package fftw3

  1. Overview
  2. Docs

Source file fftw3.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
(* File: fftw3.ml

   Objective Caml interface for FFTW.

   Copyright (C) 2005-

     Christophe Troestler <Christophe.Troestler@umons.ac.be>
     WWW: https://math.umons.ac.be/anum/software/

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public License
   version 2.1 as published by the Free Software Foundation, with the
   special exception on linking described in file LICENSE.

   This library is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the file
   LICENSE for more details.
*)

open Bigarray

module type Sig = sig
  type float_elt
    (** Precision of float numbers. *)

  type complex_elt
    (** Precision of complex numbers. *)

  val float : (float, float_elt) Bigarray.kind
  val complex : (Complex.t, complex_elt) Bigarray.kind

  type 'a plan (* Immutable FFTW plan. *)
  type c2c
  type r2c
  type c2r
  type r2r

  type dir = Forward | Backward

  type measure =
    | Estimate
    | Measure
    | Patient
    | Exhaustive

  type r2r_kind =
    | R2HC | HC2R | DHT
    | REDFT00 | REDFT01 | REDFT10 | REDFT11
    | RODFT00 | RODFT01 | RODFT10 | RODFT11

  exception Failure of string

  val exec : 'a plan -> unit

  module Guru : sig

  end


  module Genarray :
  sig
    external create: ('a, 'b) kind -> 'c layout -> int array
      -> ('a, 'b, 'c) Bigarray.Genarray.t
      = "fftw3_ocaml_ba_create"

    type 'l complex_array = (Complex.t, complex_elt, 'l) Bigarray.Genarray.t
    type 'l float_array   = (float, float_elt, 'l) Bigarray.Genarray.t
    type coord = int array

    val dft : dir ->
      ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> c2c plan

    val r2c : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> r2c plan

    val c2r : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> c2r plan

    val r2r : r2r_kind array ->
      ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> r2r plan
  end


  module Array1 :
  sig
    val create: ('a, 'b) kind -> 'c layout -> int -> ('a, 'b, 'c) Array1.t
    val of_array : ('a, 'b) kind -> 'c layout -> 'a array -> ('a, 'b, 'c) Array1.t
    type 'l complex_array = (Complex.t, complex_elt, 'l) Array1.t
    type 'l float_array   = (float, float_elt, 'l) Array1.t

    val dft : dir -> ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi:int list ->
      ?ni:int -> ?ofsi:int -> ?inci:int -> 'l complex_array ->
      ?howmanyo:int list ->
      ?no:int -> ?ofso:int -> ?inco:int -> 'l complex_array
      -> c2c plan

    val r2c : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: int list ->
      ?ni: int -> ?ofsi: int -> ?inci: int -> 'l float_array ->
      ?howmanyo: int list ->
      ?no: int -> ?ofso: int -> ?inco: int -> 'l complex_array
      -> r2c plan

    val c2r : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: int list ->
      ?ni: int -> ?ofsi: int -> ?inci: int -> 'l complex_array ->
      ?howmanyo: int list ->
      ?no: int -> ?ofso: int -> ?inco: int -> 'l float_array
      -> c2r plan

    val r2r : r2r_kind -> ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi:int list ->
      ?ni:int -> ?ofsi:int -> ?inci:int -> 'l float_array ->
      ?howmanyo:int list ->
      ?no:int -> ?ofso:int -> ?inco:int -> 'l float_array
      -> r2r plan
  end

  module Array2 :
  sig
    val create: ('a, 'b) kind -> 'c layout -> int -> int -> ('a, 'b, 'c) Array2.t
    type 'l complex_array = (Complex.t, complex_elt, 'l) Array2.t
    type 'l float_array   = (float, float_elt, 'l) Array2.t
    type coord = int * int

    val dft : dir ->
      ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> c2c plan

    val r2c : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> r2c plan

    val c2r : ?meas:measure ->
      ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> c2r plan

    val r2r : r2r_kind * r2r_kind -> ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> r2r plan
  end

  module Array3 :
  sig
    val create: ('a, 'b) kind -> 'c layout -> int -> int -> int
      -> ('a, 'b, 'c) Array3.t

    type 'l complex_array = (Complex.t, complex_elt, 'l) Array3.t
    type 'l float_array   = (float, float_elt, 'l) Array3.t
    type coord = int * int * int

    val dft : dir ->
      ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n: int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> c2c plan

    val r2c : ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l complex_array
      -> r2c plan

    val c2r : ?meas:measure ->
      ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l complex_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> c2r plan

    val r2r : r2r_kind * r2r_kind * r2r_kind ->
      ?meas:measure ->
      ?destroy_input:bool -> ?unaligned:bool ->
      ?howmany_n:int array ->
      ?howmanyi: coord list ->
      ?ni: coord -> ?ofsi: coord -> ?inci: coord -> 'l float_array ->
      ?howmanyo: coord list ->
      ?no: coord -> ?ofso: coord -> ?inco: coord -> 'l float_array
      -> r2r plan
  end
end



(** {2 Precision dependent modules}
 ***********************************************************************)

module D = Fftw3D

module S = Fftw3S


module Wisdom =
struct
  external to_file : string -> unit = "fftw3_ocaml_export_wisdom_to_file"

  external to_string : unit -> string = "fftw3_ocaml_export_wisdom_to_string"

  external export : unit -> unit = "fftw3_ocaml_export_wisdom"

  let export write =
    Callback.register "fftw3_wisdom_export" (write: char -> unit);
    export() (* FIXME: is the callback for each char way really efficient??
                It is probably better to export strings to ocaml and have
                an output function -- like Unix.output *)


  external from_system : unit -> unit = "fftw3_ocaml_import_system_wisdom"

  external from_file : string -> unit = "fftw3_ocaml_import_wisdom_from_file"

  external from_string : string -> unit
    = "fftw3_ocaml_import_wisdom_from_string"

  external import : unit -> unit = "fftw3_ocaml_import_wisdom"

  let import read =
    let read_char () = try Char.code(read()) with End_of_file -> -1 (* EOF *) in
    Callback.register "fftw3_wisdom_import" (read_char: unit -> int);
    import()


  external forget : unit -> unit = "fftw3_ocaml_forget_wisdom"

end
OCaml

Innovation. Community. Security.