundation, with the special exception on linking described in file LICENSE. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the file LICENSE for more details. *) open Bigarray module type Sig = sig type float_elt (** Precision of float numbers. *) type complex_elt (** Precision of complex numbers. *) val float : (float, float_elt) Bigarray.kind val complex : (Complex.t, complex_elt) Bigarray.kind type 'a plan (* Immutable FFTW plan. *) type c2c type r2c type c2r type r2r type dir = Forward | Backward type measure = | Estimate | Measure | Patient | Exhaustive type r2r_kind = | R2HC | HC2R | DHT | REDFT00 | REDFT01 | REDFT10 | REDFT11 | RODFT00 | RODFT01 | RODFT10 | RODFT11 exception Failure of string val exec : 'a plan -> unit module Guru : sig end module Genarray : sig external create: ('a, 'b) kind -> 'c layout -> int array -> ('a, 'b, 'c) Bigarray.Genarray.t = "fftw3_ocaml_ba_create" type 'l complex_array = (Complex.t, complex_elt, 'l) Bigarray.Genarray.t type 'l float_array = (float, float_elt, 'l) Bigarray.Genarray.t type coord = int array val dft : dir -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> c2c plan val r2c : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> r2c plan val c2r : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> c2r plan val r2r : r2r_kind array -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> r2r plan end module Array1 : sig val create: ('a, 'b) kind -> 'c layout -> int -> ('a, 'b, 'c) Array1.t val of_array : ('a, 'b) kind -> 'c layout -> 'a array -> ('a, 'b, 'c) Array1.t type 'l complex_array = (Complex.t, complex_elt, 'l) Array1.t type 'l float_array = (float, float_elt, 'l) Array1.t val dft : dir -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi:int list -> ?ni:int -> ?ofsi:int -> ?inci:int -> 'l complex_array -> ?howmanyo:int list -> ?no:int -> ?ofso:int -> ?inco:int -> 'l complex_array -> c2c plan val r2c : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: int list -> ?ni: int -> ?ofsi: int -> ?inci: int -> 'l float_array -> ?howmanyo: int list -> ?no: int -> ?ofso: int -> ?inco: int -> 'l complex_array -> r2c plan val c2r : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: int list -> ?ni: int -> ?ofsi: int -> ?inci: int -> 'l complex_array -> ?howmanyo: int list -> ?no: int -> ?ofso: int -> ?inco: int -> 'l float_array -> c2r plan val r2r : r2r_kind -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi:int list -> ?ni:int -> ?ofsi:int -> ?inci:int -> 'l float_array -> ?howmanyo:int list -> ?no:int -> ?ofso:int -> ?inco:int -> 'l float_array -> r2r plan end module Array2 : sig val create: ('a, 'b) kind -> 'c layout -> int -> int -> ('a, 'b, 'c) Array2.t type 'l complex_array = (Complex.t, complex_elt, 'l) Array2.t type 'l float_array = (float, float_elt, 'l) Array2.t type coord = int * int val dft : dir -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> c2c plan val r2c : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> r2c plan val c2r : ?meas:measure -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> c2r plan val r2r : r2r_kind * r2r_kind -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> r2r plan end module Array3 : sig val create: ('a, 'b) kind -> 'c layout -> int -> int -> int -> ('a, 'b, 'c) Array3.t type 'l complex_array = (Complex.t, complex_elt, 'l) Array3.t type 'l float_array = (float, float_elt, 'l) Array3.t type coord = int * int * int val dft : dir -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n: int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> c2c plan val r2c : ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array -> r2c plan val c2r : ?meas:measure -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> c2r plan val r2r : r2r_kind * r2r_kind * r2r_kind -> ?meas:measure -> ?destroy_input:bool -> ?unaligned:bool -> ?howmany_n:int array -> ?howmanyi: coord list -> ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array -> ?howmanyo: coord list -> ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array -> r2r plan end end (** {2 Precision dependent modules} ***********************************************************************) module D = Fftw3D module S = Fftw3S module Wisdom = struct external to_file : string -> unit = "fftw3_ocaml_export_wisdom_to_file" external to_string : unit -> string = "fftw3_ocaml_export_wisdom_to_string" external export : unit -> unit = "fftw3_ocaml_export_wisdom" let export write = Callback.register "fftw3_wisdom_export" (write: char -> unit); export() (* FIXME: is the callback for each char way really efficient?? It is probably better to export strings to ocaml and have an output function -- like Unix.output *) external from_system : unit -> unit = "fftw3_ocaml_import_system_wisdom" external from_file : string -> unit = "fftw3_ocaml_import_wisdom_from_file" external from_string : string -> unit = "fftw3_ocaml_import_wisdom_from_string" external import : unit -> unit = "fftw3_ocaml_import_wisdom" let import read = let read_char () = try Char.code(read()) with End_of_file -> -1 (* EOF *) in Callback.register "fftw3_wisdom_import" (read_char: unit -> int); import() external forget : unit -> unit = "fftw3_ocaml_forget_wisdom" end