package elpi
ELPI - Embeddable λProlog Interpreter
Install
Dune Dependency
Authors
Maintainers
Sources
elpi-2.0.7.tbz
sha256=80233ebd92babd696148ed553238961ec7b6de6bf157045aae1c7090840aeded
sha512=00c9ec01fabde9db1de4a58cb37480035e6f926d83b8360553419bcb99e9199f0720dde975f97ac9942ce528884d3d59d025cfbd471f12d57547429f15684d49
doc/src/elpi.runtime/data.ml.html
Source file data.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
(* elpi: embedded lambda prolog interpreter *) (* license: GNU Lesser General Public License Version 2.1 or later *) (* ------------------------------------------------------------------------- *) (* Internal term representation *) open Elpi_util open Elpi_parser module Fmt = Format module F = Ast.Func open Util (****************************************************************************** Terms: data type definition and printing ******************************************************************************) (* Heap and Stack * * We use the same data type (term) the following beasts: * preterm = Pure term <= Heap term <= Stack term * * - only Stack terms can contain Arg nodes * - Heap terms can contain UVar nodes * - Pure terms contain no Arg and no UVar nodes * - a preterm is a Pure term that may contain "%Arg3" constants. These * constants morally represent Arg nodes * * Preterms are only used during compilation. Beta-reduction, needed for * macro expansion for example, is only defined on Heap terms. We hence * separate the compilation of clauses into: * AST -> preterm -> term -> clause * * Heap and Stack terms are used during execution. The query if the * root of Heap terms, clauses are Stack terms and are eventually copied * to the Heap. * Invariant: a Heap term never points to a Stack term. * *) module Term = struct (* To be instantiated after the dummy term is defined *) let pp_oref = mk_spaghetti_printer () let id_term = UUID.make () (* This data type is open since runtime (traced or not) adds to it its own representation of constraints, projectable to the type suspended_goal below *) type 'unification_def stuck_goal_kind = .. let pp_stuck_goal_kind p1 fmt x = () let show_stuck_goal_kind p1 _ = "" let equal_stuck_goal_kind _ x y = x == y type 'unification_def stuck_goal_kind += | Unification of 'unification_def type arg_mode = Util.arg_mode = Input | Output [@@deriving show, ord] type mode_aux = Util.mode_aux = | Fo of arg_mode | Ho of arg_mode * mode and mode = mode_aux list [@@ deriving show, ord] type ttype = | TConst of constant | TApp of constant * ttype * ttype list | TPred of bool * ((arg_mode * ttype) list) (* The bool is for functionality *) | TArr of ttype * ttype | TCData of CData.t | TLam of ttype (* this is for parametrized typeabbrevs *) [@@ deriving show, ord] type term = (* Pure terms *) | Const of constant | Lam of term | App of constant * term * term list (* Optimizations *) | Cons of term * term | Nil | Discard (* FFI *) | Builtin of constant * term list | CData of CData.t (* Heap terms: unif variables in the query *) | UVar of uvar_body * (*depth:*)int * (*argsno:*)int | AppUVar of uvar_body * (*depth:*)int * term list (* Clause terms: unif variables used in clauses *) | Arg of (*id:*)int * (*argsno:*)int | AppArg of (*id*)int * term list and uvar_body = { mutable contents : term [@printer (pp_spaghetti_any ~id:id_term pp_oref)]; mutable uid_private : int; (* unique name, the sign is flipped when blocks a constraint *) } [@@deriving show, ord] let cons2tcons ?(loc=Loc.initial"") = function Const t -> TConst t | _ -> anomaly ~loc "Unreachable branch" (* we use this projection to be sure we ignore the sign *) let uvar_id { uid_private } = abs uid_private [@@inline];; let uvar_is_a_blocker { uid_private } = uid_private < 0 [@@inline];; let uvar_isnt_a_blocker { uid_private } = uid_private > 0 [@@inline];; let uvar_set_blocker r = r.uid_private <- -(uvar_id r) [@@inline];; let uvar_unset_blocker r = r.uid_private <- (uvar_id r) [@@inline];; type clause = { depth : int; args : term list; hyps : term list; vars : int; mode : mode; (* CACHE to avoid allocation in get_clauses *) loc : Loc.t option; (* debug *) mutable timestamp : int list; (* for grafting *) } [@@deriving show, ord] let get_arg_mode = function Fo a -> a | Ho (a,_) -> a let to_mode = function true -> Fo Input | false -> Fo Output type grafting_time = int list [@@deriving show, ord] let compare_constant = Util.compare_constant type times = (grafting_time * constant) StrMap.t [@@deriving show, ord] type stuck_goal = { mutable blockers : blockers; kind : unification_def stuck_goal_kind; } and blockers = uvar_body list and unification_def = { adepth : int; env : term array; bdepth : int; a : term; b : term; matching: bool; } and clause_src = { hdepth : int; hsrc : term } and prolog_prog = { src : clause_src list; (* hypothetical context in original form, for CHR *) index : index; } (* These two are the same, but the latter should not be mutated *) and clause_list = clause Bl.t and index = first_lvl_idx and first_lvl_idx = { idx : second_lvl_idx Ptmap.t; time : int; (* ticking clock, to timestamp clauses so to recover total order after retrieval if necessary. positive at compile time, negative at run time *) times : times; (* timestamp of named clauses, for grafting at compile time *) } and second_lvl_idx = | TwoLevelIndex of { mode : mode; argno : int; all_clauses : clause_list; (* when the query is flexible *) flex_arg_clauses : clause_list; (* when the query is rigid but arg_id ha nothing *) arg_idx : clause_list Ptmap.t; (* when the query is rigid (includes in each binding flex_arg_clauses) *) } | BitHash of { mode : mode; args : int list; args_idx : clause_list Ptmap.t; (* clause, insertion time *) } | IndexWithDiscriminationTree of { mode : mode; arg_depths : int list; (* the list of args on which the trie is built *) args_idx : clause Discrimination_tree.t; } [@@deriving show] let stop = ref false let close_index ({idx; time; times} : index) : index = { idx =idx; time = 0; times = StrMap.empty } type constraints = stuck_goal list type hyps = clause_src list type suspended_goal = { context : hyps; goal : int * term } (** Used to index the parameters of a predicate P - [MapOn N] -> N-th argument at depth 1 (head symbol only) - [Hash L] -> L is the list of depths given by the urer for the parameters of P. Indexing is done by hashing all the parameters with a non zero depth and comparing it with the hashing of the parameters of the query - [DiscriminationTree L] -> we use the same logic of Hash, except we use DiscriminationTree to discriminate clauses *) type indexing = | MapOn of int | Hash of int list | DiscriminationTree of int list [@@deriving show] let mkLam x = Lam x [@@inline] let mkApp c x xs = App(c,x,xs) [@@inline] let mkCons hd tl = Cons(hd,tl) [@@inline] let mkNil = Nil let mkDiscard = Discard let mkBuiltin c args = Builtin(c,args) [@@inline] let mkCData c = CData c [@@inline] let mkUVar r d ano = UVar(r,d,ano) [@@inline] let mkAppUVar r d args = AppUVar(r,d,args) [@@inline] let mkArg i ano = Arg(i,ano) [@@inline] let mkAppArg i args = AppArg(i,args) [@@inline] module C = struct let { CData.cin = in_int; isc = is_int; cout = out_int } as int = Ast.cint let is_int = is_int let to_int = out_int let of_int x = CData (in_int x) let { CData.cin = in_float; isc = is_float; cout = out_float } as float = Ast.cfloat let is_float = is_float let to_float = out_float let of_float x = CData (in_float x) let { CData.cin = in_string; isc = is_string; cout = out_string } as string = Ast.cstring let is_string = is_string let to_string x = out_string x let of_string x = CData (in_string x) let loc = Ast.cloc let is_loc = loc.CData.isc let to_loc = loc.CData.cout let of_loc x = CData (loc.CData.cin x) end let destConst = function Const x -> x | _ -> assert false (* Our ref data type: creation and dereference. Assignment is defined After the constraint store, since assigning may wake up some constraints *) let oref = let uid = ref 0 in fun x -> incr uid; assert(!uid > 0); { contents = x; uid_private = !uid } let (!!) { contents = x } = x (* Arg/AppArg point to environments, here the empty one *) type env = term array let empty_env = [||] end include Term (* Object oriented State.t: borns at compilation time and survives as run time *) module State : sig type descriptor val new_descriptor : unit -> descriptor val merge_descriptors : descriptor -> descriptor -> descriptor (* filled in with components *) type 'a component val declare : descriptor:descriptor -> name:string -> pp:(Format.formatter -> 'a -> unit) -> init:(unit -> 'a) -> clause_compilation_is_over:('a -> 'a) -> ?goal_compilation_begins:('a -> 'a) -> compilation_is_over:('a -> 'a option) -> execution_is_over:('a -> 'a option) -> unit -> 'a component (* an instance of the State.t type *) type t (* Lifetime: - init (called once) - end_clause_compilation (called after every clause) - end_compilation (just once before running) - end_execution (just once after running) *) val init : descriptor -> t val end_clause_compilation : t -> t val begin_goal_compilation : t -> t val end_compilation : t -> t val end_execution : t -> t val get : 'a component -> t -> 'a val set : 'a component -> t -> 'a -> t val drop : 'a component -> t -> t val update : 'a component -> t -> ('a -> 'a) -> t val update_return : 'a component -> t -> ('a -> 'a * 'b) -> t * 'b val pp : Format.formatter -> t -> unit val dummy : t end = struct type stage = | Dummy | Compile_prog | Compile_goal | Run | Halt type 'a component = string type extension = { init : unit -> Obj.t; end_clause : Obj.t -> Obj.t; begin_goal : Obj.t -> Obj.t; end_comp : Obj.t -> Obj.t option; end_exec : Obj.t -> Obj.t option; pp : Format.formatter -> Obj.t -> unit; } type descriptor = extension StrMap.t ref type t = { data : Obj.t StrMap.t; stage : stage; extensions : descriptor } let dummy : t = { data = StrMap.empty; stage = Dummy; extensions = ref StrMap.empty } let descriptor { extensions = x } = x let new_descriptor () : descriptor = ref StrMap.empty let merge_descriptors m1 m2 = ref (StrMap.merge (fun n e1 e2 -> match e1, e2 with | None, None -> None | Some x, None -> Some x | None, Some x -> Some x | Some _, Some _ -> error ("The state cannot contain two components named "^n) ) !m1 !m2) let get name { data = t } = try Obj.obj (StrMap.find name t) with Not_found -> anomaly ("State.get: component " ^ name ^ " not found") let set name ({ data } as x) v = { x with data = StrMap.add name (Obj.repr v) data } let drop name ({ data } as x) = { x with data = StrMap.remove name data } let update name ({ data } as x) f = { x with data = StrMap.add name (Obj.repr (f (Obj.obj (StrMap.find name data)))) data } let update_return name t f = let x = get name t in let x, res = f x in let t = set name t x in t, res let declare ~descriptor:extensions ~name ~pp ~init ~clause_compilation_is_over ?(goal_compilation_begins = fun x -> x) ~compilation_is_over ~execution_is_over () = if StrMap.mem name !extensions then anomaly ("Extension "^name^" already declared"); extensions := StrMap.add name { init = (fun x -> Obj.repr (init x)); pp = (fun fmt x -> pp fmt (Obj.obj x)); end_clause = (fun x -> Obj.repr (clause_compilation_is_over (Obj.obj x))); begin_goal = (fun x -> Obj.repr (goal_compilation_begins (Obj.obj x))); end_comp = (fun x -> option_map Obj.repr (compilation_is_over (Obj.obj x))); end_exec = (fun x -> option_map Obj.repr (execution_is_over (Obj.obj x))); } !extensions; name let init extensions : t = let data = StrMap.fold (fun name { init } acc -> let o = init () in StrMap.add name o acc) !extensions StrMap.empty in { data; stage = Compile_prog; extensions; } let end_clause_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_prog); { data = StrMap.fold (fun name obj acc -> let o = (StrMap.find name !extensions).end_clause obj in StrMap.add name o acc) m StrMap.empty; stage = s; extensions } let begin_goal_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_prog); { data = StrMap.fold (fun name obj acc -> let o = (StrMap.find name !extensions).begin_goal obj in StrMap.add name o acc) m StrMap.empty; stage = Compile_goal; extensions } let end_compilation { data = m; stage = s; extensions } : t = assert(s = Compile_goal); { data = StrMap.fold (fun name obj acc -> match (StrMap.find name !extensions).end_comp obj with | None -> acc | Some o -> StrMap.add name o acc) m StrMap.empty; stage = Run; extensions } let end_execution { data = m; stage = s; extensions } : t = assert(s = Run); { data = StrMap.fold (fun name obj acc -> match (StrMap.find name !extensions).end_exec obj with | None -> acc | Some o -> StrMap.add name o acc) m StrMap.empty; stage = Halt; extensions } let pp fmt { data = t; stage = s; extensions } : unit = StrMap.iter (fun name { pp } -> try pp fmt (StrMap.find name t) with Not_found -> ()) !extensions end let elpi_state_descriptor = State.new_descriptor () (* This module contains the symbols reserved by Elpi and the ones declared by the API client via declare_global_symbol statically (eg the API must be called in a OCaml toplevel value). These symbols are part of any Elpi program. The runtime only uses the symbols listed in the module signature, the declared ones are read by the compiler and propagated to the runtime. *) module Global_symbols : sig (* Table used at link time *) type t = { (* Ast (functor name) -> negative int n (constant) * hashconsed (Const n) *) mutable s2ct : (constant * term) Ast.Func.Map.t; mutable c2s : string Constants.Map.t; (* negative *) mutable last_global : int; (* Once the system is initialized this shall change no more *) mutable locked: bool; } val table : t (* Static initialization, eg link time *) val declare_global_symbol : string -> constant val lock : unit -> unit val cutc : constant val andc : constant val orc : constant val implc : constant val rimplc : constant val pic : constant val sigmac : constant val eqc : constant val rulec : constant val consc : constant val nilc : constant val entailsc : constant val nablac : constant val asc : constant val arrowc : constant val uvarc : constant val propc : constant val ctypec : constant val variadic : constant val spillc : constant val truec : constant val declare_constraintc : constant val print_constraintsc : constant val findall_solutionsc : constant end = struct type t = { mutable s2ct : (constant * term) Ast.Func.Map.t; mutable c2s : string Constants.Map.t; mutable last_global : int; mutable locked : bool; } [@@deriving show] let table = { last_global = 0; s2ct = Ast.Func.Map.empty; c2s = Constants.Map.empty; locked = false; } let declare_global_symbol str = let x = Ast.Func.from_string str in try fst @@ Ast.Func.Map.find x table.s2ct with Not_found -> if table.locked then Util.anomaly "declare_global_symbol called after initialization"; table.last_global <- table.last_global - 1; let n = table.last_global in let t = Const n in table.s2ct <- Ast.Func.Map.add x (n,t) table.s2ct; table.c2s <- Constants.Map.add n str table.c2s; n let declare_global_symbol_for_builtin str = let x = Ast.Func.from_string str in if table.locked then Util.anomaly "declare_global_symbol_for_builtin called after initialization"; try fst @@ Ast.Func.Map.find x table.s2ct with Not_found -> table.last_global <- table.last_global - 1; let n = table.last_global in let t = Builtin(n,[]) in table.s2ct <- Ast.Func.Map.add x (n,t) table.s2ct; table.c2s <- Constants.Map.add n str table.c2s; n let lock () = table.locked <- true let andc = declare_global_symbol F.(show andf) let arrowc = declare_global_symbol F.(show arrowf) let asc = declare_global_symbol "as" let consc = declare_global_symbol F.(show consf) let entailsc = declare_global_symbol "?-" let eqc = declare_global_symbol F.(show eqf) let uvarc = declare_global_symbol "uvar" let implc = declare_global_symbol F.(show implf) let nablac = declare_global_symbol "nabla" let nilc = declare_global_symbol F.(show nilf) let orc = declare_global_symbol F.(show orf) let pic = declare_global_symbol F.(show pif) let rimplc = declare_global_symbol F.(show rimplf) let rulec = declare_global_symbol "rule" let sigmac = declare_global_symbol F.(show sigmaf) let spillc = declare_global_symbol F.(show spillf) let truec = declare_global_symbol F.(show truef) let ctypec = declare_global_symbol F.(show ctypef) let propc = declare_global_symbol "prop" let variadic = declare_global_symbol "variadic" let declare_constraintc = declare_global_symbol "declare_constraint" let cutc = declare_global_symbol_for_builtin F.(show cutf) let print_constraintsc = declare_global_symbol_for_builtin "print_constraints" let findall_solutionsc = declare_global_symbol_for_builtin "findall_solutions" end (* This term is hashconsed here *) let dummy = App (Global_symbols.cutc,Const Global_symbols.cutc,[]) let dummy_uvar_body = { contents = dummy; uid_private = 0 } module CHR : sig (* a set of rules *) type t (* a set of predicates contributing to represent a constraint *) type clique type sequent = { eigen : term; context : term; conclusion : term } and rule = { to_match : sequent list; to_remove : sequent list; patsno : int; guard : term option; new_goal : sequent option; nargs : int [@default 0]; pattern : constant list; rule_name : string; rule_loc : Loc.t; } val pp_sequent : Fmt.formatter -> sequent -> unit val show_sequent : sequent -> string val pp_rule : Fmt.formatter -> rule -> unit val show_rule : rule -> string val empty : t val new_clique : (constant -> Ast.Func.t) -> constant list -> constant list -> t -> t * clique val clique_of : constant -> t -> (Constants.Set.t * Constants.Set.t) option val add_rule : clique -> rule -> t -> t val in_clique : clique -> constant -> bool val rules_for : constant -> t -> rule list val pp : Fmt.formatter -> t -> unit val pp_clique : Fmt.formatter -> clique -> unit val show : t -> string end = struct (* {{{ *) type clique = {ctx_filter: Constants.Set.t; clique: Constants.Set.t} [@@deriving show] type sequent = { eigen : term; context : term; conclusion : term } and rule = { to_match : sequent list; to_remove : sequent list; patsno : int; guard : term option; new_goal : sequent option; nargs : int [@default 0]; pattern : constant list; rule_name : string; rule_loc : Loc.t; } [@@ deriving show] type t = { cliques : clique Constants.Map.t; rules : rule list Constants.Map.t } [@@ deriving show] let empty = { cliques = Constants.Map.empty; rules = Constants.Map.empty } let in_clique {clique; ctx_filter} c = Constants.Set.mem c clique let new_clique show_constant hyps cl ({ cliques } as chr) = let open Constants in if cl = [] then error "empty clique"; let c = Set.of_list cl in let ctx_filter = Set.of_list hyps in (* Check new inserted clique is valid *) let build_clique_str c = Printf.sprintf "{ %s }" @@ String.concat "," (List.map (fun x -> Ast.Func.show @@ show_constant x) (Set.elements c)) in let old_ctx_filter = ref None in let exception Stop in (try Map.iter (fun _ ({clique=c';ctx_filter=ctx_filter'}) -> if Set.equal c c' then (old_ctx_filter := Some ctx_filter'; raise Stop) else if not (Set.disjoint c c') then (* different, not disjoint clique *) error ("overlapping constraint cliques:" ^ build_clique_str c ^ "and" ^ build_clique_str c') ) cliques; with Stop -> ()); let clique = {ctx_filter = Set.union ctx_filter (Option.value ~default:Set.empty !old_ctx_filter); clique=c} in let (cliques: clique Constants.Map.t) = List.fold_left (fun cliques x -> Constants.Map.add x clique cliques) cliques cl in { chr with cliques }, clique let clique_of c { cliques } = try Some (let res = Constants.Map.find c cliques in res.clique, res.ctx_filter) with Not_found -> None let add_rule ({clique}: clique) r ({ rules } as chr) = let rules = Constants.Set.fold (fun c rules -> try let rs = Constants.Map.find c rules in Constants.Map.add c (rs @ [r]) rules with Not_found -> Constants.Map.add c [r] rules) clique rules in { chr with rules } let rules_for c { rules } = try Constants.Map.find c rules with Not_found -> [] end (* }}} *) (* An elpi program, as parsed. But for idx and query_depth that are threaded around in the main loop, chr and modes are globally stored in Constraints and Clausify. *) type clause_w_info = { clloc : CData.t; clargsname : string list; clbody : clause; } [@@ deriving show] exception No_clause exception No_more_steps module Conversion = struct type extra_goal = .. type extra_goal += | Unify of term * term | RawGoal of term type extra_goals = extra_goal list type extra_goals_postprocessing = extra_goals -> State.t -> State.t * extra_goals let extra_goals_postprocessing : extra_goals_postprocessing State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:extra_goals_postprocessing" ~pp:(fun _ _ -> ()) ~clause_compilation_is_over:(fun b -> b) ~compilation_is_over:(fun x -> Some x) ~execution_is_over:(fun x -> Some x) ~init:(fun () -> (); fun x s -> s, x) () type ty_ast = TyName of string | TyApp of string * ty_ast * ty_ast list [@@deriving show] type 'a embedding = depth:int -> State.t -> 'a -> State.t * term * extra_goals type 'a readback = depth:int -> State.t -> term -> State.t * 'a * extra_goals type 'a t = { ty : ty_ast; pp_doc : Format.formatter -> unit -> unit [@opaque]; pp : Format.formatter -> 'a -> unit [@opaque]; embed : 'a embedding [@opaque]; (* 'a -> term *) readback : 'a readback [@opaque]; (* term -> 'a *) } [@@deriving show] exception TypeErr of ty_ast * int * term (* a type error at data conversion time *) type prec_level = | Arrow | AppArg let need_par x y = match x,y with | Some AppArg, Arrow -> true | Some AppArg, AppArg -> true | Some Arrow, Arrow -> true | Some Arrow, AppArg -> false | None, _ -> false let with_par p1 p2 s = if need_par p1 p2 then "("^s^")" else s let rec show_ty_ast ?prec = function | TyName s -> s | TyApp ("->",src,[tgt]) -> let src = show_ty_ast ~prec:Arrow src in let tgt = show_ty_ast tgt in with_par prec Arrow (src ^" -> "^ tgt) | TyApp (s,x,xs) -> let t = String.concat " " (s :: List.map (show_ty_ast ~prec:AppArg) (x::xs)) in with_par prec AppArg t let term_of_extra_goal = function | Unify(a,b) -> Builtin(Global_symbols.eqc,[a;b]) | RawGoal x -> x | x -> Util.anomaly (Printf.sprintf "Unprocessed extra_goal: %s.\nOnly %s and %s can be left unprocessed,\nplease call API.RawData.set_extra_goals_postprocessing.\n" (Obj.Extension_constructor.(name (of_val x))) (Obj.Extension_constructor.(name (of_val (Unify(dummy,dummy))))) (Obj.Extension_constructor.(name (of_val (RawGoal dummy))))) end module ContextualConversion = struct type ty_ast = Conversion.ty_ast = TyName of string | TyApp of string * ty_ast * ty_ast list [@@deriving show] type ('a,'hyps,'constraints) embedding = depth:int -> 'hyps -> 'constraints -> State.t -> 'a -> State.t * term * Conversion.extra_goals type ('a,'hyps,'constraints) readback = depth:int -> 'hyps -> 'constraints -> State.t -> term -> State.t * 'a * Conversion.extra_goals type ('a,'hyps,'constraints) t = { ty : ty_ast; pp_doc : Format.formatter -> unit -> unit [@opaque]; pp : Format.formatter -> 'a -> unit [@opaque]; embed : ('a,'hyps,'constraints) embedding [@opaque]; (* 'a -> term *) readback : ('a,'hyps,'constraints) readback [@opaque]; (* term -> 'a *) } [@@deriving show] type ('hyps,'constraints) ctx_readback = depth:int -> hyps -> constraints -> State.t -> State.t * 'hyps * 'constraints * Conversion.extra_goals let unit_ctx : (unit,unit) ctx_readback = fun ~depth:_ _ _ s -> s, (), (), [] let raw_ctx : (hyps,constraints) ctx_readback = fun ~depth:_ h c s -> s, h, c, [] let (!<) { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth () () s t); readback = (fun ~depth s t -> readback ~depth () () s t); } let (!>) { Conversion.ty; pp_doc; pp; embed; readback; } = { ty; pp; pp_doc; embed = (fun ~depth _ _ s t -> embed ~depth s t); readback = (fun ~depth _ _ s t -> readback ~depth s t); } let (!>>) (f : 'a Conversion.t -> 'b Conversion.t) cc = let mk h c { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth h c s t); readback = (fun ~depth s t -> readback ~depth h c s t); } in let mk_pp { ty; pp_doc; pp; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> assert false); readback = (fun ~depth s t -> assert false); } in let { Conversion.ty; pp; pp_doc } = f (mk_pp cc) in { ty; pp; pp_doc; embed = (fun ~depth h c s t -> (f (mk h c cc)).embed ~depth s t); readback = (fun ~depth h c s t -> (f (mk h c cc)).readback ~depth s t); } let (!>>>) (f : 'a Conversion.t -> 'b Conversion.t -> 'c Conversion.t) cc dd = let mk h c { ty; pp_doc; pp; embed; readback; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> embed ~depth h c s t); readback = (fun ~depth s t -> readback ~depth h c s t); } in let mk_pp { ty; pp_doc; pp; } = { Conversion.ty; pp; pp_doc; embed = (fun ~depth s t -> assert false); readback = (fun ~depth s t -> assert false); } in let { Conversion.ty; pp; pp_doc } = f (mk_pp cc) (mk_pp dd) in { ty; pp; pp_doc; embed = (fun ~depth h c s t -> (f (mk h c cc) (mk h c dd)).embed ~depth s t); readback = (fun ~depth h c s t -> (f (mk h c cc) (mk h c dd)).readback ~depth s t); } end let while_compiling : bool State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:compiling" ~pp:(fun fmt _ -> ()) ~clause_compilation_is_over:(fun b -> b) ~compilation_is_over:(fun _ -> Some false) ~execution_is_over:(fun _ -> Some false) (* we keep it, since API.FlexibleData.Elpi.make needs it *) ~init:(fun () -> false) () module HoasHooks = struct type descriptor = { extra_goals_postprocessing: Conversion.extra_goals_postprocessing option; } let new_descriptor () = ref { extra_goals_postprocessing = None; } let set_extra_goals_postprocessing ~descriptor f = match !descriptor with | { extra_goals_postprocessing = None } -> descriptor := { extra_goals_postprocessing = Some f } | { extra_goals_postprocessing = Some _ } -> error "set_extra_goals_postprocessing called twice" end module CalcHooks = struct type run = term list -> term type eval = { code : run; ty_decl : string; } type descriptor = (constant * eval) list let new_descriptor () : descriptor ref = ref [] let eval : run Constants.Map.t State.component = State.declare ~descriptor:elpi_state_descriptor ~name:"elpi:eval" ~clause_compilation_is_over:(fun x -> x) ~compilation_is_over:(fun x -> Some x) ~execution_is_over:(fun _ -> None) ~init:(fun () -> Constants.Map.empty) ~pp:(fun fmt t -> Constants.Map.pp (fun _ _ -> ()) fmt t) () end module BuiltInPredicate = struct type name = string type doc = string type 'a oarg = Keep | Discard type 'a ioarg = Data of 'a | NoData type ('function_type, 'inernal_outtype_in, 'internal_hyps, 'internal_constraints) ffi = | In : 't Conversion.t * doc * ('i, 'o,'h,'c) ffi -> ('t -> 'i,'o,'h,'c) ffi | Out : 't Conversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t oarg -> 'i,'o,'h,'c) ffi | InOut : 't ioarg Conversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t ioarg -> 'i,'o,'h,'c) ffi | CIn : ('t,'h,'c) ContextualConversion.t * doc * ('i, 'o,'h,'c) ffi -> ('t -> 'i,'o,'h,'c) ffi | COut : ('t,'h,'c) ContextualConversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t oarg -> 'i,'o,'h,'c) ffi | CInOut : ('t ioarg,'h,'c) ContextualConversion.t * doc * ('i, 'o * 't option,'h,'c) ffi -> ('t ioarg -> 'i,'o,'h,'c) ffi | Easy : doc -> (depth:int -> 'o, 'o,unit,unit) ffi | Read : ('h,'c) ContextualConversion.ctx_readback * doc -> (depth:int -> 'h -> 'c -> State.t -> 'o, 'o,'h,'c) ffi | Full : ('h,'c) ContextualConversion.ctx_readback * doc -> (depth:int -> 'h -> 'c -> State.t -> State.t * 'o * Conversion.extra_goals, 'o,'h,'c) ffi | FullHO : ('h,'c) ContextualConversion.ctx_readback * doc -> (once:(depth:int -> term -> State.t -> State.t) -> depth:int -> 'h -> 'c -> State.t -> State.t * 'o * Conversion.extra_goals, 'o,'h,'c) ffi | VariadicIn : ('h,'c) ContextualConversion.ctx_readback * ('t,'h,'c) ContextualConversion.t * doc -> ('t list -> depth:int -> 'h -> 'c -> State.t -> State.t * 'o, 'o,'h,'c) ffi | VariadicOut : ('h,'c) ContextualConversion.ctx_readback * ('t,'h,'c) ContextualConversion.t * doc -> ('t oarg list -> depth:int -> 'h -> 'c -> State.t -> State.t * ('o * 't option list option), 'o,'h,'c) ffi | VariadicInOut : ('h,'c) ContextualConversion.ctx_readback * ('t ioarg,'h,'c) ContextualConversion.t * doc -> ('t ioarg list -> depth:int -> 'h -> 'c -> State.t -> State.t * ('o * 't option list option), 'o,'h,'c) ffi type t = Pred : name * ('a,unit,'h,'c) ffi * 'a -> t let pp fmt (Pred(name,_,_)) = Format.fprintf fmt "%s" name let compare (Pred(name1,_,_)) (Pred(name2,_,_)) = String.compare name1 name2 type doc_spec = DocAbove | DocNext let pp_comment fmt doc = Fmt.fprintf fmt "@?"; let orig_out = Fmt.pp_get_formatter_out_functions fmt () in Fmt.pp_set_formatter_out_functions fmt { orig_out with Fmt.out_newline = fun () -> orig_out.Fmt.out_string "\n% " 0 3 }; Fmt.fprintf fmt "@[<hov>"; Fmt.pp_print_text fmt doc; Fmt.fprintf fmt "@]@?"; Fmt.pp_set_formatter_out_functions fmt orig_out ;; let pp_ty sep fmt (_,s,_) = Fmt.fprintf fmt " %s%s" s sep let pp_ty_args = pplist (pp_ty "") " ->" ~pplastelem:(pp_ty "") module ADT = struct type ('match_stateful_t,'match_t, 't) match_t = | M of ( (* continuation to call passing subterms *) ok:'match_t -> (* continuation to call to signal pattern matching failure *) ko:(unit -> term) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> term) | MS of ( (* continuation to call passing subterms *) ok:'match_stateful_t -> (* continuation to call to signal pattern matching failure *) ko:(State.t -> State.t * term * Conversion.extra_goals) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> State.t -> State.t * term * Conversion.extra_goals) type ('build_stateful_t,'build_t) build_t = | B of 'build_t | BS of 'build_stateful_t type ('stateful_builder,'builder, 'stateful_matcher, 'matcher, 'self, 'hyps,'constraints) constructor_arguments = (* No arguments *) | N : (State.t -> State.t * 'self, 'self, State.t -> State.t * term * Conversion.extra_goals, term, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'a *) | A : 'a Conversion.t * ('bs,'b, 'ms,'m, 'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms, 'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'a in context 'hyps,'constraints *) | CA : ('a,'hyps,'constraints) ContextualConversion.t * ('bs,'b, 'ms,'m, 'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms, 'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type 'self *) | S : ('bs,'b, 'ms, 'm, 'self, 'hyps,'constraints) constructor_arguments -> ('self -> 'bs, 'self -> 'b, 'self -> 'ms, 'self -> 'm, 'self, 'hyps,'constraints) constructor_arguments (* An argument of type `T 'self` for a constainer `T`, like a `list 'self`. `S args` above is a shortcut for `C(fun x -> x, args)` *) | C : (('self,'hyps,'constraints) ContextualConversion.t -> ('a,'hyps,'constraints) ContextualConversion.t) * ('bs,'b,'ms,'m,'self, 'hyps,'constraints) constructor_arguments -> ('a -> 'bs, 'a -> 'b, 'a -> 'ms,'a -> 'm, 'self, 'hyps,'constraints) constructor_arguments type ('t,'h,'c) constructor = K : name * doc * ('build_stateful_t,'build_t,'match_stateful_t,'match_t,'t,'h,'c) constructor_arguments * (* args ty *) ('build_stateful_t,'build_t) build_t * ('match_stateful_t,'match_t,'t) match_t -> ('t,'h,'c) constructor type ('t,'h,'c) declaration = { ty : Conversion.ty_ast; doc : doc; pp : Format.formatter -> 't -> unit; constructors : ('t,'h,'c) constructor list; } type ('b,'m,'t,'h,'c) compiled_constructor_arguments = | XN : (State.t -> State.t * 't,State.t -> State.t * term * Conversion.extra_goals, 't,'h,'c) compiled_constructor_arguments | XA : ('a,'h,'c) ContextualConversion.t * ('b,'m,'t,'h,'c) compiled_constructor_arguments -> ('a -> 'b, 'a -> 'm, 't,'h,'c) compiled_constructor_arguments type ('match_t, 't) compiled_match_t = (* continuation to call passing subterms *) ok:'match_t -> (* continuation to call to signal pattern matching failure *) ko:(State.t -> State.t * term * Conversion.extra_goals) -> (* match 't and pass its subterms to ~ok or just call ~ko *) 't -> State.t -> State.t * term * Conversion.extra_goals type ('t,'h,'c) compiled_constructor = XK : ('build_t,'matched_t,'t,'h,'c) compiled_constructor_arguments * 'build_t * ('matched_t,'t) compiled_match_t -> ('t,'h,'c) compiled_constructor type ('t,'h,'c) compiled_adt = (('t,'h,'c) compiled_constructor) Constants.Map.t let buildk ~mkConst kname = function | [] -> mkConst kname | x :: xs -> mkApp kname x xs let rec readback_args : type a m t h c. look:(depth:int -> term -> term) -> Conversion.ty_ast -> depth:int -> h -> c -> State.t -> Conversion.extra_goals list -> term -> (a,m,t,h,c) compiled_constructor_arguments -> a -> term list -> State.t * t * Conversion.extra_goals = fun ~look ty ~depth hyps constraints state extra origin args convert l -> match args, l with | XN, [] -> let state, x = convert state in state, x, List.(concat (rev extra)) | XN, _ -> raise (Conversion.TypeErr(ty,depth,origin)) | XA _, [] -> assert false | XA(d,rest), x::xs -> let state, x, gls = d.readback ~depth hyps constraints state x in readback_args ~look ty ~depth hyps constraints state (gls :: extra) origin rest (convert x) xs and readback : type t h c. mkinterval:(int -> int -> int -> term list) -> look:(depth:int -> term -> term) -> alloc:(?name:string -> State.t -> State.t * 'uk) -> mkUnifVar:('uk -> args:term list -> State.t -> term) -> Conversion.ty_ast -> (t,h,c) compiled_adt -> depth:int -> h -> c -> State.t -> term -> State.t * t * Conversion.extra_goals = fun ~mkinterval ~look ~alloc ~mkUnifVar ty adt ~depth hyps constraints state t -> try match look ~depth t with | Const c -> let XK(args,read,_) = Constants.Map.find c adt in readback_args ~look ty ~depth hyps constraints state [] t args read [] | App(c,x,xs) -> let XK(args,read,_) = Constants.Map.find c adt in readback_args ~look ty ~depth hyps constraints state [] t args read (x::xs) | (UVar _ | AppUVar _) -> let XK(args,read,_) = Constants.Map.find Global_symbols.uvarc adt in readback_args ~look ty ~depth hyps constraints state [] t args read [t] | Discard -> let XK(args,read,_) = Constants.Map.find Global_symbols.uvarc adt in let state, k = alloc state in readback_args ~look ty ~depth hyps constraints state [] t args read [mkUnifVar k ~args:(mkinterval 0 depth 0) state] | _ -> raise (Conversion.TypeErr(ty,depth,t)) with Not_found -> raise (Conversion.TypeErr(ty,depth,t)) and adt_embed_args : type m a t h c. mkConst:(int -> term) -> Conversion.ty_ast -> (t,h,c) compiled_adt -> constant -> depth:int -> h -> c -> (a,m,t,h,c) compiled_constructor_arguments -> (State.t -> State.t * term * Conversion.extra_goals) list -> m = fun ~mkConst ty adt kname ~depth hyps constraints args acc -> match args with | XN -> fun state -> let state, ts, gls = List.fold_left (fun (state,acc,gls) f -> let state, t, goals = f state in state, t :: acc, goals :: gls) (state,[],[]) acc in state, buildk ~mkConst kname ts, List.(flatten gls) | XA(d,args) -> fun x -> adt_embed_args ~mkConst ty adt kname ~depth hyps constraints args ((fun state -> d.embed ~depth hyps constraints state x) :: acc) and embed : type a h c. mkConst:(int -> term) -> Conversion.ty_ast -> (Format.formatter -> a -> unit) -> (a,h,c) compiled_adt -> depth:int -> h -> c -> State.t -> a -> State.t * term * Conversion.extra_goals = fun ~mkConst ty pp adt -> let bindings = Constants.Map.bindings adt in fun ~depth hyps constraints state t -> let rec aux l state = match l with | [] -> type_error ("Pattern matching failure embedding: " ^ Conversion.show_ty_ast ty ^ Format.asprintf ": %a" pp t) | (kname, XK(args,_,matcher)) :: rest -> let ok = adt_embed_args ~mkConst ty adt kname ~depth hyps constraints args [] in matcher ~ok ~ko:(aux rest) t state in aux bindings state let rec compile_arguments : type b bs m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (t,h,c) ContextualConversion.t -> (bs,ms,t,h,c) compiled_constructor_arguments = fun arg self -> match arg with | N -> XN | A(d,rest) -> XA(ContextualConversion.(!>) d,compile_arguments rest self) | CA(d,rest) -> XA(d,compile_arguments rest self) | S rest -> XA(self,compile_arguments rest self) | C(fs, rest) -> XA(fs self, compile_arguments rest self) let rec compile_builder_aux : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> b -> bs = fun args f -> match args with | N -> fun state -> state, f | A(_,rest) -> fun a -> compile_builder_aux rest (f a) | CA(_,rest) -> fun a -> compile_builder_aux rest (f a) | S rest -> fun a -> compile_builder_aux rest (f a) | C(_,rest) -> fun a -> compile_builder_aux rest (f a) let compile_builder : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (bs,b) build_t -> bs = fun a -> function | B f -> compile_builder_aux a f | BS f -> f let rec compile_matcher_ok : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> ms -> Conversion.extra_goals ref -> State.t ref -> m = fun args f gls state -> match args with | N -> let state', t, gls' = f !state in state := state'; gls := gls'; t | A(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state | CA(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state | S rest -> fun a -> compile_matcher_ok rest (f a) gls state | C(_,rest) -> fun a -> compile_matcher_ok rest (f a) gls state let compile_matcher_ko f gls state () = let state', t, gls' = f !state in state := state'; gls := gls'; t let compile_matcher : type bs b m ms t h c. (bs,b,ms,m,t,h,c) constructor_arguments -> (ms,m,t) match_t -> (ms,t) compiled_match_t = fun a -> function | M f -> fun ~ok ~ko t state -> let state = ref state in let gls = ref [] in !state, f ~ok:(compile_matcher_ok a ok gls state) ~ko:(compile_matcher_ko ko gls state) t, !gls | MS f -> f let rec tyargs_of_args : type a b c d e. string -> (a,b,c,d,e) compiled_constructor_arguments -> (bool * string * string) list = fun self -> function | XN -> [false,self,""] | XA ({ ty },rest) -> (false,Conversion.show_ty_ast ty,"") :: tyargs_of_args self rest let compile_constructors ty self self_name l = let names = List.fold_right (fun (K(name,_,_,_,_)) -> StrSet.add name) l StrSet.empty in if StrSet.cardinal names <> List.length l then anomaly ("Duplicate constructors name in ADT: " ^ Conversion.show_ty_ast ty); List.fold_left (fun (acc,sacc) (K(name,_,a,b,m)) -> let c = Global_symbols.declare_global_symbol name in let args = compile_arguments a self in Constants.Map.add c (XK(args,compile_builder a b,compile_matcher a m)) acc, StrMap.add name (tyargs_of_args self_name args) sacc) (Constants.Map.empty,StrMap.empty) l let document_constructor fmt name doc argsdoc = Fmt.fprintf fmt "@[<hov2>type %s@[<hov>%a.%s@]@]@\n" name pp_ty_args argsdoc (if doc = "" then "" else " % " ^ doc) let document_kind fmt = function | Conversion.TyApp(s,_,l) -> let n = List.length l + 2 in let l = Array.init n (fun _ -> "type") in Fmt.fprintf fmt "@[<hov 2>kind %s %s.@]@\n" s (String.concat " -> " (Array.to_list l)) | Conversion.TyName s -> Fmt.fprintf fmt "@[<hov 2>kind %s type.@]@\n" s let document_adt doc ty ks cks fmt () = if doc <> "" then begin pp_comment fmt ("% " ^ doc); Fmt.fprintf fmt "@\n" end; document_kind fmt ty; List.iter (fun (K(name,doc,_,_,_)) -> if name <> "uvar" then let argsdoc = StrMap.find name cks in document_constructor fmt name doc argsdoc) ks let adt ~mkinterval ~look ~mkConst ~alloc ~mkUnifVar { ty; constructors; doc; pp } = let readback_ref = ref (fun ~depth _ _ _ _ -> assert false) in let embed_ref = ref (fun ~depth _ _ _ _ -> assert false) in let sconstructors_ref = ref StrMap.empty in let self = { ContextualConversion.ty; pp; pp_doc = (fun fmt () -> document_adt doc ty constructors !sconstructors_ref fmt ()); readback = (fun ~depth hyps constraints state term -> !readback_ref ~depth hyps constraints state term); embed = (fun ~depth hyps constraints state term -> !embed_ref ~depth hyps constraints state term); } in let cconstructors, sconstructors = compile_constructors ty self (Conversion.show_ty_ast ty) constructors in sconstructors_ref := sconstructors; readback_ref := readback ~mkinterval ~look ~alloc ~mkUnifVar ty cconstructors; embed_ref := embed ~mkConst ty pp cconstructors; self end type declaration = | MLCode of t * doc_spec | MLData : 'a Conversion.t -> declaration | MLDataC : ('a,'h,'c) ContextualConversion.t -> declaration | LPDoc of string | LPCode of string (* doc *) let ws_to_max fmt max n = if n < max then Format.fprintf fmt "%s" (String.make (max - n) ' ') else () let pp_tab_arg i max sep fmt (dir,ty,doc) = let dir = if dir then "i" else "o" in if i = 0 then Fmt.pp_set_tab fmt () else (); Fmt.fprintf fmt "%s:%s%s" dir ty sep; if i = 0 then (ws_to_max fmt max (String.length ty); Fmt.pp_set_tab fmt ()) else Fmt.pp_print_tab fmt (); if doc <> "" then begin Fmt.fprintf fmt " %% %s" doc end; Fmt.pp_print_tab fmt () ;; let pp_tab_args fmt l = let n = List.length l - 1 in let max = List.fold_left (fun m (_,s,_) -> max (String.length s) m) 0 l in Fmt.pp_open_tbox fmt (); if l = [] then Fmt.fprintf fmt "."; List.iteri (fun i x -> let sep = if i = n then "." else "," in pp_tab_arg i max sep fmt x) l; Fmt.pp_close_tbox fmt () ;; let pp_arg sep fmt (dir,ty,doc) = let dir = if dir then "i" else "o" in Fmt.fprintf fmt "%s:%s%s" dir ty sep ;; let pp_args = pplist (pp_arg "") ", " ~pplastelem:(pp_arg "") let pp_pred fmt docspec name doc_pred args = let args = List.rev args in match docspec with | DocNext -> Fmt.fprintf fmt "@[<v 2>external pred %s %% %s@;%a@]@." name doc_pred pp_tab_args args | DocAbove -> let doc = "[" ^ String.concat " " (name :: List.map (fun (_,_,x) -> x) args) ^ "] " ^ doc_pred in Fmt.fprintf fmt "@[<v>%% %a@.external pred %s @[<hov>%a.@]@]@.@." pp_comment doc name pp_args args ;; let pp_variadictype fmt name doc_pred ty args = let parens s = if String.contains s ' ' then "("^s^")" else s in let args = List.rev ((false,"variadic " ^ parens ty ^ " prop","") :: args) in let doc = "[" ^ String.concat " " (name :: List.map (fun (_,_,x) -> x) args) ^ "...] " ^ doc_pred in Fmt.fprintf fmt "@[<v>%% %a@.external type %s@[<hov>%a.@]@]@.@." pp_comment doc name pp_ty_args args ;; let document_pred fmt docspec name ffi = let rec doc : type i o h c. (bool * string * string) list -> (i,o,h,c) ffi -> unit = fun args -> function | In( { Conversion.ty }, s, ffi) -> doc ((true,Conversion.show_ty_ast ty,s) :: args) ffi | Out( { Conversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | InOut( { Conversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | CIn( { ContextualConversion.ty }, s, ffi) -> doc ((true,Conversion.show_ty_ast ty,s) :: args) ffi | COut( { ContextualConversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | CInOut( { ContextualConversion.ty }, s, ffi) -> doc ((false,Conversion.show_ty_ast ty,s) :: args) ffi | Read (_,s) -> pp_pred fmt docspec name s args | Easy s -> pp_pred fmt docspec name s args | Full (_,s) -> pp_pred fmt docspec name s args | FullHO (_,s) -> pp_pred fmt docspec name s args | VariadicIn( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args | VariadicOut( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args | VariadicInOut( _,{ ContextualConversion.ty }, s) -> pp_variadictype fmt name s (Conversion.show_ty_ast ty) args in doc [] ffi ;; let document fmt l calc_list = let omargin = Fmt.pp_get_margin fmt () in Fmt.pp_set_margin fmt 75; Fmt.fprintf fmt "@[<v>"; Fmt.fprintf fmt "@\n@\n"; List.iter (function | MLCode(Pred(name,ffi,_), docspec) -> document_pred fmt docspec name ffi; if name = "calc" then begin Format.fprintf fmt "%s@\n@\n" "% --- Operators ---"; List.iter (fun (_,x) -> Format.fprintf fmt "%s@\n@\n" x.CalcHooks.ty_decl ) calc_list end; | MLData { pp_doc } -> Fmt.fprintf fmt "%a@\n" pp_doc () | MLDataC { pp_doc } -> Fmt.fprintf fmt "%a@\n" pp_doc () | LPCode s -> Fmt.fprintf fmt "%s" s; Fmt.fprintf fmt "@\n@\n" | LPDoc s -> pp_comment fmt ("% " ^ s); Fmt.fprintf fmt "@\n@\n") l; Fmt.fprintf fmt "@\n@\n"; Fmt.fprintf fmt "@]@."; Fmt.pp_set_margin fmt omargin ;; type builtin_table = (int, t) Hashtbl.t [@@deriving show] end type symbol_table = { mutable c2s : string Constants.Map.t; c2t : (constant, term) Hashtbl.t; mutable frozen_constants : int; } [@@deriving show] type executable = { (* the lambda-Prolog program: an indexed list of clauses *) compiled_program : prolog_prog; (* chr rules *) chr : CHR.t; (* query *) initial_depth : int; (* used by findall and CHR *) initial_goal: term; (* constraints coming from compilation *) initial_runtime_state : State.t; (* Hashconsed symbols + their string equivalent *) symbol_table : symbol_table; (* Indexed FFI entry points *) builtins : BuiltInPredicate.builtin_table; (* solution *) assignments : term Util.StrMap.t; } type pp_ctx = { uv_names : (string Util.IntMap.t * int) ref; table : symbol_table; } type solution = { assignments : term StrMap.t; constraints : constraints; state : State.t; pp_ctx : pp_ctx; state_for_relocation : int * symbol_table; } type 'a outcome = Success of solution | Failure | NoMoreSteps exception CannotDeclareClauseForBuiltin of Loc.t option * constant
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>