package elpi
ELPI - Embeddable λProlog Interpreter
Install
Dune Dependency
Authors
Maintainers
Sources
elpi-3.0.0.tbz
sha256=424e5a4631f5935a1436093b614917210b00259d16700912488ba4cd148115d1
sha512=fa54ce05101fafe905c6db2e5fa7ad79d714ec3b580add4ff711bad37fc9545a58795f69056d62f6c18d8c87d424acc1992ab7fb667652e980d182d4ed80ba16
doc/src/elpi.compiler/compiler_data.ml.html
Source file compiler_data.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
open Elpi_util open Elpi_parser open Elpi_runtime open Util module F = Ast.Func module Symbol = Data.Symbol module ScopeContext = struct type language = string [@@ deriving show, ord] type ctx = { vmap : (language * F.t * F.t) list; uvmap : (F.t * F.t) list ref } let empty () = { vmap = []; uvmap = ref [] } let eq_var { vmap } language c1 c2 = List.mem (language,c1,c2) vmap let cmp_var ctx language c1 c2 = if eq_var ctx language c1 c2 then 0 else let r = F.compare c1 c2 in if r = 0 then -1 else r let purge language f c l = List.filter (fun (l,x,y) -> l = language && not @@ F.equal (f (x,y)) c) l let push_ctx language c1 c2 ctx = { ctx with vmap = (language,c1 , c2) :: (purge language fst c1 @@ purge language snd c2 ctx.vmap) } let eq_uvar ctx c1 c2 = if List.exists (fun (x,_) -> F.equal x c1) !(ctx.uvmap) || List.exists (fun (_,y) -> F.equal y c2) !(ctx.uvmap) then List.mem (c1,c2) !(ctx.uvmap) else begin ctx.uvmap := (c1,c2) :: !(ctx.uvmap); true end end let elpi_language : ScopeContext.language = "lp" let elpi_var : ScopeContext.language = "lp_var" module MutableOnce : sig type 'a t [@@ deriving show, ord] val make : F.t -> 'a t val create : 'a -> 'a t val set : ?loc:Loc.t -> 'a t -> 'a -> unit val unset : 'a t -> unit val get : 'a t -> 'a val get_name : 'a t -> F.t val is_set : 'a t -> bool val pretty : Format.formatter -> 'a t -> unit end = struct type 'a t = F.t * 'a option ref [@@ deriving show, ord] let make f = f, ref None let create t = F.from_string "_", ref (Some t) let is_set (_,x) = Option.is_some !x let set ?loc (_,r) x = match !r with | None -> r := Some x | Some _ -> anomaly ?loc "MutableOnce" let get (_,x) = match !x with Some x -> x | None -> anomaly "get" let get_name (x,_) = x let unset (_,x) = x := None let pretty fmt (f,x) = match !x with | None -> Format.fprintf fmt "%a" F.pp f | Some _ -> anomaly "pp" end module TypeAssignment = struct type tmode = MRef of tmode MutableOnce.t | MVal of Mode.t [@@ deriving show] let rec deref_tmode = function | MRef r when MutableOnce.is_set r -> deref_tmode (MutableOnce.get r) | a -> a let compare_tmode m1 m2 = match deref_tmode m1, deref_tmode m2 with | MVal m1, MVal m2 -> Mode.compare m1 m2 | _ -> assert false let is_tmode_set t = match deref_tmode t with | MVal _ -> true | _ -> false let rec pretty_tmode fmt = function | MRef x when MutableOnce.is_set x -> pretty_tmode fmt (MutableOnce.get x) | MRef x -> Format.fprintf fmt "?" | MVal m -> Mode.pretty fmt m type 'a overloaded = | Single of 'a | Overloaded of 'a list [@@ deriving show, fold, iter] type ('uvar,'mode) t__ = | Prop of Ast.Structured.functionality | Any | Cons of F.t | App of F.t * ('uvar,'mode) t__ * ('uvar,'mode) t__ list | Arr of 'mode * Ast.Structured.variadic * ('uvar,'mode) t__ * ('uvar,'mode) t__ | UVar of 'uvar [@@ deriving show, fold, ord] type 'a t_ = ('a,tmode) t__ [@@ deriving show, fold] exception InvalidMode let cmp_aux cmp1 k = if cmp1 = 0 then k () else cmp1 let (&&&) x y = if x = 0 then y else x let rec compare_t_ ~cmp_mode ~cmp_func c t1 t2 = match t1, t2 with | Prop d1, Prop d2 -> cmp_func d1 d2 | Any, Any -> 0 | Cons f1, Cons f2 -> F.compare f1 f2 | App (f1,hd,tl), App (f2,hd1,tl1) -> cmp_aux (F.compare f1 f2) (fun () -> List.compare (compare_t_ ~cmp_mode ~cmp_func c) (hd::tl) (hd1::tl1)) | Arr (m1, v1, l1, r1), Arr (m2, v2, l2, r2) -> (cmp_mode m1 m2) &&& cmp_aux (Ast.Structured.compare_variadic v1 v2) (fun () -> cmp_aux (compare_t_ ~cmp_mode ~cmp_func c l1 l2) (fun () -> compare_t_ ~cmp_mode ~cmp_func c r1 r2)) | UVar v1, UVar v2 -> c v1 v2 | Prop _, _ -> -1 | _, Prop _ -> 1 | Any , _ -> -1 | _, Any -> 1 | Cons _, _ -> -1 | _, Cons _ -> 1 | App _ , _ -> -1 | _, App _ -> 1 | Arr _ , _ -> -1 | _, Arr _ -> 1 type skema = Lam of F.t * skema | Ty of F.t t_ [@@ deriving show] type type_abbrevs = (skema * Ast.Loc.t) F.Map.t [@@deriving show] let compare_skema ~cmp_mode ~cmp_func sk1 sk2 = let rec aux ctx sk1 sk2 = match sk1, sk2 with | Lam (f1,sk1), Lam(f2,sk2) -> aux (ScopeContext.push_ctx elpi_language f1 f2 ctx) sk1 sk2 | Ty t1, Ty t2 -> compare_t_ ~cmp_mode ~cmp_func (ScopeContext.cmp_var ctx elpi_language) t1 t2 | Lam _, Ty _ -> -1 | Ty _, Lam _ -> 1 in aux (ScopeContext.empty ()) sk1 sk2 type overloaded_symbol = Symbol.t overloaded [@@ deriving show] type t = Val of t MutableOnce.t t_ [@@ deriving show] type ty = t MutableOnce.t t_ [@@ deriving show] let create t = MutableOnce.create (Val t) let unval (Val x) = x let rec deref m = match unval @@ MutableOnce.get m with | UVar m when MutableOnce.is_set m -> deref m | x -> x let deref_opt m = if MutableOnce.is_set m then Some (deref m) else None open Format let pretty ?(is_raw=false) (f : formatter -> (formatter -> 'a t_ -> unit) -> 'a -> unit) fmt tm = let arrs = 0 in let app = 1 in let lvl_of = function | Arr _ -> arrs | App _ -> app | _ -> 2 in let show_mode fmt m = if is_raw then (Format.fprintf fmt "%a" pretty_tmode m) else Format.fprintf fmt "" in let rec arrow_tail = function | Prop x -> Some x | Arr(_,_,_,x) -> arrow_tail x | _ -> None in let skip_arrow_tail = false in let rec pretty fmt = function | Prop _ when skip_arrow_tail -> () | Prop Relation -> fprintf fmt "%s" (if is_raw then "pred" else "prop") | Prop Function -> fprintf fmt "%s" (if is_raw then "func" else "fprop") | Any -> fprintf fmt "any" | Cons c -> F.pp fmt c | App(f,x,xs) -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist (pretty_parens ~lvl:app) " ") (x::xs) | Arr(m,NotVariadic,s,t) when is_raw && skip_arrow_tail -> fprintf fmt "@[<hov 2>,@ %a:%a%a@]" show_mode m (pretty_parens ~lvl:arrs) s pretty t | Arr(m,NotVariadic,s,t) when is_raw -> begin match arrow_tail t with | None -> fprintf fmt "@[<hov 2>%a ->@ %a@]" (pretty_parens ~lvl:arrs) s pretty t | Some Ast.Structured.Relation -> fprintf fmt "@[<hov 2>pred %a@]" (pretty_pred_mode m) (s, t) | Some Ast.Structured.Function -> fprintf fmt "@[<hov 2>func %a@]" (pretty_pred_mode m) (s, t) end | Arr(_,NotVariadic,s,t) -> fprintf fmt "@[<hov 2>%a ->@ %a@]" (pretty_parens ~lvl:arrs) s pretty t | Arr(m,Variadic,s,t) -> fprintf fmt "%a ..-> %a" (pretty_parens ~lvl:arrs) s pretty t | UVar m -> f fmt pretty m (* | UVar m -> MutableOnce.pretty fmt m *) and pretty_parens ~lvl fmt = function | UVar m -> f fmt (pretty_parens ~lvl) m | t when lvl >= lvl_of t -> fprintf fmt "(%a)" pretty t | t -> pretty fmt t and pretty_pred_mode m fmt (s, t) = fprintf fmt "@[<hov 2>%a:%a@]" show_mode m (pretty_parens ~lvl:arrs) s; match t with | Prop _ -> () | Arr(m, v, s', r) -> fprintf fmt ", %s%a" (if v = Variadic then "variadic" else "") (pretty_pred_mode m) (s',r) | _ -> assert false in let pretty fmt t = Format.fprintf fmt "@[%a@]" pretty t in pretty fmt tm let pretty_raw fmt = pretty ~is_raw:true fmt let pretty fmt = pretty ~is_raw:false fmt let pretty_mut_once = pretty_raw (fun fmt f t -> if MutableOnce.is_set t then f fmt (deref t) else MutableOnce.pretty fmt t) let pretty_mut_once_raw = pretty_raw (fun fmt f t -> if MutableOnce.is_set t then f fmt (deref t) else MutableOnce.pretty fmt t) let pretty_ft ?(raw=false) fmt t = if raw then pretty_raw (fun fmt _ (t:F.t) -> F.pp fmt t) fmt t else pretty (fun fmt _ (t:F.t) -> F.pp fmt t) fmt t let pretty_skema ?raw fmt sk = let rec aux = function | Lam (_,t) -> aux t | Ty t -> pretty_ft ?raw fmt t in aux sk let pretty_skema_raw = pretty_skema ~raw:true let pretty_skema = pretty_skema ~raw:false let pretty_skema_w_id fmt (_,sk) = pretty_skema fmt sk let pretty_overloaded_skema fmt = function | Single t -> pretty_skema_w_id fmt t | Overloaded l -> pplist pretty_skema_w_id "," fmt l let set m v = MutableOnce.set m (Val v) let new_ty () : t MutableOnce.t = MutableOnce.make (F.from_string "Ty") let mkProp f : t MutableOnce.t = let r = MutableOnce.make (F.from_string "Ty") in set r (Prop f); r let mkList x : t MutableOnce.t = let r = MutableOnce.make (F.from_string "Ty") in set r (App(F.from_string "list",x,[])); r let nparams (t : skema) = let rec aux = function Ty _ -> 0 | Lam(_,t) -> 1 + aux t in aux t let rec subst map = function | (Prop _ | Any | Cons _) as x -> x | App(c,x,xs) -> App (c,subst map x,List.map (subst map) xs) | Arr(m,v,s,t) -> Arr(m,v,subst map s, subst map t) | UVar c -> match map c with | Some x -> x | None -> anomaly "TypeAssignment.subst" let fresh (sk: skema) = let rec fresh map = function | Lam(c,t) -> fresh (F.Map.add c (UVar (MutableOnce.make c)) map) t | Ty t -> if F.Map.is_empty map then (Obj.magic t), map else (subst (fun x -> F.Map.find_opt x map) t), map in fresh F.Map.empty sk let map_overloaded f = function | Single sk -> Single (f sk) | Overloaded l -> Overloaded (List.map f l) let fresh_overloaded o = map_overloaded (fun x -> fst @@ fresh x) o let rec apply m sk args = match sk, args with | Ty t, [] -> if F.Map.is_empty m then Obj.magic t else subst (fun x -> F.Map.find_opt x m) t | Lam(c,t), x::xs -> apply (F.Map.add c x m) t xs | _ -> assert false (* kind checker *) let apply (sk:skema) args = apply F.Map.empty sk args let rec is_prop ~type_abbrevs = function | Prop f -> Some f | Cons a when F.Map.mem a type_abbrevs -> let ty = apply (fst @@ F.Map.find a type_abbrevs) [] in is_prop ~type_abbrevs ty | App (a,x,xs) when F.Map.mem a type_abbrevs -> let ty = apply (fst @@ F.Map.find a type_abbrevs) (x::xs) in is_prop ~type_abbrevs ty | Any | Cons _ | App _ | UVar _ -> None | Arr(_,_,_,t) -> is_prop ~type_abbrevs t let eq_skema_w_id n (symb1,x) (symb2,y) = try compare_skema ~cmp_mode:compare_tmode ~cmp_func:Ast.Structured.compare_functionality x y = 0 with InvalidMode -> error ~loc:(Symbol.get_loc symb1) (Format.asprintf "@[<v>duplicate mode declaration for %a.@ - %a %a@ - %a %a@]" F.pp n Symbol.pp symb1 pretty_skema_raw x Symbol.pp symb2 pretty_skema_raw y) let check_same_mode ~loc1 ~loc2 x y = if compare_skema ~cmp_mode:compare_tmode ~cmp_func:Ast.Structured.compare_functionality x y <> 0 then error ~loc:loc2 ("Two types for the same symbol cannot only differ on modes or functionality.\nPrevious declaration: " ^ Loc.show loc1) let undup_skemas sk_of_s osl = let l = osl |> List.map (fun x -> x, sk_of_s x) in let filtered = ref [] in let eq_skema (s1,x) (s2,y) = let b = compare_skema ~cmp_mode:(fun _ _ -> 0) ~cmp_func:(fun _ _ -> 0) x y = 0 in if b then check_same_mode ~loc1:(Symbol.get_loc s1) ~loc2:(Symbol.get_loc s2) x y; if b then filtered := (s1,s2) :: !filtered; b in let l = let rec undup = function | [] -> [] | (s, _ as x) :: xs when List.exists (eq_skema x) xs -> undup xs | x :: xs -> x :: undup xs in undup l in match List.map fst l with | [] -> assert false | [x] -> !filtered, Single x | l -> !filtered, Overloaded l let merge_skema sk1 sk2 = if compare_skema ~cmp_mode:compare_tmode ~cmp_func:Ast.Structured.compare_functionality sk1 sk2 <> 0 then anomaly "merging different skemas"; sk1 let compare_t_ a b = compare_t_ ~cmp_mode:compare_tmode ~cmp_func:Ast.Structured.compare_functionality a b let compare_skema a b = compare_skema ~cmp_mode:compare_tmode ~cmp_func:Ast.Structured.compare_functionality a b exception Not_monomorphic let is_monomorphic (Val t) = let rec map = function | UVar r when MutableOnce.is_set r -> map (deref r) | UVar _ -> raise Not_monomorphic | (Prop _ | Any | Cons _) as v -> v | App(c,x,xs) -> App(c,map x, List.map map xs) | Arr(m,b,s,t) -> Arr(m,b,map s,map t) in try let t = map t in Some (Ty (Obj.magic t : F.t t_)) (* No UVar nodes *) with Not_monomorphic -> None let vars_of (Val t) = fold_t__ (fun (xs,acc) (x : t MutableOnce.t) -> if MutableOnce.is_set x then xs, acc else x :: xs, acc) (fun (acc,xs) (x : tmode) -> match x with | MRef x when MutableOnce.is_set x -> acc,xs | MRef x -> acc,x :: xs | MVal _ -> acc,xs) ([],[]) t let to_func_mode ~(type_abbrevs:type_abbrevs) f = let apply_ta f c acc l = match F.Map.find_opt c type_abbrevs with | None -> None | Some (e,_) -> f acc (apply e l) in let rec aux acc = function | Prop f -> Some (Some f, List.rev acc) | Any | UVar _ -> None | Cons c -> apply_ta aux c acc [] | App (c, x, xs) -> apply_ta aux c acc (x::xs) | Arr (mode, _, l, r) -> let m = match deref_tmode mode with | MVal v -> v | MRef _ -> Output in match aux [] l with | None -> aux (Mode.Fo m :: acc) r | Some (_,e) -> aux (Mode.Ho (m, e) :: acc) r in match aux [] f with None -> (None, []) | Some e -> e let rec skema_to_func_mode ~(type_abbrevs:type_abbrevs) = function | Lam (_,x) -> skema_to_func_mode ~type_abbrevs x | Ty t -> to_func_mode ~type_abbrevs t end module TypingEnv : sig type indexing = | Index of Elpi_runtime.Data.pred_info | DontIndex [@@deriving show] type symbol_metadata = { ty : TypeAssignment.skema; indexing : indexing; availability : Elpi_parser.Ast.Structured.symbol_availability; } [@@deriving show] val compatible_indexing : indexing -> indexing -> bool type t = { symbols : symbol_metadata Symbol.QMap.t; overloading : Symbol.t TypeAssignment.overloaded F.Map.t; } [@@deriving show] val empty : t val resolve_name : F.t -> t -> Symbol.t TypeAssignment.overloaded val resolve_symbol : Symbol.t -> t -> symbol_metadata val resolve_symbol_opt : Symbol.t -> t -> symbol_metadata option val merge_envs : t -> t -> t val iter_names : (F.t -> Symbol.t TypeAssignment.overloaded -> unit) -> t -> unit val iter_symbols : (Symbol.t -> symbol_metadata -> unit) -> t -> unit val same_symbol : t -> Symbol.t -> Symbol.t -> bool val compare_symbol : t -> Symbol.t -> Symbol.t -> int val undup : t -> Symbol.t list -> Symbol.t list val all_symbols : t -> (Symbol.t * symbol_metadata) list val mem_symbol : t -> Symbol.t -> bool val canon : t -> Symbol.t -> Symbol.t end = struct type indexing = | Index of Elpi_runtime.Data.pred_info | DontIndex [@@deriving show] type symbol_metadata = { ty : TypeAssignment.skema; indexing : indexing; availability : Elpi_parser.Ast.Structured.symbol_availability; } [@@deriving show] type t = { symbols : symbol_metadata Symbol.QMap.t; overloading : Symbol.t TypeAssignment.overloaded F.Map.t; } [@@deriving show] let compatible_indexing i1 i2 = match i1, i2 with | Index { indexing = i1; mode = m1 }, Index { indexing = i2; mode = m2 } -> Elpi_runtime.Data.compare_indexing i1 i2 == 0 && Elpi_util.Util.Mode.compare_hos m1 m2 == 0 | DontIndex, _ -> true | _, DontIndex -> true let empty = {symbols = Symbol.QMap.empty; overloading = F.Map.empty} let canon symbols s = Symbol.UF.find (Symbol.QMap.get_uf symbols) s let resolve_name f { overloading; symbols } : Symbol.t TypeAssignment.overloaded = match F.Map.find f overloading with | Single s -> Single (canon symbols s) | Overloaded l -> Overloaded (List.map (canon symbols) l) let resolve_symbol s { symbols } = Symbol.QMap.find s symbols let resolve_symbol_opt s { symbols } = Symbol.QMap.find_opt s symbols let merge_indexing s idx1 idx2 = if not @@ compatible_indexing idx1 idx2 then error ~loc:(Symbol.get_loc s) ("Incompatible indexing options for symbol " ^ Symbol.get_str s); idx1 let merge_availability s a1 a2 = let open Ast.Structured in match a1, a2 with | Elpi, Elpi -> Elpi | OCaml (p1), OCaml (p2) when Symbol.compare_provenance p1 p2 = 0 -> a1 | OCaml ((Builtin _|Core)), OCaml ((File _)) -> a1 | OCaml ((File _)), OCaml ((Builtin _|Core)) -> a2 | _ -> error ~loc:(Symbol.get_loc s) ("Incompatible provenance for symbol " ^ Symbol.get_str s ^ ": " ^ show_symbol_availability a1 ^ " != " ^ show_symbol_availability a2) let merge_symbol_metadata s { ty = ty1; indexing = idx1; availability = a1; } { ty = ty2; indexing = idx2; availability = a2; } = { ty = TypeAssignment.merge_skema ty1 ty2; indexing = merge_indexing s idx1 idx2; availability = merge_availability s a1 a2; } let o2l = function TypeAssignment.Single x -> [x] | Overloaded l -> l let merge_envs { symbols = s1; overloading = o1 } { symbols = s2; overloading = o2 } = let symbols = Symbol.QMap.union merge_symbol_metadata s1 s2 in let to_unite = ref [] in let overloading = F.Map.union (fun f l1 l2 -> (* We give precedence to recent type declarations over old ones *) let to_u, l = TypeAssignment.undup_skemas (fun x -> (Symbol.QMap.find x symbols).ty) (o2l l1 @ o2l l2) in to_unite := to_u :: !to_unite; Some l ) o1 o2 in let to_unite = List.concat !to_unite in let symbols = List.fold_right (fun (x,y) -> Symbol.QMap.unify merge_symbol_metadata x y) to_unite symbols in { overloading; symbols } let iter_names f { overloading } = F.Map.iter f overloading let iter_symbols f { symbols } = Symbol.QMap.iter f symbols let same_symbol { symbols } x y = let uf = Symbol.QMap.get_uf symbols in Symbol.equal ~uf x y let compare_symbol { symbols } x y = let uf = Symbol.QMap.get_uf symbols in Symbol.compare ~uf x y let undup { symbols } l = let uf = Symbol.QMap.get_uf symbols in Symbol.undup ~uf l let all_symbols { symbols } = Symbol.QMap.bindings symbols let mem_symbol { symbols } x = Symbol.QMap.mem x symbols let canon { symbols } x = canon symbols x end module SymbolResolver : sig type resolution [@@deriving show] val compare : TypingEnv.t -> resolution -> resolution -> int val clone : resolution -> resolution val make : unit -> resolution val resolve : TypingEnv.t -> resolution -> Symbol.t -> unit val resolved_to : TypingEnv.t -> resolution -> Symbol.t option val is_resolved_to : TypingEnv.t -> resolution -> Symbol.t -> bool end = struct type resolution = Symbol.t option ref [@@deriving show] let clone r = match !r with | None -> ref None | Some x -> ref (Some x) let compare env r1 r2 = match !r1, !r2 with | Some s1, Some s2 -> TypingEnv.compare_symbol env s1 s2 | Some _, None -> -1 | None, Some _ -> 1 | _ -> 0 let make () = ref None let resolve env r s = match !r with | None -> r := Some s | Some s' -> if not @@ TypingEnv.same_symbol env s' s then anomaly ("SymbolResolver: new " ^ Symbol.show s ^ " != old " ^ Symbol.show s'); r := Some s let resolved_to env r = match !r with | None -> None | Some x -> Some (TypingEnv.canon env x) let is_resolved_to env r s = match resolved_to env r with | None -> false | Some s1 -> TypingEnv.same_symbol env s s1 end module Scope = struct type language = ScopeContext.language [@@ deriving show, ord] type t = | Bound of language (* bound by a lambda, stays bound *) | Global of { escape_ns : bool; (* when true name space elimination does not touch this constant *) resolved_to : SymbolResolver.resolution; } [@@ deriving show] (* The compare function ignores the resolved_to field *) let compare env t1 t2 = match t1, t2 with | Bound b1, Bound b2 -> String.compare b1 b2 | Global g1, Global g2 -> let v = SymbolResolver.compare env g1.resolved_to g2.resolved_to in if v = 0 then Bool.compare g1.escape_ns g2.escape_ns else v | Bound _, Global _ -> 1 | Global _, Bound _ -> -1 let equal env x y = compare env x y = 0 let clone = function Bound _ as t -> t | Global {escape_ns; resolved_to} -> Global {escape_ns; resolved_to = SymbolResolver.clone resolved_to} module Map = Map.Make(struct type t = F.t * language [@@ deriving show, ord] end) module Set = Set.Make(struct type t = F.t * language [@@ deriving show, ord] end) let mkGlobal ?(escape_ns=false) () = Global { escape_ns ; resolved_to = SymbolResolver.make () } let mkResolvedGlobal types symb = let resolved_to = SymbolResolver.make () in SymbolResolver.resolve types resolved_to symb; Global { escape_ns = true ; resolved_to } end module ScopedTypeExpression = struct open ScopeContext module SimpleType = struct type t_ = | Any | Con of F.t | App of F.t * t * t list | Arr of t * t and t = { it : t_; loc : Loc.t } [@@ deriving show] end type t_ = | Any | Prop of Ast.Structured.functionality | Const of Scope.t * F.t | App of Scope.t * F.t * e * e list | Arrow of Mode.t * Ast.Structured.variadic * e * e and e = { it : t_; loc : Loc.t } [@@ deriving show] open Format let arrs = 0 let app = 1 let lvl_of = function | Arrow _ -> arrs | App _ -> app | _ -> 2 let rec is_prop = function | Prop f -> Some f | Any | Const _ | App _ -> None | Arrow(_,_,_,t) -> is_prop t.it let rec pretty_e fmt = function | Any -> fprintf fmt "any" | Const(_,c) -> F.pp fmt c | Prop _ -> fprintf fmt "prop" | App(_, f,x,xs) -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist (pretty_e_parens ~lvl:app) " ") (x::xs) | Arrow(m,v,s,t) as p -> (match is_prop p with | None -> fprintf fmt "@[<hov 2>%a ->@ %a@]" (pretty_e_parens ~lvl:arrs) s pretty_e_loc t | Some Function -> fprintf fmt "@[<hov 2>func%a@]" (pretty_prop m v s t) () | Some Relation -> fprintf fmt "@[<hov 2>pred%a@]" (pretty_prop m v s t) () ) and pretty_prop m v l r fmt () = let show_var = function Ast.Structured.Variadic -> ".." | _ -> "" in match r.it with | Prop _ -> fprintf fmt "." | _ -> fprintf fmt "%a %s->@ %a" (*Mode.pretty m*) pretty_e_loc l (show_var v) pretty_e_loc r and pretty_e_parens ~lvl fmt = function | t when lvl >= lvl_of t.it -> fprintf fmt "(%a)" pretty_e_loc t | t -> pretty_e_loc fmt t and pretty_e_loc fmt { it } = pretty_e fmt it let pretty_e fmt (t : e) = Format.fprintf fmt "@[%a@]" pretty_e_loc t let rec of_simple_type = function | SimpleType.Any -> Any | Con c -> Const(Scope.mkGlobal (),c) | App(c,x,xs) -> App(Scope.mkGlobal (),c,of_simple_type_loc x,List.map of_simple_type_loc xs) | Arr(s,t) -> Arrow(Output, NotVariadic,of_simple_type_loc s, of_simple_type_loc t) and of_simple_type_loc { it; loc } = { it = of_simple_type it; loc } type v_ = | Lam of F.t * v_ | Ty of e [@@ deriving show] type t = { name : F.t; value : v_; nparams : int; loc : Loc.t; index : Ast.Structured.predicate_indexing option; availability : Ast.Structured.symbol_availability; } [@@ deriving show] let pretty fmt { value } = let rec pretty fmt = function | Lam(_,x) -> pretty fmt x | Ty e -> pretty_e fmt e in Format.fprintf fmt "@[%a@]" pretty value let rec eqt env ctx t1 t2 = match t1.it, t2.it with | Const(Global _ as b1,c1), Const(Global _ as b2,c2) -> Scope.compare env b1 b2 == 0 && F.equal c1 c2 | Const(Bound l1,c1), Const(Bound l2,c2) -> Scope.compare_language l1 l2 == 0 && eq_var ctx l1 c1 c2 | App(Global _, c1,x,xs), App(Global _, c2,y,ys) -> F.equal c1 c2 && eqt env ctx x y && Util.for_all2 (eqt env ctx) xs ys | App(Bound _,_,_,_), _ -> assert false | _, App(Bound _,_,_,_) -> assert false | Arrow(m1, b1,s1,t1), Arrow(m2, b2,s2,t2) -> Mode.compare m1 m2 == 0 && b1 = b2 && eqt env ctx s1 s2 && eqt env ctx t1 t2 | Any, Any -> true | Prop f1, Prop f2 -> Ast.Structured.compare_functionality f1 f2 == 0 | _ -> false let rec eq env ctx t1 t2 = match t1, t2 with | Lam(c1,b1), Lam(c2,b2) -> eq env (push_ctx "lp" c1 c2 ctx) b1 b2 | Ty t1, Ty t2 -> eqt env ctx t1 t2 | _ -> false let equal env { name = n1; value = x } { name = n2; value = y } = F.equal n1 n2 && eq env (empty ()) x y let compare _ _ = assert false let rec smart_map_scoped_loc_ty f ({ it; loc } as orig) = let it' = smart_map_scoped_ty f it in if it' == it then orig else { it = it'; loc } and smart_map_scoped_ty f orig = match orig with | Any | Prop _ -> orig | Const((Scope.Bound _| Scope.Global { escape_ns = true }),_) -> orig | Const(Scope.Global _ as g,c) -> let c' = f c in if c == c' then orig else Const(g,c') | App(Bound _,_,_,_) -> assert false | App(Global g as s, c,x,xs) -> let c' = if g.escape_ns then c else f c in let x' = smart_map_scoped_loc_ty f x in let xs' = smart_map (smart_map_scoped_loc_ty f) xs in if c' == c && x' == x && xs' == xs then orig else App(s,c',x',xs') | Arrow(m,v,x,y) -> let x' = smart_map_scoped_loc_ty f x in let y' = smart_map_scoped_loc_ty f y in if x' == x && y' == y then orig else Arrow(m,v,x',y') let rec smart_map_tye f = function | Lam(c,t) as orig -> let t' = smart_map_tye f t in if t == t' then orig else Lam(c,t') | Ty t as orig -> let t' = smart_map_scoped_loc_ty f t in if t == t' then orig else Ty t' let smart_map f ({ name; value; nparams; loc; index; availability } as orig) = let name' = f name in let value' = smart_map_tye f value in if name == name' && value' == value then orig else { name = name'; value = value'; nparams; loc; index; availability } end module ScopedTerm = struct open ScopeContext module SimpleTerm = struct type impl_kind = L2R | L2RBang | R2L [@@ deriving show] let is_implf f = let open Ast in Func.equal f Func.implf || Func.equal f Func.implbangf || Func.equal f Func.rimplf let func_to_impl_kind f = let open Ast in if Func.equal f Func.implf then L2R else if Func.equal f Func.implbangf then L2RBang else if Func.equal f Func.rimplf then R2L else anomaly ("not an implication " ^ F.show f) (* User Visible *) type t_ = | Impl of impl_kind * Loc.t * t * t (* `Impl(true,t1,t2)` ≡ `t1 => t2` and `Impl(false,t1,t2)` ≡ `t1 :- t2` *) | Const of Scope.t * F.t | Discard | Var of F.t * Loc.t * t list | App of Scope.t * F.t * Loc.t * t * t list | Lam of (F.t * Loc.t * Scope.language) option * ScopedTypeExpression.SimpleType.t option * t | Opaque of CData.t | Cast of t * ScopedTypeExpression.SimpleType.t and t = { it : t_; loc : Loc.t } [@@ deriving show] type constant = int let mkGlobal ~loc c = { loc; it = Const(Scope.mkGlobal ~escape_ns:true (),Data.Symbol.get_func @@ Constants.Map.find c Data.Global_symbols.table.c2s) } let mkBound ~loc ~language n = { loc; it = Const(Bound language,n)} let mkAppGlobal ~loc ~hdloc c x xs = { loc; it = App(Scope.mkGlobal ~escape_ns:true (),Data.Symbol.get_func @@ Constants.Map.find c Data.Global_symbols.table.c2s,hdloc,x,xs) } let mkAppBound ~loc ~hdloc ~language n x xs = { loc; it = App(Bound language,n,hdloc,x,xs) } let mkVar ~loc ~hdloc n l = { loc; it = Var(n,hdloc,l) } let mkOpaque ~loc o = { loc; it = Opaque o } let mkCast ~loc t ty = { loc; it = Cast(t,ty) } let mkDiscard ~loc = { loc; it = Discard } let mkLam ~loc n ?ty t = { loc; it = Lam(n,ty,t) } let mkImplication ~loc ~hdloc s t = { loc; it = Impl(L2R,hdloc,s,t) } let mkPi ~loc ~hdloc n ~nloc ?ty t = { loc; it = App(Scope.mkGlobal ~escape_ns:true (),F.pif,hdloc,{ loc; it = Lam (Some (n,nloc,elpi_language),ty,t) },[]) } let mkConj ~loc ~hdloc = function | [] -> { loc; it = Const(Scope.mkGlobal ~escape_ns:true (), F.truef) } | [x] -> x | x :: xs -> { loc; it = App(Scope.mkGlobal ~escape_ns:true (), F.andf, hdloc, x, xs)} let mkEq ~loc ~hdloc a b = { loc; it = App(Scope.mkGlobal ~escape_ns:true (), F.eqf, hdloc, a,[b]) } let mkNil ~loc = { it = Const(Scope.mkGlobal ~escape_ns:true (),F.nilf); loc } let mkCons ?loc ~hdloc a b = let loc = match loc with Some x -> x | None -> Loc.merge a.loc b.loc in { loc; it = App(Scope.mkGlobal ~escape_ns:true (),F.consf,hdloc,a,[b]) } let list_to_lp_list ~loc l = let rec aux = function | [] -> mkNil ~loc | hd::tl -> let tl = aux tl in mkCons ~hdloc:loc hd tl in aux l let ne_list_to_lp_list l = match List.rev l with | [] -> anomaly "Ast.list_to_lp_list on empty list" | h :: _ -> list_to_lp_list ~loc:h.loc l let rec lp_list_to_list = function | { it = App(Global { escape_ns = true }, c, _, x, [xs]) } when F.equal c F.consf -> x :: lp_list_to_list xs | { it = Const(Global { escape_ns = true },c) } when F.equal c F.nilf -> [] | { loc; it } -> error ~loc (Format.asprintf "%a is not a list" pp_t_ it) end type 'scope const = { scope: 'scope; name: F.t; ty: TypeAssignment.t MutableOnce.t; loc : Loc.t } [@@ deriving show] let mk_const ?(ty = MutableOnce.make F.dummyname) ~scope name ~loc : 'a const = { scope; name; ty; loc } let mk_bound_const ?ty ~lang name ~loc = mk_const ?ty ~scope:(Scope.Bound lang) name ~loc let bind_const (n : string const) : Scope.t const = { n with scope = Scope.Bound n.scope } let mk_global_const ~name ~loc : 'a const = mk_const ~scope:(Scope.mkGlobal ()) name ~loc let const_of_symb ~types symb ~loc : 'a const = mk_const ~scope:(Scope.mkResolvedGlobal types symb) (Symbol.get_func symb) ~loc let clone_const ?(clone_scope = Fun.id) {scope;name; loc } = mk_const ~scope:(clone_scope scope) name ~loc type spill_info = | NoInfo (* before typing *) | Main of int (* how many arguments it stands for *) | Phantom of int (* phantom term used during type checking *) [@@ deriving show] type t_ = | Impl of SimpleTerm.impl_kind * Loc.t * t * t (* `Impl(true,t1,t2)` ≡ `t1 => t2` and `Impl(false,t1,t2)` ≡ `t1 :- t2` *) | Discard | Var of Scope.t const * t list | App of Scope.t const * t list | Lam of (Scope.language const) option * ScopedTypeExpression.e option * t | CData of CData.t | Spill of t * spill_info ref | Cast of t * ScopedTypeExpression.e and t = { it : t_; loc : Loc.t; ty : TypeAssignment.t MutableOnce.t } [@@ deriving show] let type_of { ty } : TypeAssignment.ty = assert(MutableOnce.is_set ty); TypeAssignment.deref ty open Format let lam = 0 let app = 1 let lvl_of = function | App(_, (_::_)) -> app | Var (_, (_::_)) -> app | Lam _ -> lam | _ -> 2 let get_lam_name = function None -> F.from_string "_" | Some (n,_) -> n let mk_empty_lam_type = function | None -> None | Some (name, loc, scope) -> Some (mk_const name ~scope ~loc) (* The type of the object being constructed is irrelevant since build_infix_constant is used in the pretty printer of term and the type of infix constants is not displayed *) let build_infix_constant name loc : t = {loc; ty = MutableOnce.make (F.from_string "dummy"); it = App(name,[]) } let is_infix_constant f = let infix = [F.andf; F.orf; F.eqf; F.isf; F.asf; F.consf] @ List.map F.from_string ["^";"+";"-";"*";"/"] in List.mem f infix let rec intersperse e : 'a -> t list = function | [] | [_] as a -> a | x::xs -> x :: e x.loc :: intersperse e xs let rec pretty_lam fmt n ste it = (match n with | None -> Format.fprintf fmt "_" | Some { scope; name; ty } -> fprintf fmt "@[<hov 2>%a" F.pp name; if MutableOnce.is_set ty then fprintf fmt ": @[%a@] " TypeAssignment.pretty_mut_once (TypeAssignment.deref ty) else Option.iter (fprintf fmt ": %a " ScopedTypeExpression.pretty_e) ste); fprintf fmt "\\@]@ %a" pretty it; and pretty fmt { it } = pretty_ fmt it and pretty_ fmt = function | Impl(L2R,_,t1,t2) -> fprintf fmt "@[<hov 2>(%a =>@ (%a))@]" pretty t1 pretty t2 | Impl(L2RBang,_,t1,t2) -> fprintf fmt "@[<hov 2>(%a =!=>@ (%a))@]" pretty t1 pretty t2 | Impl(R2L,_,t1,t2) -> fprintf fmt "@[<hov 2>(%a :-@ %a)@]" pretty t1 pretty t2 | App({ name = f },[]) -> fprintf fmt "%a" F.pp f | Discard -> fprintf fmt "_" | Lam(n, ste, it) -> pretty_lam fmt n ste it | App({ name = f },[x]) when F.equal F.spillf f -> fprintf fmt "{%a}" pretty x | App({ name = f },x::xs) when F.equal F.pif f || F.equal F.sigmaf f -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist ~pplastelem:(pretty_parens_lam ~lvl:app) (pretty_parens ~lvl:app) " ") (x::xs) | App({ scope = Global _; name = f } as n,x::xs) when is_infix_constant f -> fprintf fmt "%a" (Util.pplist ~boxed:true (pretty_parens ~lvl:0) " ") (intersperse (build_infix_constant n) (x::xs)) | App({ name = f },x::xs) -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist ~boxed:true (pretty_parens ~lvl:app) " ") (x::xs) | Var({ name = f },[]) -> fprintf fmt "@[%a@]" F.pp f | Var({ name = f },xs) -> fprintf fmt "@[%a@ %a@]" F.pp f (Util.pplist ~boxed:true (pretty_parens ~lvl:app) " ") xs | CData c -> fprintf fmt "%a" CData.pp c | Spill (t,{ contents = NoInfo }) -> fprintf fmt "{%a}" pretty t | Spill (t,{ contents = Main _ }) -> fprintf fmt "{%a}" pretty t | Spill (t,{ contents = Phantom n}) -> fprintf fmt "{%a}/*%d*/" pretty t n | Cast (t,ty) -> fprintf fmt "(%a : %a)" pretty t ScopedTypeExpression.pretty_e ty (* TODO pretty *) and pretty_parens ~lvl fmt { it } = if lvl >= lvl_of it then fprintf fmt "(%a)" pretty_ it else pretty_ fmt it and pretty_parens_lam ~lvl fmt x = match x.it with Lam _ -> fprintf fmt "%a" pretty_ x.it | _ -> pretty_parens ~lvl fmt x let equal env ?(types=true) t1 t2 = let rec eq ctx t1 t2 = match t1.it, t2.it with | Discard, Discard -> true | Var(n1,l1), Var(n2,l2) -> eq_uvar ctx n1.name n2.name && Util.for_all2 (eq ctx) l1 l2 | App({ scope = Global _ as b1; name = c1},xs), App({ scope = Global _ as b2; name = c2 },ys) -> Scope.equal env b1 b2 && F.equal c1 c2 && Util.for_all2 (eq ctx) xs ys | App({ scope = Bound l1; name = c1 },xs), App({ scope = Bound l2; name = c2 },ys) -> l1 = l2 && eq_var ctx l1 c1 c2 && Util.for_all2 (eq ctx) xs ys | Lam(None, ty1,b1), Lam (None,ty2, b2) -> eq ctx b1 b2 && (not types || Option.equal (ScopedTypeExpression.eqt env (empty ())) ty1 ty2) | Lam(Some { scope = l1; name = c1 },ty1,b1), Lam(Some { scope = l2; name = c2 },ty2, b2) -> l1 = l2 && eq (push_ctx l1 c1 c2 ctx) b1 b2 && (not types || Option.equal (ScopedTypeExpression.eqt env (empty ())) ty1 ty2) | Spill(b1,n1), Spill (b2,n2) -> n1 == n2 && eq ctx b1 b2 | CData c1, CData c2 -> CData.equal c1 c2 | Cast(t1,ty1), Cast(t2,ty2) -> eq ctx t1 t2 && (not types || ScopedTypeExpression.eqt env (empty ()) ty1 ty2) | Impl(b1,_,s1,t1), Impl(b2,_,s2,t2) -> b1 = b2 && eq ctx t1 t2 && eq ctx s1 s2 | _ -> false in let b = eq (empty ()) t1 t2 in b let compare _ _ = assert false let in_scoped_term, out_scoped_term, is_scoped_term = let open CData in let { cin; cout; isc } = declare { data_name = "hidden_scoped_term"; data_pp = pretty; data_compare = (fun _ _ -> assert false); data_hash = Hashtbl.hash; data_hconsed = false; } in cin, cout, isc let rec of_simple_term ~loc = function | SimpleTerm.Discard -> Discard | Impl(b,loc,t1,t2) -> Impl(b,loc,of_simple_term_loc t1, of_simple_term_loc t2) | Const(scope,c) -> App (mk_const ~scope c ~loc,[]) | Opaque c -> CData c | Cast(t,ty) -> Cast(of_simple_term_loc t, ScopedTypeExpression.of_simple_type_loc ty) | Lam(c,ty,t) -> Lam(mk_empty_lam_type c,Option.map ScopedTypeExpression.of_simple_type_loc ty, of_simple_term_loc t) | App(s,c,cloc,x,xs) when SimpleTerm.is_implf c -> begin match xs with | [y] -> Impl(SimpleTerm.func_to_impl_kind c,cloc,of_simple_term_loc x, of_simple_term_loc y) | _ -> error ~loc "Use of App for Impl is allowed, but the length of the list in 3rd position must be 1" end | App(s,c,cloc,x,xs) -> App(mk_const ~scope:s c ~loc, of_simple_term_loc x :: List.map of_simple_term_loc xs) | Var(c,cloc,xs) -> Var(mk_bound_const ~lang:elpi_var c ~loc:cloc,List.map of_simple_term_loc xs) and of_simple_term_loc { SimpleTerm.it; loc } = match it with | Opaque c when is_scoped_term c -> out_scoped_term c | _ -> { it = of_simple_term ~loc it; loc; ty = MutableOnce.make (F.from_string "Ty") } let unlock { it } = it (* naive, but only used by macros *) let fresh = ref 0 let fresh () = incr fresh; F.from_string (Format.asprintf "%%bound%d" !fresh) let rec rename l c d t = match t with | Impl(b,loc,t1,t2) -> Impl(b,loc,rename_loc l c d t1, rename_loc l c d t2) | App({ scope = Bound l'; name = c';ty;loc},xs) when l = l' && F.equal c c' -> (* NOTE: the name in mutable once should be renamed *) App({scope = Bound l; name = d; ty; loc}, List.map (rename_loc l c d) xs) | App(n,xs) -> App(n, List.map (rename_loc l c d) xs) | Lam(Some { scope = l'; name = c'},_,_) when l = l' && F.equal c c' -> t | Lam(v,tya,t) -> Lam(v,tya,rename_loc l c d t) | Spill(t,i) -> Spill(rename_loc l c d t,i) | Cast(t,ty) -> Cast(rename_loc l c d t,ty) | Var(v,xs) -> Var(v,List.map (rename_loc l c d) xs) | Discard | CData _ -> t and rename_loc l c d { it; ty; loc } = { it = rename l c d it; ty; loc } let rec clone_loc ~loc {it} = {it=clone ~loc it;loc;ty=TypeAssignment.new_ty ()} and clone ~loc = function | Impl (b, loc, l, r) -> Impl(b, loc, clone_loc ~loc l, clone_loc ~loc r) | Lam (n,ty,bo) -> Lam(Option.map clone_const n, ty, clone_loc ~loc bo) | Discard -> Discard | Var (v, xs) -> Var (clone_const v, List.map (clone_loc ~loc) xs) | App (g, xs) -> App (clone_const g, List.map (clone_loc ~loc) xs) | CData _ as t -> t | Spill (t, _) -> Spill (clone_loc ~loc t, ref NoInfo) | Cast (t, ty) -> Cast (clone_loc ~loc t, ty) let beta t args = let rec fv acc { it } = match it with | Impl(_,_,a,b) -> List.fold_left fv acc [a;b] | Var (_,args) -> List.fold_left fv acc args | App({ scope = Bound l; name = c },xs) -> List.fold_left fv (Scope.Set.add (c,l) acc) xs | App({ scope = Global _ },xs) -> List.fold_left fv acc xs | Lam(None,_,t) -> fv acc t | Lam(Some { scope = c; name = l },_,t) -> Scope.Set.union acc @@ Scope.Set.remove (l,c) (fv Scope.Set.empty t) | Spill(t,_) -> fv acc t | Cast(t,_) -> fv acc t | Discard | CData _ -> acc in let rec load_subst ~loc t (args : t list) map fvset = match t, args with | Lam(None,_,t), _ :: xs -> load_subst_loc t xs map fvset | Lam(Some { scope = l; name = c },_,t), x :: xs -> load_subst_loc t xs (Scope.Map.add (c,l) x map) (fv fvset x) | t, xs -> app ~loc (subst map fvset t) xs and load_subst_loc { it; loc } args map fvset = load_subst ~loc it args map fvset and subst (map : t Scope.Map.t) fv t = match t with | Impl(b,loc,t1,t2) -> Impl(b,loc,subst_loc map fv t1, subst_loc map fv t2) | Lam(None,ty,t) -> Lam(None,ty,subst_loc map fv t) | Lam(Some { scope = c; name = l } as n,ty,t) when not @@ Scope.Map.mem (l,c) map && not @@ Scope.Set.mem (l,c) fv -> Lam(n,ty,subst_loc map fv @@ t) | Lam(Some { scope = l; name = c; ty = tya;loc },ty,t) -> let d = fresh () in Lam(Some { scope = l; name = d; ty = tya; loc },ty,subst_loc map fv @@ rename_loc l c d t) | App({ scope = Bound l; name = c },xs) when Scope.Map.mem (c,l) map -> let hd = Scope.Map.find (c,l) map in unlock @@ app_loc hd (List.map (subst_loc map fv) xs) | App(n,xs) -> App(n,List.map (subst_loc map fv) xs) | Var(c,xs) -> Var(c,List.map (subst_loc map fv) xs) | Spill(t,i) -> Spill(subst_loc map fv t,i) | Cast(t,ty) -> Cast(subst_loc map fv t,ty) | Discard | CData _ -> t and subst_loc map fv { it; ty; loc } = {loc; it = (subst map fv it); ty} and app_loc { it; loc; ty } args : t = {loc; it = (app ~loc it args); ty} and app ~loc t (args : t list) = if args = [] then t else match t with | App(n,xs) -> App(n,xs @ args) | Var(c,xs) -> Var(c,xs @ args) | Impl(_,_,_,_) -> error ~loc "cannot apply impl" | CData _ -> error ~loc "cannot apply cdata" | Spill _ -> error ~loc "cannot apply spill" | Discard -> error ~loc "cannot apply discard" | Cast _ -> error ~loc "cannot apply cast" | Lam _ -> load_subst ~loc t args Scope.Map.empty Scope.Set.empty in if args = [] then unlock t else load_subst_loc t args Scope.Map.empty Scope.Set.empty let beta t args = (* Format.eprintf "beta %a\n" pretty t; *) let t = beta t args in (* Format.eprintf "beta result %a\n" pretty_ t; *) t module QTerm = struct include SimpleTerm let apply_elpi_var_from_quotation ({ SimpleTerm.it; loc } as o) l = if l = [] then o else let l = List.map of_simple_term_loc l in match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Var(f,xs); loc = loc'; ty } -> { SimpleTerm.loc; it = SimpleTerm.Opaque (in_scoped_term @@ { it = Var(f,xs @ l); loc = loc'; ty }) } | { it = App({ scope = Bound g } as n,[]); loc = loc'; ty } when g = elpi_language -> { SimpleTerm.loc; it = SimpleTerm.Opaque (in_scoped_term @@ { it = App(n, l); loc = loc'; ty }) } | x -> anomaly ~loc (Format.asprintf "The term is not an elpi varible coming from a quotation: @[%a@]" pretty x) end | x -> anomaly ~loc (Format.asprintf "The term is not term coming from a quotation: @[%a@]" pp_t_ x) let extend_spill_hyp_from_quotation { SimpleTerm.it; loc } hyps = match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Spill(t,i); loc } -> let impl = { loc; it = Impl(L2R, loc, list_to_lp_list ~loc hyps, { loc; it = Opaque (in_scoped_term t) }) } in { loc; it = Opaque(in_scoped_term @@ { it = Spill(of_simple_term_loc impl,i); loc; ty = MutableOnce.make (F.from_string "Ty") })} | _ -> anomaly ~loc (Format.asprintf "The term is not a spill coming from a quotation: @[%a@]" pp_t_ it) end | x -> anomaly ~loc (Format.asprintf "The term is not coming from a quotation: @[%a@]" pp_t_ x) let is_spill_from_quotation { SimpleTerm.it } = match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Spill _ } -> true | _ -> false end | _ -> false end let is_var = function Var _ -> true | _ -> false end module ScopeTypeExpressionUniqueList = struct type t = ScopedTypeExpression.t list [@@deriving show, ord] let pretty fmt l = pplist ScopedTypeExpression.pretty ";" fmt l let make t = [t] let smart_map = smart_map let append env x t = x :: List.filter (fun y -> not @@ ScopedTypeExpression.equal env x y) t let merge env t1 t2 = List.fold_left (fun acc x -> append env x acc) (List.rev t1) t2 let fold = List.fold_left end module State = Data.State module QuotationHooks = struct type quotation = language:Scope.language -> State.t -> Ast.Loc.t -> string -> ScopedTerm.SimpleTerm.t type descriptor = { named_quotations : quotation StrMap.t; default_quotation : quotation option; singlequote_compilation : (string * quotation) option; backtick_compilation : (string * quotation) option; } let new_descriptor () = ref { named_quotations = StrMap.empty; default_quotation = None; singlequote_compilation = None; backtick_compilation = None; } let declare_singlequote_compilation ~descriptor name f = match !descriptor with | { singlequote_compilation = None } -> descriptor := { !descriptor with singlequote_compilation = Some(name,f) }; name | { singlequote_compilation = Some(oldname,_) } -> error("Only one custom compilation of 'ident' is supported. Current: " ^ oldname ^ ", new: " ^ name) let declare_backtick_compilation ~descriptor name f = match !descriptor with | { backtick_compilation = None } -> descriptor := { !descriptor with backtick_compilation = Some(name,f) }; name | { backtick_compilation = Some(oldname,_) } -> error("Only one custom compilation of `ident` is supported. Current: " ^ oldname ^ ", new: " ^ name) let set_default_quotation ~descriptor f = descriptor := { !descriptor with default_quotation = Some f } let register_named_quotation ~descriptor ~name:n f = descriptor := { !descriptor with named_quotations = StrMap.add n f !descriptor.named_quotations }; n end module Arity = struct type t = int * Loc.t [@@deriving show, ord] end exception CompileError of Loc.t option * string let error ?loc msg = raise (CompileError(loc, msg))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>