package elpi
ELPI - Embeddable λProlog Interpreter
Install
Dune Dependency
Authors
Maintainers
Sources
elpi-3.0.0.tbz
sha256=424e5a4631f5935a1436093b614917210b00259d16700912488ba4cd148115d1
sha512=fa54ce05101fafe905c6db2e5fa7ad79d714ec3b580add4ff711bad37fc9545a58795f69056d62f6c18d8c87d424acc1992ab7fb667652e980d182d4ed80ba16
doc/src/elpi.runtime/data.ml.html
Source file data.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
(* elpi: embedded lambda prolog interpreter *) (* license: GNU Lesser General Public License Version 2.1 or later *) (* ------------------------------------------------------------------------- *) (* Internal term representation *) open Elpi_util open Elpi_parser module Fmt = Format module F = Ast.Func open Util (** Used to index the parameters of a predicate P - [MapOn N] -> N-th argument at depth 1 (head symbol only) - [Hash L] -> L is the list of depths given by the urer for the parameters of P. Indexing is done by hashing all the parameters with a non zero depth and comparing it with the hashing of the parameters of the query - [DiscriminationTree L] -> we use the same logic of Hash, except we use DiscriminationTree to discriminate clauses *) type indexing = | MapOn of int | Hash of int list | DiscriminationTree of int list [@@deriving show, ord] type overlap_clause = { overlap_loc : Loc.t option; has_cut : bool; mutable timestamp : int list } [@@deriving show] type overlap = | Allowed | Forbidden of overlap_clause Discrimination_tree.t [@@deriving show] let mk_Forbidden indexing = Forbidden ( match indexing with | MapOn i -> Discrimination_tree.empty_dt (List.init (i+1) (fun j -> if j = i then 1 else 0)) | Hash l -> Discrimination_tree.empty_dt l | DiscriminationTree l -> Discrimination_tree.empty_dt l ) type pred_info = { indexing:indexing; mode:Mode.hos; overlap: overlap; has_local_without_cut: Loc.t option } [@@deriving show] let same_indexing { indexing = i1 } { indexing = i2 } = compare_indexing i1 i2 == 0 (****************************************************************************** Terms: data type definition and printing ******************************************************************************) (* Heap and Stack * * We use the same data type (term) the following beasts: * preterm = Pure term <= Heap term <= Stack term * * - only Stack terms can contain Arg nodes * - Heap terms can contain UVar nodes * - Pure terms contain no Arg and no UVar nodes * - a preterm is a Pure term that may contain "%Arg3" constants. These * constants morally represent Arg nodes * * Preterms are only used during compilation. Beta-reduction, needed for * macro expansion for example, is only defined on Heap terms. We hence * separate the compilation of clauses into: * AST -> preterm -> term -> clause * * Heap and Stack terms are used during execution. The query if the * root of Heap terms, clauses are Stack terms and are eventually copied * to the Heap. * Invariant: a Heap term never points to a Stack term. * *) module Term = struct (* To be instantiated after the dummy term is defined *) let pp_oref = mk_spaghetti_printer () let id_term = UUID.make () (* This data type is open since runtime (traced or not) adds to it its own representation of constraints, projectable to the type suspended_goal below *) type 'unification_def stuck_goal_kind = .. let pp_stuck_goal_kind p1 fmt x = () let show_stuck_goal_kind p1 _ = "" let equal_stuck_goal_kind _ x y = x == y type 'unification_def stuck_goal_kind += | Unification of 'unification_def type ttype = | TConst of constant | TApp of constant * ttype * ttype list | TPred of bool * ((Mode.t * ttype) list) (* The bool is for functionality *) | TArr of ttype * ttype | TCData of CData.t | TLam of ttype (* this is for parametrized typeabbrevs *) [@@ deriving show, ord] type builtin_predicate = | Cut | And | Impl | ImplBang | RImpl | Pi | Sigma | Eq | Match | Findall | Delay | Host of constant [@@deriving ord, show] let builtin_predicates = [Cut;And;Impl;ImplBang;RImpl;Pi;Sigma;Eq;Match;Findall;Delay] let builtin_predicate_max = List.length builtin_predicates let func_of_builtin_predicate f = function | Cut -> F.cutf | And -> F.andf | Impl -> F.implf | ImplBang -> F.implbangf | RImpl -> F.rimplf | Pi -> F.pif | Sigma -> F.sigmaf | Eq -> F.eqf | Match -> F.pmf | Findall -> F.from_string "findall_solutions" | Delay -> F.from_string "declare_constraint" | Host c -> f c let show_builtin_predicate ?table f = function | Host c -> f ?table c | x -> F.show (func_of_builtin_predicate (fun _ -> assert false) x) let const_of_builtin_predicate = function | Cut -> -1 | And -> -2 | Impl -> -3 | RImpl -> -4 | Pi -> -5 | Sigma -> -6 | Eq -> -7 | Match -> -8 | Findall -> -9 | Delay -> -10 | ImplBang -> -11 | Host c -> c let is_builtin_predicate c = - builtin_predicate_max <= c && c <= -1 let builtin_predicate_of_const = function | -1 -> Cut | -2 -> And | -3 -> Impl | -4 -> RImpl | -5 -> Pi | -6 -> Sigma | -7 -> Eq | -8 -> Match | -9 -> Findall | -10 -> Delay | -11 -> ImplBang | _ -> assert false let () = assert(List.for_all (fun p -> is_builtin_predicate @@ const_of_builtin_predicate p) builtin_predicates) let () = assert(List.for_all (fun p -> p = builtin_predicate_of_const @@ const_of_builtin_predicate p) builtin_predicates) let map_builtin_predicate f = function | Host x -> Host (f x) | x -> x type term = (* Pure terms *) | Const of constant | Lam of term | App of constant * term * term list (* Optimizations *) | Cons of term * term | Nil | Discard (* FFI *) | Builtin of builtin_predicate * term list | CData of CData.t (* Heap terms: unif variables in the query *) | UVar of uvar_body * (*depth:*)int * (*argsno:*)int | AppUVar of uvar_body * (*depth:*)int * term list (* Clause terms: unif variables used in clauses *) | Arg of (*id:*)int * (*argsno:*)int | AppArg of (*id*)int * term list and uvar_body = { mutable contents : term [@printer (pp_spaghetti_any ~id:id_term pp_oref)]; mutable uid_private : int; (* unique name, the sign is flipped when blocks a constraint *) } [@@deriving show, ord] let cons2tcons ?(loc=Loc.initial"") = function Const t -> TConst t | _ -> anomaly ~loc "Unreachable branch" (* we use this projection to be sure we ignore the sign *) let uvar_id { uid_private } = abs uid_private [@@inline];; let uvar_is_a_blocker { uid_private } = uid_private < 0 [@@inline];; let uvar_isnt_a_blocker { uid_private } = uid_private > 0 [@@inline];; let uvar_set_blocker r = r.uid_private <- -(uvar_id r) [@@inline];; let uvar_unset_blocker r = r.uid_private <- (uvar_id r) [@@inline];; type clause = { depth : int; args : term list; hyps : term list; vars : int; mode : Mode.hos; (* CACHE to avoid allocation in get_clauses *) loc : Loc.t option; (* debug *) mutable timestamp : int list; (* for grafting *) } [@@deriving show, ord] type grafting_time = int list [@@deriving show, ord] let compare_constant = Util.compare_constant type times = (grafting_time * constant) StrMap.t [@@deriving show, ord] type stuck_goal = { mutable blockers : blockers; kind : unification_def stuck_goal_kind; } and blockers = uvar_body list and unification_def = { adepth : int; env : term array; bdepth : int; a : term; b : term; matching: bool; } and clause_src = { hdepth : int; hsrc : term } and prolog_prog = { src : clause_src list; (* hypothetical context in original form, for CHR *) index : index; } (* These two are the same, but the latter should not be mutated *) and clause_list = clause Bl.t and index = first_lvl_idx and first_lvl_idx = { idx : second_lvl_idx Ptmap.t; time : int; (* ticking clock, to timestamp clauses so to recover total order after retrieval if necessary. positive at compile time, negative at run time *) times : times; (* timestamp of named clauses, for grafting at compile time *) } and second_lvl_idx = | TwoLevelIndex of { mode : Mode.hos; argno : int; all_clauses : clause_list; (* when the query is flexible *) flex_arg_clauses : clause_list; (* when the query is rigid but arg_id has nothing *) arg_idx : clause_list Ptmap.t; (* when the query is rigid (includes in each binding flex_arg_clauses) *) } | BitHash of { mode : Mode.hos; args : int list; args_idx : clause_list Ptmap.t; (* clause, insertion time *) } | IndexWithDiscriminationTree of { mode : Mode.hos; arg_depths : int list; (* the list of args on which the trie is built *) args_idx : clause Discrimination_tree.t; } [@@deriving show] let stop = ref false let close_index ({idx; time; times} : index) : index = { idx =idx; time = 0; times = StrMap.empty } type constraints = stuck_goal list type hyps = clause_src list type suspended_goal = { context : hyps; goal : int * term; blockers : blockers; } let mkLam x = Lam x [@@inline] let mkApp c x xs = App(c,x,xs) [@@inline] let mkCons hd tl = Cons(hd,tl) [@@inline] let mkNil = Nil let mkDiscard = Discard let mkBuiltin c args = Builtin(c,args) [@@inline] let mkCData c = CData c [@@inline] let mkUVar r d ano = UVar(r,d,ano) [@@inline] let mkAppUVar r d args = AppUVar(r,d,args) [@@inline] let mkArg i ano = Arg(i,ano) [@@inline] let mkAppArg i args = AppArg(i,args) [@@inline] module C = struct let { CData.cin = in_int; isc = is_int; cout = out_int } as int = Ast.cint let is_int = is_int let to_int = out_int let of_int x = CData (in_int x) let { CData.cin = in_float; isc = is_float; cout = out_float } as float = Ast.cfloat let is_float = is_float let to_float = out_float let of_float x = CData (in_float x) let { CData.cin = in_string; isc = is_string; cout = out_string } as string = Ast.cstring let is_string = is_string let to_string x = out_string x let of_string x = CData (in_string x) let loc = Ast.cloc let is_loc = loc.CData.isc let to_loc = loc.CData.cout let of_loc x = CData (loc.CData.cin x) end let destConst = function Const x -> x | _ -> assert false (* Our ref data type: creation and dereference. Assignment is defined After the constraint store, since assigning may wake up some constraints *) let oref = let uid = ref 0 in fun x -> incr uid; assert(!uid > 0); { contents = x; uid_private = !uid } let (!!) { contents = x } = x (* Arg/AppArg point to environments, here the empty one *) type env = term array let empty_env = [||] end include Term (* Object oriented State.t: borns at compilation time and survives as run time *) module State : sig type descriptor val new_descriptor : unit -> descriptor val merge_descriptors : descriptor -> descriptor -> descriptor (* filled in with components *) type 'a component val declare : descriptor:descriptor -> name:string -> pp:(Format.formatter -> 'a -> unit) -> init:(unit -> 'a) -> clause_compilation_is_over:('a -> 'a) -> ?goal_compilation_begins:('a -> 'a) -> compilation_is_over:('a -> 'a option) -> execution_is_over:('a -> 'a option) -> unit -> 'a component (* an instance of the State.t type *) type t (* Lifetime: - init (called once) - end_clause_compilation (called after every clause) - end_compilation (just once before running) - end_execution (just once after running) *) val init : descriptor -> t val end_clause_compilation : t -> t val begin_goal_compilation : t -> t val end_compilation : t -> t val end_execution : t -> t val get : 'a component -> t -> 'a val set : 'a component -> t -> 'a -> t val drop : 'a component -> t -> t val update : 'a component -> t -> ('a -> 'a) -> t val update_return : 'a component -> t -> ('a -> 'a * 'b) -> t * 'b val pp : Format.formatter -> t -> unit val dummy : t end = struct type stage = | Dummy | Compile_prog | Compile_goal | Run | Halt type 'a component = string type extension = { init : unit -> Obj.t; end_clause : Obj.t -> Obj.t; begin_goal : Obj.t -> Obj.t; end_comp : Obj.t -> Obj.t option; end_exec : Obj.t -> Obj.t option; pp : Format.formatter -> Obj.t -> unit; } type descriptor = extension StrMap.t ref type t = { data : Obj.t StrMap.t; stage : stage; extensions : descriptor } let dummy : t = { data = StrMap.empty; stage = Dummy; extensions = ref StrMap.empty } let new_descriptor () : descriptor = ref StrMap.empty let merge_descriptors m1 m2 = ref (StrMap.merge (fun n e1 e2 -> match e1, e2 with | None, None -> None | Some x, None -> Some x | None, Some x -> Some x | Some _, Some _ -> error ("The state cannot contain two components named "^n) ) !m1 !m2) let get name { data = t } = try Obj.obj (StrMap.find name t) with Not_found -> anomaly ("State.get: component " ^ name ^ " not found") let set name ({ data } as x) v = { x with data = StrMap.add name (Obj.repr v) data } let drop name ({ data } as x) = { x with data = StrMap.remove name data } let update name ({ data } as x) f = { x with data = StrMap.add name (Obj.repr (f (Obj.obj (StrMap.find name data)))) data } let update_return name t f = let x = get name t in let x, res = f x in let t = set name t x in t, res let declare ~descriptor:extensions ~name ~pp ~init ~clause_compilation_is_over ?(goal_compilation_begins = fun x -> x) ~compilation_is_over ~execution_is_over () = if StrMap.mem name !extensions then anomaly ("Extension "^name^" already declared"); extensions := StrMap.add name { init = (fun x -> Obj.repr (init x)); pp = (fun fmt x -> pp fmt (Obj.obj x)); end_clause = (fun x -> Obj.repr (clause_compilation_is_over (Obj.obj x))); begin_goal = (fun x -> Obj.repr (goal_compilation_begins (Obj.obj x))); end_comp = (fun x -> option_map Obj.repr (compilation_is_over (Obj.obj x))); end_exec = (fun x -> option_map Obj.repr (execution_is_over (Obj.obj x))); } !extensions; name let init extensions : t = let data = StrMap.fold (fun name { init } acc -> let o = init () in StrMap.add name o acc) !extensions StrMap.empty in { data; stage = Compile_prog; extensions; } let end_clause_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_prog); { data = StrMap.fold (fun name obj acc -> let o = (StrMap.find name !extensions).end_clause obj in StrMap.add name o acc) m StrMap.empty; stage = s; extensions } let begin_goal_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_prog); { data = StrMap.fold (fun name obj acc -> let o = (StrMap.find name !extensions).begin_goal obj in StrMap.add name o acc) m StrMap.empty; stage = Compile_goal; extensions } let end_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_goal); { data = StrMap.fold (fun name obj acc -> match (StrMap.find name !extensions).end_comp obj with | None -> acc | Some o -> StrMap.add name o acc) m StrMap.empty; stage = Run; extensions } let end_execution { data = m; stage = s; extensions } : t = assert(s = Run); { data = StrMap.fold (fun name obj acc -> match (StrMap.find name !extensions).end_exec obj with | None -> acc | Some o -> StrMap.add name o acc) m StrMap.empty; stage = Halt; extensions } let pp fmt { data = t; stage = s; extensions } : unit = StrMap.iter (fun name { pp } -> try pp fmt (StrMap.find name t) with Not_found -> ()) !extensions end let elpi_state_descriptor = State.new_descriptor () type core_symbol = As | Uv | ECons | ENil [@@deriving enum, ord, show] let func_of_core_symbol = function | As -> F.asf | Uv -> F.from_string "uvar" | ECons -> F.consf | ENil -> F.nilf let is_core_symbol f = let rec aux i = if i < max_core_symbol then F.equal f (func_of_core_symbol (Option.get (core_symbol_of_enum i))) || aux (i+1) else false in aux 0 (* Globally unique identifier for symbols with a quotient *) module Symbol : sig type symbol [@@deriving show] module UF : Union_find.S with type key = symbol type 'a merge = (symbol -> 'a -> 'a -> 'a) module RawMap : Map.S with type key = symbol module QMap : sig type 'a t [@@deriving show] val empty : 'a t val add : symbol -> 'a -> 'a t -> 'a t val find : symbol -> 'a t -> 'a val find_opt : symbol -> 'a t -> 'a option val union : 'a merge -> 'a t -> 'a t -> 'a t val give_uf : 'a t -> UF.t val unify : 'a merge -> symbol -> symbol -> 'a t -> 'a t val mapi : (symbol -> symbol) -> ('a -> 'a) -> 'a t -> 'a t val map : ('a -> 'b) -> 'a t -> 'b t val fold : (symbol -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val iter : (symbol -> 'a -> unit) -> 'a t -> unit val mem : symbol -> 'a t -> bool val bindings : 'a t -> (symbol * 'a) list val get_uf : 'a t -> UF.t end type t = symbol [@@deriving show] type provenance = Elpi_parser.Ast.Structured.provenance [@@deriving show,ord] val equal : uf:UF.t -> t -> t -> bool val compare : uf:UF.t -> t -> t -> int val make : provenance -> F.t -> t val make_builtin : ?variant:int -> F.t -> t val make_variant_builtin : F.t -> t * int (* variant *) val get_loc : t -> Loc.t val get_provenance : t -> provenance val get_str : t -> string val get_func : t -> F.t val is_builtin : t -> F.t -> bool val undup : uf:UF.t -> t list -> t list val pretty : t -> string (* val map_func : (F.t -> F.t) -> t -> t *) end = struct type provenance = Elpi_parser.Ast.Structured.provenance [@@deriving show,ord] type symbol = provenance * F.t [@@deriving show, ord] let compare_symbol (p1,f1) (p2,f2) = let x = F.compare f1 f2 in if x = 0 then compare_provenance p1 p2 else x type 'a merge = (symbol -> 'a -> 'a -> 'a) module O = struct type t = symbol [@@deriving show,ord] end module RawMap = Map.Make(O) module UF = Elpi_util.Union_find.Make(O) type t = symbol [@@deriving show] open Elpi_parser.Ast.Structured let pretty (prov,f) = F.show f ^ match prov with | Core -> " (core symbol)" | File _ -> "" | Builtin { variant } -> if variant <> 0 then " (variant "^string_of_int variant ^")" else "" module QMap = struct type 'a t = UF.t * 'a RawMap.t [@@deriving show] let empty = UF.empty, RawMap.empty let get_uf (u,_) = u let unify f s1 s2 (uf,m) = let x,uf = match fst s1, fst s2 with | Builtin _, Builtin _ -> anomaly "Builtins cannot be declared twice" | Core, Core -> anomaly "Core symbols cannot be declared twice" (* we use the (possibly) pre-allocated builtin as the canonical *) | File _, Builtin _ -> UF.union uf s1 ~canon:s2 | File _, Core -> UF.union uf s1 ~canon:s2 | _ -> UF.union uf ~canon:s1 s2 in match x with | None -> uf, m | Some x -> let canonic_x = UF.find uf x in match RawMap.find_opt canonic_x m, RawMap.find_opt x m with | None, None -> uf, m | Some canonic_value, None -> uf, m | None, Some value -> uf, RawMap.add canonic_x value m |> RawMap.remove x | Some canonic_value, Some value -> uf, RawMap.add canonic_x (f canonic_x value canonic_value) m let add s a (uf,m) = let s' = UF.find uf s in uf, RawMap.add s' a m let find s (uf,m) = let s' = UF.find uf s in try RawMap.find s' m with Not_found -> anomaly ("Missing entry from QMap: " ^ show_symbol s) let find_opt s (uf,m) = RawMap.find_opt (UF.find uf s) m let union f (uf1,m1) (uf2,m2) = let uf = UF.merge uf1 uf2 in uf,RawMap.union (fun s a b -> Some (f (UF.find uf s) a b)) m1 m2 let map mv (uf, m) = uf, RawMap.map mv m let mapi mk mv (uf,m) = let uf = UF.mapi mk uf in let m = RawMap.fold (fun k v acc -> RawMap.add (mk k) (mv v) acc) RawMap.empty m in uf,m let give_uf (a,_) = a let fold f (_,m) a = RawMap.fold f m a let mem s (uf,m) = let s' = UF.find uf s in RawMap.mem s' m let iter f (_,m) = RawMap.iter f m let bindings (_,m) = RawMap.bindings m end let equal ~uf x y = compare (UF.find uf x) (UF.find uf y) = 0 let compare ~uf x y = compare (UF.find uf x) (UF.find uf y) let rec undup ~uf = function | [] -> [] | x :: xs -> let x = UF.find uf x in if List.exists (fun y -> compare ~uf x y = 0) xs then undup ~uf xs else x :: undup ~uf xs let is_builtin (p,f) s = F.equal f s && match p with Builtin { variant } -> variant = 0 | _ -> false let get_provenance (l,_) = l let get_loc (l,f) = match l with | File l -> l | Core -> Loc.initial ("("^__FILE__^":"^F.show f^")") | Builtin { variant } -> Loc.initial ("(ocaml:"^F.show f^":"^string_of_int variant^")") let get_str (_,f) = F.show f let get_func (_,f) = f let make prov name = prov, name let make_builtin ?(variant=0) name = Builtin { variant }, name let make_variant_builtin = let state = ref F.Map.empty in let incr name = let n = try F.Map.find name !state with Not_found -> 0 in let n = n + 1 in state := F.Map.add name n !state; n in fun name -> let variant = incr name in (Builtin { variant }, name), variant end (* This module contains the symbols reserved by Elpi and the ones declared by the API client via declare_global_symbol statically (eg the API must be called in a OCaml toplevel value). These symbols are part of any Elpi program. The runtime only uses the symbols listed in the module signature, the declared ones are read by the compiler and propagated to the runtime. *) module Global_symbols : sig (* Table used at link time *) type t = { (* Ast (functor name) -> negative int n (constant) * hashconsed (Const n) *) mutable s2ct : (constant * term) Symbol.RawMap.t; mutable c2s : Symbol.symbol Constants.Map.t; (* negative *) mutable last_global : int; (* Once the system is initialized this shall change no more *) mutable locked: bool; } val table : t (* Static initialization, eg link time *) val declare_global_symbol : ?variant:int -> string -> constant (* Used by auto-generated code, eg ADT *) val declare_overloaded_global_symbol : string -> constant * int val lock : unit -> unit open Symbol (* builtin predicates *) val cut : symbol val and_ : symbol val impl : symbol val rImpl : symbol val pi : symbol val sigma : symbol val eq : symbol val match_ : symbol val findall : symbol val delay : symbol (* core symbols *) val as_ : symbol val uvar : symbol val nil : symbol val cons : symbol (* internal *) val uvarc : constant (* needed by runtime/unif *) val asc : constant (* needed by runtime/unif *) val orc : constant (* needed by coq-elpi *) val nilc : constant (* needed by indexing *) val consc : constant (* needed by indexing *) end = struct type t = { mutable s2ct : (constant * term) Symbol.RawMap.t; mutable c2s : Symbol.t Constants.Map.t; mutable last_global : int; mutable locked : bool; } [@@deriving show] let table = { last_global = - builtin_predicate_max; s2ct = Symbol.RawMap.empty; c2s = Constants.Map.empty; locked = false; } let () = builtin_predicates |> List.iter (fun p -> let c = const_of_builtin_predicate p in let s = Symbol.make_builtin (func_of_builtin_predicate (fun _ -> assert false) p) in let t = Const c in table.c2s <- Constants.Map.add c s table.c2s; table.s2ct <- Symbol.RawMap.add s (c,t) table.s2ct ) let declare_global_symbol symb = try fst @@ Symbol.RawMap.find symb table.s2ct with Not_found -> if table.locked then Util.anomaly "declare_global_symbol called after initialization"; table.last_global <- table.last_global - 1; let n = table.last_global in let t = Const n in table.s2ct <- Symbol.RawMap.add symb (n,t) table.s2ct; table.c2s <- Constants.Map.add n symb table.c2s; n let declare_core_symbol x = let symb = Symbol.(make Core (func_of_core_symbol x)) in declare_global_symbol symb, symb let uvarc, uvar = declare_core_symbol Uv let asc, as_ = declare_core_symbol As let nilc, nil = declare_core_symbol ENil let consc, cons = declare_core_symbol ECons let declare_overloaded_global_symbol str = let symb, variant = Symbol.make_variant_builtin (Ast.Func.from_string str) in declare_global_symbol symb, variant let declare_global_symbol ?variant str = let symb = Symbol.make_builtin ?variant (Ast.Func.from_string str) in declare_global_symbol symb let lock () = table.locked <- true let orc = declare_global_symbol F.(show orf) let publish_builtin b = Constants.Map.find (const_of_builtin_predicate b) table.c2s let cut = publish_builtin Cut let and_ = publish_builtin And let impl = publish_builtin Impl let rImpl = publish_builtin RImpl let pi = publish_builtin Pi let sigma = publish_builtin Sigma let eq = publish_builtin Eq let match_ = publish_builtin Match let findall = publish_builtin Findall let delay = publish_builtin Delay end (* This term is hashconsed here *) let dummy = App (-1,Const (-1),[]) (* This is the one uvar used for _ in CHR rules blockers *) let dummy_uvar_body = { contents = dummy; uid_private = 0 } module CHR : sig (* a set of rules *) type t (* a set of predicates contributing to represent a constraint *) type clique type sequent = { eigen : term; context : term; conclusion : term } and rule = { to_match : sequent list; to_remove : sequent list; patsno : int; guard : term option; new_goal : sequent option; nargs : int [@default 0]; pattern : constant list; rule_name : string; rule_loc : Loc.t; } val pp_sequent : Fmt.formatter -> sequent -> unit val show_sequent : sequent -> string val pp_rule : Fmt.formatter -> rule -> unit val show_rule : rule -> string val empty : t val new_clique : (constant -> Ast.Func.t) -> constant list -> constant list -> t -> t * clique val clique_of : constant -> t -> (Constants.Set.t * Constants.Set.t) option val add_rule : clique -> rule -> t -> t val in_clique : clique -> constant -> bool val rules_for : constant -> t -> rule list val pp : Fmt.formatter -> t -> unit val pp_clique : Fmt.formatter -> clique -> unit val show : t -> string end = struct (* {{{ *) type clique = {ctx_filter: Constants.Set.t; clique: Constants.Set.t} [@@deriving show] type sequent = { eigen : term; context : term; conclusion : term } and rule = { to_match : sequent list; to_remove : sequent list; patsno : int; guard : term option; new_goal : sequent option; nargs : int [@default 0]; pattern : constant list; rule_name : string; rule_loc : Loc.t; } [@@ deriving show] type t = { cliques : clique Constants.Map.t; rules : rule list Constants.Map.t } [@@ deriving show] let empty = { cliques = Constants.Map.empty; rules = Constants.Map.empty } let in_clique {clique; ctx_filter} c = Constants.Set.mem c clique let new_clique show_constant hyps cl ({ cliques } as chr) = let open Constants in if cl = [] then error "empty clique"; let c = Set.of_list cl in let ctx_filter = Set.of_list hyps in (* Check new inserted clique is valid *) let build_clique_str c = Printf.sprintf "{ %s }" @@ String.concat "," (List.map (fun x -> Ast.Func.show @@ show_constant x) (Set.elements c)) in let old_ctx_filter = ref None in let exception Stop in (try Map.iter (fun _ ({clique=c';ctx_filter=ctx_filter'}) -> if Set.equal c c' then (old_ctx_filter := Some ctx_filter'; raise Stop) else if not (Set.disjoint c c') then (* different, not disjoint clique *) error ("overlapping constraint cliques:" ^ build_clique_str c ^ "and" ^ build_clique_str c') ) cliques; with Stop -> ()); let clique = {ctx_filter = Set.union ctx_filter (Option.value ~default:Set.empty !old_ctx_filter); clique=c} in let (cliques: clique Constants.Map.t) = List.fold_left (fun cliques x -> Constants.Map.add x clique cliques) cliques cl in { chr with cliques }, clique let clique_of c { cliques } = try Some (let res = Constants.Map.find c cliques in res.clique, res.ctx_filter) with Not_found -> None let add_rule ({clique}: clique) r ({ rules } as chr) = let rules = Constants.Set.fold (fun c rules -> try let rs = Constants.Map.find c rules in Constants.Map.add c (rs @ [r]) rules with Not_found -> Constants.Map.add c [r] rules) clique rules in { chr with rules } let rules_for c { rules } = try Constants.Map.find c rules with Not_found -> [] end (* }}} *) (* An elpi program, as parsed. But for idx and query_depth that are threaded around in the main loop, chr and modes are globally stored in Constraints and Clausify. *) type clause_w_info = { clloc : CData.t; clargsname : string list; clbody : clause; } [@@ deriving show] exception No_clause exception No_more_steps exception Flex_head module Conversion = struct type extra_goal = .. type extra_goal += | Unify of term * term | RawGoal of term type extra_goals = extra_goal list type extra_goals_postprocessing = extra_goals -> State.t -> State.t * extra_goals let extra_goals_postprocessing : extra_goals_postprocessing State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:extra_goals_postprocessing" ~pp:(fun _ _ -> ()) ~clause_compilation_is_over:(fun b -> b) ~compilation_is_over:(fun x -> Some x) ~execution_is_over:(fun x -> Some x) ~init:(fun () -> (); fun x s -> s, x) () type ty_ast = TyName of string | TyApp of string * ty_ast * ty_ast list [@@deriving show] type 'a embedding = depth:int -> State.t -> 'a -> State.t * term * extra_goals type 'a readback = depth:int -> State.t -> term -> State.t * 'a * extra_goals type 'a t = { ty : ty_ast; pp_doc : Format.formatter -> unit -> unit [@opaque]; pp : Format.formatter -> 'a -> unit [@opaque]; embed : 'a embedding [@opaque]; (* 'a -> term *) readback : 'a readback [@opaque]; (* term -> 'a *) } [@@deriving show] exception TypeErr of ty_ast * int * term (* a type error at data conversion time *) type prec_level = | Arrow | AppArg let need_par x y = match x,y with | Some AppArg, Arrow -> true | Some AppArg, AppArg -> true | Some Arrow, Arrow -> true | Some Arrow, AppArg -> false | None, _ -> false let with_par p1 p2 s = if need_par p1 p2 then "("^s^")" else s let rec show_ty_ast ?prec = function | TyName s -> s | TyApp ("->",src,[tgt]) -> let src = show_ty_ast ~prec:Arrow src in let tgt = show_ty_ast tgt in with_par prec Arrow (src ^" -> "^ tgt) | TyApp (s,x,xs) -> let t = String.concat " " (s :: List.map (show_ty_ast ~prec:AppArg) (x::xs)) in with_par prec AppArg t let term_of_extra_goal = function | Unify(a,b) -> Builtin(Eq,[a;b]) | RawGoal x -> x | x -> Util.anomaly (Printf.sprintf "Unprocessed extra_goal: %s.\nOnly %s and %s can be left unprocessed,\nplease call API.RawData.set_extra_goals_postprocessing.\n" (Obj.Extension_constructor.(name (of_val x))) (Obj.Extension_constructor.(name (of_val (Unify(dummy,dummy))))) (Obj.Extension_constructor.(name (of_val (RawGoal dummy))))) end module ContextualConversion = struct type ty_ast = Conversion.ty_ast = TyName of string | TyApp of string * ty_ast * ty_ast list [@@deriving show] type ('a,'hyps,'constraints) embedding = depth:int -> 'hyps -> 'constraints -> State.t -> 'a -> State.t * term * Conversion.extra_goals type ('a,'hyps,'constraints) readback = depth:int -> 'hyps -> 'constraints -> State.t -> term -> State.t * 'a * Conversion.extra_goals type ('a,'hyps,'constraints) t = { ty : ty_ast; pp_doc : Format.formatter -> unit -> unit [@opaque]; pp : Format.formatter -> 'a -> unit [@opaque]; embed : ('a,'hyps,'constraints) embedding [@opaque]; (* 'a -> term *) readback : ('a,'hyps,'constraints) readback [@opaque]; (* term -> 'a *) } [@@deriving show] type ('hyps,'constraints) ctx_readback = depth:int -> hyps -> constraints -> State.t -> State.t * 'hyps * 'constraints * Conversion.extra_goals let unit_ctx : (unit,unit) ctx_readback = fun ~depth:_ _ _ s -> s, (), (), [] let raw_ctx : (hyps,constraints) ctx_readback = fun ~depth:_ h c s -> s, h, c, [] let (!<) { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth () () s t); readback = (fun ~depth s t -> readback ~depth () () s t); } let (!>) { Conversion.ty; pp_doc; pp; embed; readback; } = { ty; pp; pp_doc; embed = (fun ~depth _ _ s t -> embed ~depth s t); readback = (fun ~depth _ _ s t -> readback ~depth s t); } let (!<<) f x = (!<) (f ((!>) x)) let (!>>) (f : 'a Conversion.t -> 'b Conversion.t) cc = let mk h c { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth h c s t); readback = (fun ~depth s t -> readback ~depth h c s t); } in let mk_pp { ty; pp_doc; pp; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> assert false); readback = (fun ~depth s t -> assert false); } in let { Conversion.ty; pp; pp_doc } = f (mk_pp cc) in { ty; pp; pp_doc; embed = (fun ~depth h c s t -> (f (mk h c cc)).embed ~depth s t); readback = (fun ~depth h c s t -> (f (mk h c cc)).readback ~depth s t); } let (!>>>) (f : 'a Conversion.t -> 'b Conversion.t -> 'c Conversion.t) cc dd = let mk h c { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth h c s t); readback = (fun ~depth s t -> readback ~depth h c s t); } in let mk_pp { ty; pp_doc; pp; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> assert false); readback = (fun ~depth s t -> assert false); } in let { Conversion.ty; pp; pp_doc } = f (mk_pp cc) (mk_pp dd) in { ty; pp; pp_doc; embed = (fun ~depth h c s t -> (f (mk h c cc) (mk h c dd)).embed ~depth s t); readback = (fun ~depth h c s t -> (f (mk h c cc) (mk h c dd)).readback ~depth s t); } end let while_compiling : bool State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:compiling" ~pp:(fun fmt _ -> ()) ~clause_compilation_is_over:(fun b -> b) ~compilation_is_over:(fun _ -> Some false) ~execution_is_over:(fun _ -> Some false) (* we keep it, since API.FlexibleData.Elpi.make needs it *) ~init:(fun () -> false) () module HoasHooks = struct type descriptor = { extra_goals_postprocessing: Conversion.extra_goals_postprocessing option; } let new_descriptor () = ref { extra_goals_postprocessing = None; } let set_extra_goals_postprocessing ~descriptor f = match !descriptor with | { extra_goals_postprocessing = None } -> descriptor := { extra_goals_postprocessing = Some f } | { extra_goals_postprocessing = Some _ } -> error "set_extra_goals_postprocessing called twice" end module CalcHooks = struct type run = term list -> term type eval = { code : run; ty_decl : string; } type descriptor = (constant * eval) list let new_descriptor () : descriptor ref = ref [] let eval : run Constants.Map.t State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:eval" ~clause_compilation_is_over:(fun x -> x) ~compilation_is_over:(fun x -> Some x) ~execution_is_over:(fun _ -> None) ~init:(fun () -> Constants.Map.empty) ~pp:(fun fmt t -> Constants.Map.pp (fun _ _ -> ()) fmt t) () end module BuiltInPredicate = struct type name = string type doc = string type 'a oarg = Keep | Discard type 'a ioarg = Data of 'a | NoData type ('function_type, 'inernal_outtype_in, 'internal_hyps, 'internal_constraints) ffi = | In : 't Conversion.t * doc * ('i, 'o,'h,'c) ffi -> ('t -> 'i,'o,'h,'c) ffi | Out : 't Conversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t oarg -> 'i,'o,'h,'c) ffi | InOut : 't ioarg Conversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t ioarg -> 'i,'o,'h,'c) ffi | CIn : ('t,'h,'c) ContextualConversion.t * doc * ('i, 'o,'h,'c) ffi -> ('t -> 'i,'o,'h,'c) ffi | COut : ('t,'h,'c) ContextualConversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t oarg -> 'i,'o,'h,'c) ffi | CInOut : ('t ioarg,'h,'c) ContextualConversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t ioarg -> 'i,'o,'h,'c) ffi | Easy : doc -> (depth:int -> 'o, 'o,unit,unit) ffi | Read : ('h,'c) ContextualConversion.ctx_readback * doc -> (depth:int -> 'h -> 'c -> State.t -> 'o, 'o,'h,'c) ffi | Full : ('h,'c) ContextualConversion.ctx_readback * doc -> (depth:int -> 'h -> 'c -> State.t -> State.t * 'o * Conversion.extra_goals, 'o,'h,'c) ffi | FullHO : ('h,'c) ContextualConversion.ctx_readback * doc -> (once:(depth:int -> term -> State.t -> State.t) -> depth:int -> 'h -> 'c -> State.t -> State.t * 'o * Conversion.extra_goals, 'o,'h,'c) ffi | VariadicIn : ('h,'c) ContextualConversion.ctx_readback * ('t,'h,'c) ContextualConversion.t * doc -> ('t list -> depth:int -> 'h -> 'c -> State.t -> State.t * 'o, 'o,'h,'c) ffi | VariadicOut : ('h,'c) ContextualConversion.ctx_readback * ('t,'h,'c) ContextualConversion.t * doc -> ('t oarg list -> depth:int -> 'h -> 'c -> State.t -> State.t * ('o * 't option list option), 'o,'h,'c) ffi | VariadicInOut : ('h,'c) ContextualConversion.ctx_readback * ('t ioarg,'h,'c) ContextualConversion.t * doc -> ('t ioarg list -> depth:int -> 'h -> 'c -> State.t -> State.t * ('o * 't option list option), 'o,'h,'c) ffi type t = Pred : name * ('a,unit,'h,'c) ffi * 'a -> t let pp fmt (Pred(name,_,_)) = Format.fprintf fmt "%s" name let compare (Pred(name1,_,_)) (Pred(name2,_,_)) = String.compare name1 name2 type doc_spec = DocAbove | DocNext let pp_comment fmt doc = Fmt.fprintf fmt "@?"; let orig_out = Fmt.pp_get_formatter_out_functions fmt () in Fmt.pp_set_formatter_out_functions fmt { orig_out with Fmt.out_newline = fun () -> orig_out.Fmt.out_string "\n% " 0 3 }; Fmt.fprintf fmt "@[<hov>"; Fmt.pp_print_text fmt doc; Fmt.fprintf fmt "@]@?"; Fmt.pp_set_formatter_out_functions fmt orig_out ;; let pp_ty sep fmt (_,s,_) = Fmt.fprintf fmt " %s%s" s sep let pp_ty_args = pplist (pp_ty "") " ->" ~pplastelem:(pp_ty "") module ADT = struct type ('match_stateful_t,'match_t, 't) match_t = | M of ( (* continuation to call passing subterms *) ok:'match_t -> (* continuation to call to signal pattern matching failure *) ko:(unit -> term) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> term) | MS of ( (* continuation to call passing subterms *) ok:'match_stateful_t -> (* continuation to call to signal pattern matching failure *) ko:(State.t -> State.t * term * Conversion.extra_goals) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> State.t -> State.t * term * Conversion.extra_goals) type ('build_stateful_t,'build_t) build_t = | B of 'build_t | BS of 'build_stateful_t type ('stateful_builder,'builder, 'stateful_matcher, 'matcher, 'self, 'hyps,'constraints) constructor_arguments = (* No arguments *) | N : (State.t -> State.t * 'self, 'self, State.t -> State.t * term * Conversion.extra_goals, term, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'a *) | A : 'a Conversion.t * ('bs,'b, 'ms,'m, 'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms, 'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'a in context 'hyps,'constraints *) | CA : ('a,'hyps,'constraints) ContextualConversion.t * ('bs,'b, 'ms,'m, 'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms, 'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'self *) | S : ('bs,'b, 'ms, 'm, 'self, 'hyps,'constraints) constructor_arguments -> ('self -> 'bs, 'self -> 'b, 'self -> 'ms, 'self -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type `T 'self` for a constainer `T`, like a `list 'self`. `S args` above is a shortcut for `C(fun x -> x, args)` *) | C : (('self,'hyps,'constraints) ContextualConversion.t -> ('a,'hyps,'constraints) ContextualConversion.t) * ('bs,'b,'ms,'m,'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms,'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments type ('t,'h,'c) constructor = K : name * doc * ('build_stateful_t,'build_t,'match_stateful_t,'match_t,'t,'h,'c) constructor_arguments * (* args ty *) ('build_stateful_t,'build_t) build_t * ('match_stateful_t,'match_t,'t) match_t -> ('t,'h,'c) constructor type ('t,'h,'c) base_declaration = { ty : Conversion.ty_ast; doc : doc; pp : Format.formatter -> 't -> unit; constructors : ('t,'h,'c) constructor list; } type ('t,'h,'c) declaration = | Decl : ('t,'h,'c) base_declaration -> ('t,'h,'c) declaration | Param : ('t Conversion.t -> ('t1,'h,'c) declaration) -> ('t1,'h,'c) declaration | ParamC : (('t,'h,'c) ContextualConversion.t -> ('t1,'h,'c) declaration) -> ('t1,'h,'c) declaration type allocation = (constant * int) StrMap.t type ('b,'m,'t,'h,'c) compiled_constructor_arguments = | XN : (State.t -> State.t * 't,State.t -> State.t * term * Conversion.extra_goals, 't,'h,'c) compiled_constructor_arguments | XA : ('a,'h,'c) ContextualConversion.t * ('b,'m,'t,'h,'c) compiled_constructor_arguments -> ('a -> 'b, 'a -> 'm, 't,'h,'c) compiled_constructor_arguments type ('match_t, 't) compiled_match_t = (* continuation to call passing subterms *) ok:'match_t -> (* continuation to call to signal pattern matching failure *) ko:(State.t -> State.t * term * Conversion.extra_goals) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> State.t -> State.t * term * Conversion.extra_goals type ('t,'h,'c) compiled_constructor = XK : ('build_t,'matched_t,'t,'h,'c) compiled_constructor_arguments * 'build_t * ('matched_t,'t) compiled_match_t -> ('t,'h,'c) compiled_constructor type ('t,'h,'c) compiled_adt = (('t,'h,'c) compiled_constructor) Constants.Map.t let buildk ~mkConst kname = function | [] -> mkConst kname | x :: xs -> mkApp kname x xs let rec readback_args : type a m t h c. look:(depth:int -> term -> term) -> Conversion.ty_ast -> depth:int -> h -> c -> State.t -> Conversion.extra_goals list -> term -> (a,m,t,h,c) compiled_constructor_arguments -> a -> term list -> State.t * t * Conversion.extra_goals = fun ~look ty ~depth hyps constraints state extra origin args convert l -> match args, l with | XN, [] -> let state, x = convert state in state, x, List.(concat (rev extra)) | XN, _ -> raise (Conversion.TypeErr(ty,depth,origin)) | XA _, [] -> assert false | XA(d,rest), x::xs -> let state, x, gls = d.readback ~depth hyps constraints state x in readback_args ~look ty ~depth hyps constraints state (gls :: extra) origin rest (convert x) xs and readback : type t h c. mkinterval:(int -> int -> int -> term list) -> look:(depth:int -> term -> term) -> alloc:(?name:string -> State.t -> State.t * 'uk) -> mkUnifVar:('uk -> args:term list -> State.t -> term) -> Conversion.ty_ast -> (t,h,c) compiled_adt -> depth:int -> h -> c -> State.t -> term -> State.t * t * Conversion.extra_goals = fun ~mkinterval ~look ~alloc ~mkUnifVar ty adt ~depth hyps constraints state t -> try match look ~depth t with | Const c -> let XK(args,read,_) = Constants.Map.find c adt in readback_args ~look ty ~depth hyps constraints state [] t args read [] | App(c,x,xs) -> let XK(args,read,_) = Constants.Map.find c adt in readback_args ~look ty ~depth hyps constraints state [] t args read (x::xs) | (UVar _ | AppUVar _) -> let XK(args,read,_) = Constants.Map.find Global_symbols.uvarc adt in readback_args ~look ty ~depth hyps constraints state [] t args read [t] | Discard -> let XK(args,read,_) = Constants.Map.find Global_symbols.uvarc adt in let state, k = alloc state in readback_args ~look ty ~depth hyps constraints state [] t args read [mkUnifVar k ~args:(mkinterval 0 depth 0) state] | _ -> raise (Conversion.TypeErr(ty,depth,t)) with Not_found -> raise (Conversion.TypeErr(ty,depth,t)) and adt_embed_args : type m a t h c. mkConst:(int -> term) -> Conversion.ty_ast -> (t,h,c) compiled_adt -> constant -> depth:int -> h -> c -> (a,m,t,h,c) compiled_constructor_arguments -> (State.t -> State.t * term * Conversion.extra_goals) list -> m = fun ~mkConst ty adt kname ~depth hyps constraints args acc -> match args with | XN -> fun state -> let state, ts, gls = List.fold_left (fun (state,acc,gls) f -> let state, t, goals = f state in state, t :: acc, goals :: gls) (state,[],[]) acc in state, buildk ~mkConst kname ts, List.(flatten gls) | XA(d,args) -> fun x -> adt_embed_args ~mkConst ty adt kname ~depth hyps constraints args ((fun state -> d.embed ~depth hyps constraints state x) :: acc) and embed : type a h c. mkConst:(int -> term) -> Conversion.ty_ast -> (Format.formatter -> a -> unit) -> (a,h,c) compiled_adt -> depth:int -> h -> c -> State.t -> a -> State.t * term * Conversion.extra_goals = fun ~mkConst ty pp adt -> let bindings = Constants.Map.bindings adt in fun ~depth hyps constraints state t -> let rec aux l state = match l with | [] -> type_error ("Pattern matching failure embedding: " ^ Conversion.show_ty_ast ty ^ Format.asprintf ": %a" pp t) | (kname, XK(args,_,matcher)) :: rest -> let ok = adt_embed_args ~mkConst ty adt kname ~depth hyps constraints args [] in matcher ~ok ~ko:(aux rest) t state in aux bindings state let rec compile_arguments : type b bs m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (t,h,c) ContextualConversion.t -> (bs,ms,t,h,c) compiled_constructor_arguments = fun arg self -> match arg with | N -> XN | A(d,rest) -> XA(ContextualConversion.(!>) d,compile_arguments rest self) | CA(d,rest) -> XA(d,compile_arguments rest self) | S rest -> XA(self,compile_arguments rest self) | C(fs, rest) -> XA(fs self, compile_arguments rest self) let rec compile_builder_aux : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> b -> bs = fun args f -> match args with | N -> fun state -> state, f | A(_,rest) -> fun a -> compile_builder_aux rest (f a) | CA(_,rest) -> fun a -> compile_builder_aux rest (f a) | S rest -> fun a -> compile_builder_aux rest (f a) | C(_,rest) -> fun a -> compile_builder_aux rest (f a) let compile_builder : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (bs,b) build_t -> bs = fun a -> function | B f -> compile_builder_aux a f | BS f -> f let rec compile_matcher_ok : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> ms -> Conversion.extra_goals ref -> State.t ref -> m = fun args f gls state -> match args with | N -> let state', t, gls' = f !state in state := state'; gls := gls'; t | A(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state | CA(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state | S rest -> fun a -> compile_matcher_ok rest (f a) gls state | C(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state let compile_matcher_ko f gls state () = let state', t, gls' = f !state in state := state'; gls := gls'; t let compile_matcher : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (ms,m,t) match_t -> (ms,t) compiled_match_t = fun a -> function | M f -> fun ~ok ~ko t state -> let state = ref state in let gls = ref [] in !state, f ~ok:(compile_matcher_ok a ok gls state) ~ko:(compile_matcher_ko ko gls state) t, !gls | MS f -> f let rec tyargs_of_args : type a b c d e. string -> (a,b,c,d,e) compiled_constructor_arguments -> (bool * string * string) list = fun self -> function | XN -> [false,self,""] | XA ({ ty },rest) -> (false,Conversion.show_ty_ast ty,"") :: tyargs_of_args self rest let do_allocate_constructors ty l = let names = List.fold_right (fun (K(name,_,_,_,_)) -> StrSet.add name) l StrSet.empty in if StrSet.cardinal names <> List.length l then anomaly ("Duplicate constructors name in ADT: " ^ Conversion.show_ty_ast ty); List.fold_left (fun vacc (K(name,_,a,b,m)) -> if name = "uvar" then vacc else let c_variant = Global_symbols.declare_overloaded_global_symbol name in StrMap.add name c_variant vacc) StrMap.empty l let compile_constructors allocated ty self self_name l = List.fold_left (fun (acc, sacc) (K(name,_,a,b,m)) -> if name = "uvar" then let args = compile_arguments a self in let acc = Constants.Map.add Global_symbols.uvarc (XK(args,compile_builder a b,compile_matcher a m)) acc in (acc, sacc) else let c = try StrMap.find name allocated |> fst with Not_found -> anomaly "constructor arguments should be preallocated" in let args = compile_arguments a self in Constants.Map.add c (XK(args,compile_builder a b,compile_matcher a m)) acc, StrMap.add name (tyargs_of_args self_name args) sacc) (Constants.Map.empty,StrMap.empty) l let document_constructor fmt name variant doc argsdoc = Fmt.fprintf fmt "@[<hov2>external symbol %s :@[<hov>%a@] = \"%d\". %s@]@\n" name pp_ty_args argsdoc variant (if doc = "" then "" else " % " ^ doc) let document_kind fmt = function | Conversion.TyApp(s,_,l) -> let n = List.length l + 2 in let l = Array.init n (fun _ -> "type") in Fmt.fprintf fmt "@[<hov 2>kind %s %s.@]@\n" s (String.concat " -> " (Array.to_list l)) | Conversion.TyName s -> Fmt.fprintf fmt "@[<hov 2>kind %s type.@]@\n" s let document_adt doc ty ks cks vks fmt () = if doc <> "" then begin pp_comment fmt ("% " ^ doc); Fmt.fprintf fmt "@\n" end; document_kind fmt ty; List.iter (fun (K(name,doc,_,_,_)) -> if name <> "uvar" then let argsdoc = StrMap.find name cks in document_constructor fmt name (StrMap.find name vks |> snd) doc argsdoc) ks let rec allocate_constructors: type t h c. mkinterval:(int -> int -> int -> term list) -> look:(depth:int -> term -> term) -> mkConst:(int -> term) -> alloc:(?name:doc -> State.t -> State.t * 'a) -> mkUnifVar: ('a -> args:term list -> State.t -> term) -> (t,h,c) declaration -> allocation = fun ~mkinterval ~look ~mkConst ~alloc ~mkUnifVar -> function | Decl { ty; constructors; doc; pp } -> do_allocate_constructors ty constructors | Param f -> let a = { ContextualConversion.ty = Conversion.TyName "A"; pp = (fun fmt _ -> ()); pp_doc = (fun fmt () -> ()); readback = (fun ~depth hyps constraints state term -> assert false); embed = (fun ~depth hyps constraints state term -> assert false); } |> ContextualConversion.(!<) in allocate_constructors ~mkinterval ~look ~mkConst ~alloc ~mkUnifVar (f a) | ParamC f -> let a = { ContextualConversion.ty = Conversion.TyName "A"; pp = (fun fmt _ -> ()); pp_doc = (fun fmt () -> ()); readback = (fun ~depth hyps constraints state term -> assert false); embed = (fun ~depth hyps constraints state term -> assert false); } in allocate_constructors ~mkinterval ~look ~mkConst ~alloc ~mkUnifVar (f a) let declare_allocated: type t h c. mkinterval:(int -> int -> int -> term list) -> look:(depth:int -> term -> term) -> mkConst:(int -> term) -> alloc:(?name:doc -> State.t -> State.t * 'a) -> mkUnifVar: ('a -> args:term list -> State.t -> term) -> allocation -> (t,h,c) declaration -> (t,h,c) ContextualConversion.t = fun ~mkinterval ~look ~mkConst ~alloc ~mkUnifVar allocated -> function Decl { ty; constructors; doc; pp } -> let readback_ref = ref (fun ~depth _ _ _ _ -> assert false) in let embed_ref = ref (fun ~depth _ _ _ _ -> assert false) in let sconstructors_ref = ref StrMap.empty in let self = { ContextualConversion.ty; pp; pp_doc = (fun fmt () -> document_adt doc ty constructors !sconstructors_ref allocated fmt ()); readback = (fun ~depth hyps constraints state term -> !readback_ref ~depth hyps constraints state term); embed = (fun ~depth hyps constraints state term -> !embed_ref ~depth hyps constraints state term); } in let cconstructors, sconstructors = compile_constructors allocated ty self (Conversion.show_ty_ast ty) constructors in sconstructors_ref := sconstructors; readback_ref := readback ~mkinterval ~look ~alloc ~mkUnifVar ty cconstructors; embed_ref := embed ~mkConst ty pp cconstructors; self | _ -> anomaly "declare_allocated can only be called on Decl" end type declaration = | MLCode of t * doc_spec | MLData : 'a Conversion.t -> declaration | MLDataC : ('a,'h,'c) ContextualConversion.t -> declaration | LPDoc of string | LPCode of string (* doc *) let parens ?(sep = " ") str = if Re.Str.(string_match (regexp (".*" ^ sep ^ ".*")) str 0) then "("^str^")" else str let parens_arr = parens ~sep:("->") let ws_to_max fmt max n = if n < max then Format.fprintf fmt "%s" (String.make (max - n) ' ') else () let pp_tab_arg i max pre sep fmt (_,ty,doc) = if i = 0 then Fmt.pp_set_tab fmt () else (); Fmt.fprintf fmt "%s%s%s" pre (parens_arr ty) sep; if i = 0 then (ws_to_max fmt max (String.length ty); Fmt.pp_set_tab fmt ()) else Fmt.pp_print_tab fmt (); if doc <> "" then begin Fmt.fprintf fmt " %% %s" doc end; Fmt.pp_print_tab fmt () ;; let pp_tab_args fmt l = let max = List.fold_left (fun m (_,s,_) -> max (String.length s) m) 0 l in Fmt.pp_open_tbox fmt (); let rec aux m_of_last i = function | [] -> () | x :: xs -> let (m_of_x,_,_) = x in let pre = if m_of_last <> m_of_x then "-> " else "" in let sep = if xs = [] then "." else match xs with | (b,_,_) :: _ when b = m_of_x -> ", " | _ -> "" in pp_tab_arg i max pre sep fmt x; aux m_of_x (i+1) xs in if l = [] then Format.fprintf fmt "." else aux true 0 l; Fmt.pp_close_tbox fmt () ;; let pp_args fmt l = let l1, l2 = List.partition (fun (x,_,_) -> x) l in let pp_arg fmt (_,ty,_) = Format.fprintf fmt "%s" (parens_arr ty) in let pp_args = pplist pp_arg ", " ~pplastelem:pp_arg in if l1 <> [] then Format.fprintf fmt " "; Format.fprintf fmt "%a" pp_args l1; if l2 = [] then () else if l1 = [] then Format.fprintf fmt " -> %a" pp_args l2 else Format.fprintf fmt " -> %a" pp_args l2 let rec is_std_moded = function | [] -> true | (true,_,_) :: rest -> is_std_moded rest | (false,_,_) :: [] -> true | (false,_,_) :: ((false,_,_) :: _ as rest) -> is_std_moded rest | _ -> false (* External predicate are functional *) let pp_pred fmt docspec name doc_pred args = let args = List.rev args in if is_std_moded args then match docspec with | DocNext -> Fmt.fprintf fmt "@[<v 2>external func %s %% %s@;%a@]@." name doc_pred pp_tab_args args | DocAbove -> let doc = "[" ^ String.concat " " (name :: List.map (fun (_,_,x) -> x) args) ^ "] " ^ doc_pred in Fmt.fprintf fmt "@[<v>%% %a@.external func %s@[<hov>%a.@]@]@.@." pp_comment doc name pp_args args else let pp_tab_arg i max sep fmt (dir,ty,doc) = let dir = if dir then "i" else "o" in if i = 0 then Fmt.pp_set_tab fmt () else (); Fmt.fprintf fmt "%s:%s%s" dir ty sep; if i = 0 then (ws_to_max fmt max (String.length ty); Fmt.pp_set_tab fmt ()) else Fmt.pp_print_tab fmt (); if doc <> "" then begin Fmt.fprintf fmt " %% %s" doc end; Fmt.pp_print_tab fmt () in let pp_tab_args fmt l = let n = List.length l - 1 in let max = List.fold_left (fun m (_,s,_) -> max (String.length s) m) 0 l in Fmt.pp_open_tbox fmt (); if l = [] then Fmt.fprintf fmt "."; List.iteri (fun i x -> let sep = if i = n then "." else "," in pp_tab_arg i max sep fmt x) l; Fmt.pp_close_tbox fmt () in let pp_arg sep fmt (dir,ty,doc) = let dir = if dir then "i" else "o" in Fmt.fprintf fmt "%s:%s%s" dir ty sep in let pp_args = pplist (pp_arg "") ", " ~pplastelem:(pp_arg "") in match docspec with | DocNext -> Fmt.fprintf fmt "@\n@[<v 2>:functional :external pred %s %% %s@;%a@]@." name doc_pred pp_tab_args args | DocAbove -> let doc = "[" ^ String.concat " " (name :: List.map (fun (_,_,x) -> x) args) ^ "] " ^ doc_pred in Fmt.fprintf fmt "@\n@[<v>%% %a@.:functional :external pred %s @[<hov>%a.@]@]@.@." pp_comment doc name pp_args args ;; let pp_variadictype fmt name doc_pred ty args = let args = List.rev ((false,"variadic " ^ parens ty ^ " fprop","") :: args) in let doc = "[" ^ String.concat " " (name :: List.map (fun (_,_,x) -> x) args) ^ "...] " ^ doc_pred in Fmt.fprintf fmt "@[<v>%% %a@.external type %s@[<hov>%a.@]@]@.@." pp_comment doc name pp_ty_args args ;; let document_pred fmt docspec name ffi = let rec doc : type i o h c. (bool * string * string) list -> (i,o,h,c) ffi -> unit = fun args -> function | In( { Conversion.ty }, s, ffi) -> doc ((true,Conversion.show_ty_ast ty,s) :: args) ffi | Out( { Conversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | InOut( { Conversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | CIn( { ContextualConversion.ty }, s, ffi) -> doc ((true,Conversion.show_ty_ast ty,s) :: args) ffi | COut( { ContextualConversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | CInOut( { ContextualConversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | Read (_,s) -> pp_pred fmt docspec name s args | Easy s -> pp_pred fmt docspec name s args | Full (_,s) -> pp_pred fmt docspec name s args | FullHO (_,s) -> pp_pred fmt docspec name s args | VariadicIn( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args | VariadicOut( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args | VariadicInOut( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args in doc [] ffi ;; let document fmt l calc_list = let omargin = Fmt.pp_get_margin fmt () in Fmt.pp_set_margin fmt 75; Fmt.fprintf fmt "@[<v>"; Fmt.fprintf fmt "@\n@\n"; List.iter (function | MLCode(Pred(name,ffi,_), docspec) -> document_pred fmt docspec name ffi; if name = "calc" then begin Format.fprintf fmt "%s@\n@\n" "% --- Operators ---"; List.iter (fun (_,x) -> Format.fprintf fmt "%s@\n@\n" x.CalcHooks.ty_decl ) calc_list end; | MLData { pp_doc } -> Fmt.fprintf fmt "%a@\n" pp_doc () | MLDataC { pp_doc } -> Fmt.fprintf fmt "%a@\n" pp_doc () | LPCode s -> Fmt.fprintf fmt "%s" s; Fmt.fprintf fmt "@\n@\n" | LPDoc s -> pp_comment fmt ("% " ^ s); Fmt.fprintf fmt "@\n@\n") l; Fmt.fprintf fmt "@\n@\n"; Fmt.fprintf fmt "@]@."; Fmt.pp_set_margin fmt omargin ;; type builtin_table = (int, t) Hashtbl.t [@@deriving show] end type symbol_table = { mutable c2s : Symbol.t Constants.Map.t; c2t : (constant, term) Hashtbl.t; mutable frozen_constants : int; } [@@deriving show] type executable = { (* the lambda-Prolog program: an indexed list of clauses *) compiled_program : prolog_prog; (* chr rules *) chr : CHR.t; (* query *) initial_depth : int; (* used by findall and CHR *) initial_goal: term; (* constraints coming from compilation *) initial_runtime_state : State.t; (* Hashconsed symbols + their string equivalent *) symbol_table : symbol_table; (* Indexed FFI entry points *) builtins : BuiltInPredicate.builtin_table; (* solution *) assignments : term Util.StrMap.t; } type pp_ctx = { uv_names : (string Util.IntMap.t * int) ref; table : symbol_table; } type solution = { assignments : term StrMap.t; constraints : constraints; state : State.t; pp_ctx : pp_ctx; state_for_relocation : int * symbol_table; } type 'a outcome = Success of solution | Failure | NoMoreSteps exception CannotDeclareClauseForBuiltin of Loc.t option * builtin_predicate
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>