Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
ff_pbt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
let rec repeat ?(n = 100) f = if n <= 0 then let f () = () in f else ( f () ; repeat ~n:(n - 1) f ) (** Check the routine generators do not raise any exception *) module MakeValueGeneration (FiniteField : Ff_sig.BASE) = struct let zero () = ignore @@ FiniteField.zero let random () = ignore @@ FiniteField.random () let non_null_random () = ignore @@ not (FiniteField.is_zero (FiniteField.non_null_random ())) let one () = ignore @@ FiniteField.one let inverse_with_random_not_null () = let r = FiniteField.non_null_random () in ignore @@ FiniteField.inverse_exn r let inverse_with_one () = ignore @@ FiniteField.inverse_exn FiniteField.one let negation_with_random () = let random = FiniteField.random () in ignore @@ FiniteField.negate random let negation_with_zero () = ignore @@ FiniteField.negate FiniteField.zero let negation_with_one () = ignore @@ FiniteField.negate FiniteField.one let square_with_one () = ignore @@ FiniteField.square FiniteField.one let square_with_random () = let g = FiniteField.random () in ignore @@ FiniteField.square g let double_with_zero () = ignore @@ FiniteField.double FiniteField.zero let double_with_one () = ignore @@ FiniteField.double FiniteField.one let double_with_random () = let g = FiniteField.random () in ignore @@ FiniteField.double g let double_is_same_than_multiply_by_same_element () = let g = FiniteField.random () in assert (FiniteField.eq (FiniteField.double g) (FiniteField.add g g)) let get_tests () = let open Alcotest in ( Printf.sprintf "Value generation for field of order %s" (Z.to_string FiniteField.order), [ test_case "zero" `Quick (repeat zero); test_case "random" `Quick (repeat random); test_case "non null random" `Quick (repeat ~n:100 non_null_random); test_case "inverse_random_not_null" `Quick (repeat inverse_with_random_not_null); test_case "negate_with_one" `Quick (repeat negation_with_one); test_case "negate_with_zero" `Quick (repeat negation_with_zero); test_case "double_with_one" `Quick (repeat double_with_one); test_case "double_with_zero" `Quick (repeat double_with_zero); test_case "double_with_random" `Quick (repeat double_with_random); test_case "square_with_one" `Quick (repeat square_with_one); test_case "square_with_random" `Quick (repeat square_with_random); test_case "negate_with_random" `Quick (repeat negation_with_random); test_case "double_is_same_than_multiply_by_same_element" `Quick (repeat double_is_same_than_multiply_by_same_element); test_case "inverse_one" `Quick (repeat inverse_with_one) ] ) end module MakeIsZero (FiniteField : Ff_sig.BASE) = struct let with_zero_value () = assert (FiniteField.is_zero FiniteField.zero = true) let rec with_random_value () = let x = FiniteField.random () in if FiniteField.is_zero x then with_random_value () else assert (FiniteField.is_zero x = false) let get_tests () = let open Alcotest in ( Printf.sprintf "is_zero for field of order %s" (Z.to_string FiniteField.order), [ test_case "with zero value" `Quick (repeat with_zero_value); test_case "with random value" `Quick (repeat with_random_value) ] ) end module MakeEquality (FiniteField : Ff_sig.BASE) = struct let zero_same_objects () = assert (FiniteField.eq FiniteField.zero FiniteField.zero) let one_same_objects () = assert (FiniteField.eq FiniteField.one FiniteField.one) let random_same_objects () = let random = FiniteField.random () in assert (FiniteField.eq random random) let get_tests () = let open Alcotest in ( Printf.sprintf "Equality for field of order %s" (Z.to_string FiniteField.order), [ test_case "zero_same_objects" `Quick (repeat zero_same_objects); test_case "one_same_objects" `Quick (repeat one_same_objects); test_case "random_same_objects" `Quick (repeat random_same_objects) ] ) end module MakeFieldProperties (FiniteField : Ff_sig.BASE) = struct let zero_nullifier_random () = (* 0 * g = 0 *) let random = FiniteField.random () in assert (FiniteField.is_zero (FiniteField.mul FiniteField.zero random)) let zero_nullifier_zero () = (* Special case 0 * 0 = 0 *) assert ( FiniteField.is_zero (FiniteField.mul FiniteField.zero FiniteField.zero) ) let zero_nullifier_one () = (* Special case 0 * 1 = 0 *) assert ( FiniteField.is_zero (FiniteField.mul FiniteField.zero FiniteField.one) ) let rec inverse_property () = let random = FiniteField.random () in if FiniteField.is_zero random then inverse_property () else assert ( FiniteField.eq (FiniteField.mul (FiniteField.inverse_exn random) random) FiniteField.one ) let inverse_of_one_is_one () = assert ( FiniteField.eq (FiniteField.inverse_exn FiniteField.one) FiniteField.one ) let zero_has_no_inverse () = match FiniteField.inverse_opt FiniteField.zero with | Some _ -> assert false | None -> assert true let rec inverse_of_non_null_does_exist () = let random = FiniteField.random () in if FiniteField.is_zero random then inverse_of_non_null_does_exist () else match FiniteField.inverse_opt random with | Some _ -> assert true | None -> assert false let rec inverse_of_inverse () = let random = FiniteField.random () in if FiniteField.is_zero random then inverse_of_inverse () else assert ( FiniteField.eq (FiniteField.inverse_exn (FiniteField.inverse_exn random)) random ) let opposite_property () = let random = FiniteField.random () in assert ( FiniteField.eq (FiniteField.add (FiniteField.negate random) random) FiniteField.zero ) let opposite_of_opposite () = let random = FiniteField.random () in assert ( FiniteField.eq (FiniteField.negate (FiniteField.negate random)) random ) let opposite_of_zero_is_zero () = assert ( FiniteField.eq (FiniteField.negate FiniteField.zero) FiniteField.zero ) let additive_associativity () = let g1 = FiniteField.random () in let g2 = FiniteField.random () in let g3 = FiniteField.random () in assert ( FiniteField.eq (FiniteField.add (FiniteField.add g1 g2) g3) (FiniteField.add (FiniteField.add g2 g3) g1) ) let distributivity () = let g1 = FiniteField.random () in let g2 = FiniteField.random () in let g3 = FiniteField.random () in assert ( FiniteField.eq (FiniteField.mul (FiniteField.add g1 g2) g3) (FiniteField.add (FiniteField.mul g1 g3) (FiniteField.mul g2 g3)) ) let multiplicative_associativity () = let g1 = FiniteField.random () in let g2 = FiniteField.random () in let g3 = FiniteField.random () in assert ( FiniteField.eq (FiniteField.mul (FiniteField.mul g1 g2) g3) (FiniteField.mul (FiniteField.mul g2 g3) g1) ) (** 0**0 = 1 *) let pow_zero_to_zero_is_one () = assert ( FiniteField.eq (FiniteField.pow FiniteField.zero Z.zero) FiniteField.one ) (** 0 ** n = 0, n != 0 *) let pow_zero_to_non_null_exponent_is_zero () = let n = Z.of_int (Random.int 1_000_000_000) in assert (FiniteField.eq (FiniteField.pow FiniteField.zero n) FiniteField.zero) let pow_zero_on_random_equals_one () = let r = FiniteField.random () in assert (FiniteField.eq (FiniteField.pow r Z.zero) FiniteField.one) let pow_zero_on_one_equals_one () = assert ( FiniteField.eq (FiniteField.pow FiniteField.one Z.zero) FiniteField.one ) let pow_one_on_random_element_equals_the_random_element () = let e = FiniteField.random () in assert (FiniteField.eq (FiniteField.pow e Z.one) e) let pow_two_on_random_element_equals_the_square () = let e = FiniteField.random () in assert ( FiniteField.eq (FiniteField.pow e (Z.succ Z.one)) (FiniteField.square e) ) (** x**(-n) = x**(g - 1 - n) where g is the order of the additive group *) let pow_to_negative_exponent () = let x = FiniteField.random () in let n = Z.of_int (Random.int 1_000_000_000) in assert ( FiniteField.eq (FiniteField.pow x (Z.neg n)) (FiniteField.pow x (Z.sub (Z.pred FiniteField.order) n)) ) let pow_addition_property () = let g = FiniteField.random () in let x = Z.of_int (Random.int 1_000_000_000) in let y = Z.of_int (Random.int 1_000_000_000) in assert ( FiniteField.eq (FiniteField.pow g (Z.add x y)) (FiniteField.mul (FiniteField.pow g x) (FiniteField.pow g y)) ) (** x**g = x where g = |(F, +, 0)| *) let pow_to_the_additive_group_order_equals_same_element () = let x = FiniteField.random () in assert (FiniteField.eq (FiniteField.pow x FiniteField.order) x) (** x**g = 1 where g = |(F, *, 1)| *) let rec pow_to_the_multiplicative_group_order_equals_one () = let x = FiniteField.random () in if FiniteField.is_zero x then pow_to_the_multiplicative_group_order_equals_one () else assert ( FiniteField.eq (FiniteField.pow x (Z.pred FiniteField.order)) FiniteField.one ) (** x**(n + g) = x**n where g = |(F, *, 1)| *) let pow_add_multiplicative_group_order_to_a_random_power () = let x = FiniteField.random () in let n = Z.of_int (Random.int 1_000_000_000) in let order = Z.pred FiniteField.order in assert ( FiniteField.eq (FiniteField.pow x (Z.add n order)) (FiniteField.pow x n) ) let sub_definition () = let x = FiniteField.random () in let y = FiniteField.random () in assert (FiniteField.(sub x y = add x (negate y))) let get_tests () = let open Alcotest in ( Printf.sprintf "Field properties for field of order %s" (Z.to_string FiniteField.order), [ test_case "zero_nullifier_one" `Quick (repeat zero_nullifier_one); test_case "zero_nullifier_zero" `Quick (repeat zero_nullifier_zero); test_case "zero_nullifier_random" `Quick (repeat zero_nullifier_random); test_case "inverse_of_non_null_does_exist" `Quick (repeat inverse_of_non_null_does_exist); test_case "inverse_of_one_is_one" `Quick (repeat inverse_of_one_is_one); test_case "zero_has_no_inverse" `Quick (repeat zero_has_no_inverse); test_case "inverse_of_inverse" `Quick (repeat inverse_of_inverse); test_case "opposite_of_opposite" `Quick (repeat opposite_of_opposite); test_case "opposite_of_zero_is_zero" `Quick (repeat opposite_of_zero_is_zero); test_case "additive_associativity" `Quick (repeat additive_associativity); test_case "distributivity" `Quick (repeat distributivity); test_case "pow zero on random element equals one" `Quick (repeat pow_zero_on_random_equals_one); test_case "pow zero on one equals one" `Quick (repeat pow_zero_on_one_equals_one); test_case "pow one on random element equals the same element" `Quick (repeat pow_one_on_random_element_equals_the_random_element); test_case "pow two on random element equals the square" `Quick (repeat pow_one_on_random_element_equals_the_random_element); test_case "pow element to the additive group order" `Quick (repeat pow_to_the_additive_group_order_equals_same_element); test_case "pow element to the multiplicative group order" `Quick (repeat pow_to_the_multiplicative_group_order_equals_one); test_case "pow element to a random power plus the additive group order" `Quick (repeat pow_add_multiplicative_group_order_to_a_random_power); test_case "pow zero to zero is one" `Quick (repeat ~n:1 pow_zero_to_zero_is_one); test_case "pow zero to non null exponent is zero" `Quick (repeat pow_zero_to_non_null_exponent_is_zero); test_case "pow to negative exponent" `Quick (repeat pow_to_negative_exponent); test_case "opposite property" `Quick (repeat opposite_property); test_case "inverse property" `Quick (repeat inverse_property); test_case "pow addition property" `Quick (repeat pow_addition_property); test_case "sub definition" `Quick (repeat sub_definition); test_case "multiplicative_associativity" `Quick (repeat multiplicative_associativity) ] ) end module MakeMemoryRepresentation (FiniteField : Ff_sig.BASE) = struct let test_to_bytes_has_correct_size () = let x = FiniteField.random () in let x_bytes = FiniteField.to_bytes x in assert (Bytes.length x_bytes = FiniteField.size_in_bytes) let test_to_bytes_of_bytes_inverse () = let x = FiniteField.random () in let x_bytes = FiniteField.to_bytes x in assert (FiniteField.eq x (FiniteField.of_bytes_exn x_bytes)) let get_tests () = let open Alcotest in ( Printf.sprintf "Memory representation for field of order %s" (Z.to_string FiniteField.order), [ test_case "to_bytes returns the correct number of bytes" `Quick (repeat test_to_bytes_has_correct_size); test_case "to_bytes and of bytes are inverses" `Quick (repeat test_to_bytes_of_bytes_inverse) ] ) end module MakeQuadraticResidue (PrimeField : Ff_sig.PRIME) = struct let test_is_quadratic_residue () = let r = PrimeField.random () in assert (PrimeField.(is_quadratic_residue (r * r))) let get_tests () = let open Alcotest in ( Printf.sprintf "Quadratic residue tests for prime field of order %s" (Z.to_string PrimeField.order), [ test_case "With random elements and using its square" `Quick (repeat ~n:1000 test_is_quadratic_residue) ] ) end module MakeSquareRoot (PrimeField : Ff_sig.PRIME) = struct let test_square_root_on_random () = let r = PrimeField.random () in let res = Option.get @@ PrimeField.(sqrt_opt (square r)) in let res_neg = PrimeField.negate res in assert (PrimeField.(res = r || res = negate r)) ; assert (PrimeField.(res_neg = r || res_neg = negate r)) let get_tests () = let open Alcotest in ( Printf.sprintf "Square root on finite field of order %s" (Z.to_string PrimeField.order), [ test_case "With random elements and using its square" `Quick (repeat ~n:1000 test_square_root_on_random) ] ) end module MakeAll (FiniteField : Ff_sig.BASE) = struct module ValueGeneration = MakeValueGeneration (FiniteField) module IsZero = MakeIsZero (FiniteField) module Equality = MakeEquality (FiniteField) module FieldProperties = MakeFieldProperties (FiniteField) module MemoryRepresentation = MakeMemoryRepresentation (FiniteField) let get_tests () = [ ValueGeneration.get_tests (); IsZero.get_tests (); Equality.get_tests (); FieldProperties.get_tests (); MemoryRepresentation.get_tests () ] end