package ff-pbt

  1. Overview
  2. Docs

Source file ff_pbt.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
let rec repeat ?(n = 100) f =
  if n <= 0 then
    let f () = () in
    f
  else (
    f () ;
    repeat ~n:(n - 1) f )

(** Check the routine generators do not raise any exception *)
module MakeValueGeneration (FiniteField : Ff_sig.BASE) = struct
  let zero () = ignore @@ FiniteField.zero

  let random () = ignore @@ FiniteField.random ()

  let non_null_random () =
    ignore @@ not (FiniteField.is_zero (FiniteField.non_null_random ()))

  let one () = ignore @@ FiniteField.one

  let inverse_with_random_not_null () =
    let r = FiniteField.non_null_random () in
    ignore @@ FiniteField.inverse_exn r

  let inverse_with_one () = ignore @@ FiniteField.inverse_exn FiniteField.one

  let negation_with_random () =
    let random = FiniteField.random () in
    ignore @@ FiniteField.negate random

  let negation_with_zero () = ignore @@ FiniteField.negate FiniteField.zero

  let negation_with_one () = ignore @@ FiniteField.negate FiniteField.one

  let square_with_one () = ignore @@ FiniteField.square FiniteField.one

  let square_with_random () =
    let g = FiniteField.random () in
    ignore @@ FiniteField.square g

  let double_with_zero () = ignore @@ FiniteField.double FiniteField.zero

  let double_with_one () = ignore @@ FiniteField.double FiniteField.one

  let double_with_random () =
    let g = FiniteField.random () in
    ignore @@ FiniteField.double g

  let double_is_same_than_multiply_by_same_element () =
    let g = FiniteField.random () in
    assert (FiniteField.eq (FiniteField.double g) (FiniteField.add g g))

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Value generation for field of order %s"
        (Z.to_string FiniteField.order),
      [ test_case "zero" `Quick (repeat zero);
        test_case "random" `Quick (repeat random);
        test_case "non null random" `Quick (repeat ~n:100 non_null_random);
        test_case
          "inverse_random_not_null"
          `Quick
          (repeat inverse_with_random_not_null);
        test_case "negate_with_one" `Quick (repeat negation_with_one);
        test_case "negate_with_zero" `Quick (repeat negation_with_zero);
        test_case "double_with_one" `Quick (repeat double_with_one);
        test_case "double_with_zero" `Quick (repeat double_with_zero);
        test_case "double_with_random" `Quick (repeat double_with_random);
        test_case "square_with_one" `Quick (repeat square_with_one);
        test_case "square_with_random" `Quick (repeat square_with_random);
        test_case "negate_with_random" `Quick (repeat negation_with_random);
        test_case
          "double_is_same_than_multiply_by_same_element"
          `Quick
          (repeat double_is_same_than_multiply_by_same_element);
        test_case "inverse_one" `Quick (repeat inverse_with_one) ] )
end

module MakeIsZero (FiniteField : Ff_sig.BASE) = struct
  let with_zero_value () = assert (FiniteField.is_zero FiniteField.zero = true)

  let rec with_random_value () =
    let x = FiniteField.random () in
    if FiniteField.is_zero x then with_random_value ()
    else assert (FiniteField.is_zero x = false)

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "is_zero for field of order %s"
        (Z.to_string FiniteField.order),
      [ test_case "with zero value" `Quick (repeat with_zero_value);
        test_case "with random value" `Quick (repeat with_random_value) ] )
end

module MakeEquality (FiniteField : Ff_sig.BASE) = struct
  let zero_same_objects () =
    assert (FiniteField.eq FiniteField.zero FiniteField.zero)

  let one_same_objects () =
    assert (FiniteField.eq FiniteField.one FiniteField.one)

  let random_same_objects () =
    let random = FiniteField.random () in
    assert (FiniteField.eq random random)

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Equality for field of order %s"
        (Z.to_string FiniteField.order),
      [ test_case "zero_same_objects" `Quick (repeat zero_same_objects);
        test_case "one_same_objects" `Quick (repeat one_same_objects);
        test_case "random_same_objects" `Quick (repeat random_same_objects) ] )
end

module MakeFieldProperties (FiniteField : Ff_sig.BASE) = struct
  let zero_nullifier_random () =
    (* 0 * g = 0 *)
    let random = FiniteField.random () in
    assert (FiniteField.is_zero (FiniteField.mul FiniteField.zero random))

  let zero_nullifier_zero () =
    (* Special case 0 * 0 = 0 *)
    assert (
      FiniteField.is_zero (FiniteField.mul FiniteField.zero FiniteField.zero) )

  let zero_nullifier_one () =
    (* Special case 0 * 1 = 0 *)
    assert (
      FiniteField.is_zero (FiniteField.mul FiniteField.zero FiniteField.one) )

  let rec inverse_property () =
    let random = FiniteField.random () in
    if FiniteField.is_zero random then inverse_property ()
    else
      assert (
        FiniteField.eq
          (FiniteField.mul (FiniteField.inverse_exn random) random)
          FiniteField.one )

  let inverse_of_one_is_one () =
    assert (
      FiniteField.eq (FiniteField.inverse_exn FiniteField.one) FiniteField.one
    )

  let zero_has_no_inverse () =
    match FiniteField.inverse_opt FiniteField.zero with
    | Some _ -> assert false
    | None -> assert true

  let rec inverse_of_non_null_does_exist () =
    let random = FiniteField.random () in
    if FiniteField.is_zero random then inverse_of_non_null_does_exist ()
    else
      match FiniteField.inverse_opt random with
      | Some _ -> assert true
      | None -> assert false

  let rec inverse_of_inverse () =
    let random = FiniteField.random () in
    if FiniteField.is_zero random then inverse_of_inverse ()
    else
      assert (
        FiniteField.eq
          (FiniteField.inverse_exn (FiniteField.inverse_exn random))
          random )

  let opposite_property () =
    let random = FiniteField.random () in
    assert (
      FiniteField.eq
        (FiniteField.add (FiniteField.negate random) random)
        FiniteField.zero )

  let opposite_of_opposite () =
    let random = FiniteField.random () in
    assert (
      FiniteField.eq (FiniteField.negate (FiniteField.negate random)) random )

  let opposite_of_zero_is_zero () =
    assert (
      FiniteField.eq (FiniteField.negate FiniteField.zero) FiniteField.zero )

  let additive_associativity () =
    let g1 = FiniteField.random () in
    let g2 = FiniteField.random () in
    let g3 = FiniteField.random () in
    assert (
      FiniteField.eq
        (FiniteField.add (FiniteField.add g1 g2) g3)
        (FiniteField.add (FiniteField.add g2 g3) g1) )

  let distributivity () =
    let g1 = FiniteField.random () in
    let g2 = FiniteField.random () in
    let g3 = FiniteField.random () in
    assert (
      FiniteField.eq
        (FiniteField.mul (FiniteField.add g1 g2) g3)
        (FiniteField.add (FiniteField.mul g1 g3) (FiniteField.mul g2 g3)) )

  let multiplicative_associativity () =
    let g1 = FiniteField.random () in
    let g2 = FiniteField.random () in
    let g3 = FiniteField.random () in
    assert (
      FiniteField.eq
        (FiniteField.mul (FiniteField.mul g1 g2) g3)
        (FiniteField.mul (FiniteField.mul g2 g3) g1) )

  (** 0**0 = 1 *)
  let pow_zero_to_zero_is_one () =
    assert (
      FiniteField.eq (FiniteField.pow FiniteField.zero Z.zero) FiniteField.one
    )

  (** 0 ** n = 0, n != 0 *)
  let pow_zero_to_non_null_exponent_is_zero () =
    let n = Z.of_int (Random.int 1_000_000_000) in
    assert (FiniteField.eq (FiniteField.pow FiniteField.zero n) FiniteField.zero)

  let pow_zero_on_random_equals_one () =
    let r = FiniteField.random () in
    assert (FiniteField.eq (FiniteField.pow r Z.zero) FiniteField.one)

  let pow_zero_on_one_equals_one () =
    assert (
      FiniteField.eq (FiniteField.pow FiniteField.one Z.zero) FiniteField.one )

  let pow_one_on_random_element_equals_the_random_element () =
    let e = FiniteField.random () in
    assert (FiniteField.eq (FiniteField.pow e Z.one) e)

  let pow_two_on_random_element_equals_the_square () =
    let e = FiniteField.random () in
    assert (
      FiniteField.eq (FiniteField.pow e (Z.succ Z.one)) (FiniteField.square e)
    )

  (** x**(-n) = x**(g - 1 - n) where g is the order of the additive group *)
  let pow_to_negative_exponent () =
    let x = FiniteField.random () in
    let n = Z.of_int (Random.int 1_000_000_000) in
    assert (
      FiniteField.eq
        (FiniteField.pow x (Z.neg n))
        (FiniteField.pow x (Z.sub (Z.pred FiniteField.order) n)) )

  let pow_addition_property () =
    let g = FiniteField.random () in
    let x = Z.of_int (Random.int 1_000_000_000) in
    let y = Z.of_int (Random.int 1_000_000_000) in
    assert (
      FiniteField.eq
        (FiniteField.pow g (Z.add x y))
        (FiniteField.mul (FiniteField.pow g x) (FiniteField.pow g y)) )

  (** x**g = x where g = |(F, +, 0)| *)
  let pow_to_the_additive_group_order_equals_same_element () =
    let x = FiniteField.random () in
    assert (FiniteField.eq (FiniteField.pow x FiniteField.order) x)

  (** x**g = 1 where g = |(F, *, 1)| *)
  let rec pow_to_the_multiplicative_group_order_equals_one () =
    let x = FiniteField.random () in
    if FiniteField.is_zero x then
      pow_to_the_multiplicative_group_order_equals_one ()
    else
      assert (
        FiniteField.eq
          (FiniteField.pow x (Z.pred FiniteField.order))
          FiniteField.one )

  (** x**(n + g) = x**n where g = |(F, *, 1)| *)
  let pow_add_multiplicative_group_order_to_a_random_power () =
    let x = FiniteField.random () in
    let n = Z.of_int (Random.int 1_000_000_000) in
    let order = Z.pred FiniteField.order in
    assert (
      FiniteField.eq (FiniteField.pow x (Z.add n order)) (FiniteField.pow x n)
    )

  let sub_definition () =
    let x = FiniteField.random () in
    let y = FiniteField.random () in
    assert (FiniteField.(sub x y = add x (negate y)))

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Field properties for field of order %s"
        (Z.to_string FiniteField.order),
      [ test_case "zero_nullifier_one" `Quick (repeat zero_nullifier_one);
        test_case "zero_nullifier_zero" `Quick (repeat zero_nullifier_zero);
        test_case "zero_nullifier_random" `Quick (repeat zero_nullifier_random);
        test_case
          "inverse_of_non_null_does_exist"
          `Quick
          (repeat inverse_of_non_null_does_exist);
        test_case "inverse_of_one_is_one" `Quick (repeat inverse_of_one_is_one);
        test_case "zero_has_no_inverse" `Quick (repeat zero_has_no_inverse);
        test_case "inverse_of_inverse" `Quick (repeat inverse_of_inverse);
        test_case "opposite_of_opposite" `Quick (repeat opposite_of_opposite);
        test_case
          "opposite_of_zero_is_zero"
          `Quick
          (repeat opposite_of_zero_is_zero);
        test_case
          "additive_associativity"
          `Quick
          (repeat additive_associativity);
        test_case "distributivity" `Quick (repeat distributivity);
        test_case
          "pow zero on random element equals one"
          `Quick
          (repeat pow_zero_on_random_equals_one);
        test_case
          "pow zero on one equals one"
          `Quick
          (repeat pow_zero_on_one_equals_one);
        test_case
          "pow one on random element equals the same element"
          `Quick
          (repeat pow_one_on_random_element_equals_the_random_element);
        test_case
          "pow two on random element equals the square"
          `Quick
          (repeat pow_one_on_random_element_equals_the_random_element);
        test_case
          "pow element to the additive group order"
          `Quick
          (repeat pow_to_the_additive_group_order_equals_same_element);
        test_case
          "pow element to the multiplicative group order"
          `Quick
          (repeat pow_to_the_multiplicative_group_order_equals_one);
        test_case
          "pow element to a random power plus the additive group order"
          `Quick
          (repeat pow_add_multiplicative_group_order_to_a_random_power);
        test_case
          "pow zero to zero is one"
          `Quick
          (repeat ~n:1 pow_zero_to_zero_is_one);
        test_case
          "pow zero to non null exponent is zero"
          `Quick
          (repeat pow_zero_to_non_null_exponent_is_zero);
        test_case
          "pow to negative exponent"
          `Quick
          (repeat pow_to_negative_exponent);
        test_case "opposite property" `Quick (repeat opposite_property);
        test_case "inverse property" `Quick (repeat inverse_property);
        test_case "pow addition property" `Quick (repeat pow_addition_property);
        test_case "sub definition" `Quick (repeat sub_definition);
        test_case
          "multiplicative_associativity"
          `Quick
          (repeat multiplicative_associativity) ] )
end

module MakeMemoryRepresentation (FiniteField : Ff_sig.BASE) = struct
  let test_to_bytes_has_correct_size () =
    let x = FiniteField.random () in
    let x_bytes = FiniteField.to_bytes x in
    assert (Bytes.length x_bytes = FiniteField.size_in_bytes)

  let test_to_bytes_of_bytes_inverse () =
    let x = FiniteField.random () in
    let x_bytes = FiniteField.to_bytes x in
    assert (FiniteField.eq x (FiniteField.of_bytes_exn x_bytes))

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Memory representation for field of order %s"
        (Z.to_string FiniteField.order),
      [ test_case
          "to_bytes returns the correct number of bytes"
          `Quick
          (repeat test_to_bytes_has_correct_size);
        test_case
          "to_bytes and of bytes are inverses"
          `Quick
          (repeat test_to_bytes_of_bytes_inverse) ] )
end

module MakeQuadraticResidue (PrimeField : Ff_sig.PRIME) = struct
  let test_is_quadratic_residue () =
    let r = PrimeField.random () in
    assert (PrimeField.(is_quadratic_residue (r * r)))

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Quadratic residue tests for prime field of order %s"
        (Z.to_string PrimeField.order),
      [ test_case
          "With random elements and using its square"
          `Quick
          (repeat ~n:1000 test_is_quadratic_residue) ] )
end

module MakeSquareRoot (PrimeField : Ff_sig.PRIME) = struct
  let test_square_root_on_random () =
    let r = PrimeField.random () in
    let res = Option.get @@ PrimeField.(sqrt_opt (square r)) in
    let res_neg = PrimeField.negate res in
    assert (PrimeField.(res = r || res = negate r)) ;
    assert (PrimeField.(res_neg = r || res_neg = negate r))

  let get_tests () =
    let open Alcotest in
    ( Printf.sprintf
        "Square root on finite field of order %s"
        (Z.to_string PrimeField.order),
      [ test_case
          "With random elements and using its square"
          `Quick
          (repeat ~n:1000 test_square_root_on_random) ] )
end

module MakeAll (FiniteField : Ff_sig.BASE) = struct
  module ValueGeneration = MakeValueGeneration (FiniteField)
  module IsZero = MakeIsZero (FiniteField)
  module Equality = MakeEquality (FiniteField)
  module FieldProperties = MakeFieldProperties (FiniteField)
  module MemoryRepresentation = MakeMemoryRepresentation (FiniteField)

  let get_tests () =
    [ ValueGeneration.get_tests ();
      IsZero.get_tests ();
      Equality.get_tests ();
      FieldProperties.get_tests ();
      MemoryRepresentation.get_tests () ]
end
OCaml

Innovation. Community. Security.