package elpi
ELPI - Embeddable λProlog Interpreter
Install
Dune Dependency
Authors
Maintainers
Sources
elpi-2.0.7.tbz
sha256=80233ebd92babd696148ed553238961ec7b6de6bf157045aae1c7090840aeded
sha512=00c9ec01fabde9db1de4a58cb37480035e6f926d83b8360553419bcb99e9199f0720dde975f97ac9942ce528884d3d59d025cfbd471f12d57547429f15684d49
doc/src/elpi.runtime/ptmap.ml.html
Source file ptmap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
(**************************************************************************) (* *) (* Copyright (C) Jean-Christophe Filliatre *) (* *) (* This software is free software; you can redistribute it and/or *) (* modify it under the terms of the GNU Library General Public *) (* License version 2.1, with the special exception on linking *) (* described in file LICENSE. *) (* *) (* This software is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *) (* *) (**************************************************************************) (*i $Id$ i*) (*s Maps of integers implemented as Patricia trees, following Chris Okasaki and Andrew Gill's paper {\em Fast Mergeable Integer Maps} ({\tt\small http://www.cs.columbia.edu/\~{}cdo/papers.html\#ml98maps}). See the documentation of module [Ptset] which is also based on the same data-structure. *) type key = int type 'a t = | Empty | Leaf of int * 'a | Branch of int * int * 'a t * 'a t let empty = Empty let is_empty t = t = Empty let zero_bit k m = (k land m) == 0 let rec mem k = function | Empty -> false | Leaf (j,_) -> k == j | Branch (_, m, l, r) -> mem k (if zero_bit k m then l else r) let rec find k = function | Empty -> raise Not_found | Leaf (j,x) -> if k == j then x else raise Not_found | Branch (_, m, l, r) -> find k (if zero_bit k m then l else r) let find_unifiables k t = let sol = ref [] in let rec aux = function | Empty -> () | Leaf (j,x) -> if k land j == k then sol := x :: !sol | Branch (_, m, l, r) -> if zero_bit k m then (aux r; aux l) else aux r in aux t; !sol let lowest_bit x = x land (-x) let branching_bit p0 p1 = lowest_bit (p0 lxor p1) let mask p m = p land (m-1) let join (p0,t0,p1,t1) = let m = branching_bit p0 p1 in if zero_bit p0 m then Branch (mask p0 m, m, t0, t1) else Branch (mask p0 m, m, t1, t0) let match_prefix k p m = (mask k m) == p let add k x t = let rec ins = function | Empty -> Leaf (k,x) | Leaf (j,_) as t -> if j == k then Leaf (k,x) else join (k, Leaf (k,x), j, t) | Branch (p,m,t0,t1) as t -> if match_prefix k p m then if zero_bit k m then Branch (p, m, ins t0, t1) else Branch (p, m, t0, ins t1) else join (k, Leaf (k,x), p, t) in ins t let branch = function | (_,_,Empty,t) -> t | (_,_,t,Empty) -> t | (p,m,t0,t1) -> Branch (p,m,t0,t1) let remove k t = let rec rmv = function | Empty -> Empty | Leaf (j,_) as t -> if k == j then Empty else t | Branch (p,m,t0,t1) as t -> if match_prefix k p m then if zero_bit k m then branch (p, m, rmv t0, t1) else branch (p, m, t0, rmv t1) else t in rmv t let rec iter f = function | Empty -> () | Leaf (k,x) -> f k x | Branch (_,_,t0,t1) -> iter f t0; iter f t1 let rec map f = function | Empty -> Empty | Leaf (k,x) -> Leaf (k, f x) | Branch (p,m,t0,t1) -> Branch (p, m, map f t0, map f t1) let rec mapi f = function | Empty -> Empty | Leaf (k,x) -> Leaf (k, f k x) | Branch (p,m,t0,t1) -> Branch (p, m, mapi f t0, mapi f t1) let rec fold f s accu = match s with | Empty -> accu | Leaf (k,x) -> f k x accu | Branch (_,_,t0,t1) -> fold f t0 (fold f t1 accu) (* we order constructors as Empty < Leaf < Branch *) let compare cmp t1 t2 = let rec compare_aux t1 t2 = match t1,t2 with | Empty, Empty -> 0 | Empty, _ -> -1 | _, Empty -> 1 | Leaf (k1,x1), Leaf (k2,x2) -> let c = compare k1 k2 in if c <> 0 then c else cmp x1 x2 | Leaf _, Branch _ -> -1 | Branch _, Leaf _ -> 1 | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> let c = compare p1 p2 in if c <> 0 then c else let c = compare m1 m2 in if c <> 0 then c else let c = compare_aux l1 l2 in if c <> 0 then c else compare_aux r1 r2 in compare_aux t1 t2 let equal eq t1 t2 = let rec equal_aux t1 t2 = match t1, t2 with | Empty, Empty -> true | Leaf (k1,x1), Leaf (k2,x2) -> k1 = k2 && eq x1 x2 | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> p1 = p2 && m1 = m2 && equal_aux l1 l2 && equal_aux r1 r2 | _ -> false in equal_aux t1 t2 let rec merge = function | Empty, t -> t | t, Empty -> t | Leaf (k,x), t -> add k x t | t, Leaf (k,x) -> add k x t | (Branch (p,m,s0,s1) as s), (Branch (q,n,t0,t1) as t) -> if m == n && match_prefix q p m then (* The trees have the same prefix. Merge the subtrees. *) Branch (p, m, merge (s0,t0), merge (s1,t1)) else if m < n && match_prefix q p m then (* [q] contains [p]. Merge [t] with a subtree of [s]. *) if zero_bit q m then Branch (p, m, merge (s0,t), s1) else Branch (p, m, s0, merge (s1,t)) else if m > n && match_prefix p q n then (* [p] contains [q]. Merge [s] with a subtree of [t]. *) if zero_bit p n then Branch (q, n, merge (s,t0), t1) else Branch (q, n, t0, merge (s,t1)) else (* The prefixes disagree. *) join (p, s, q, t) let rec diff f s1 s2 = match (s1,s2) with | Empty, _ -> Empty | _, Empty -> s1 | Leaf (k1,x1), _ -> (try let x2 = find k1 s2 in match f x1 x2 with None -> Empty | Some x -> Leaf (k1,x) with Not_found -> s1) | _, Leaf (k2,x2) -> (try let x1 = find k2 s1 in match f x1 x2 with None -> remove k2 s1 | Some x -> add k2 x s1 with Not_found -> s1) | Branch (p1,m1,l1,r1), Branch (p2,m2,l2,r2) -> if m1 == m2 && p1 == p2 then merge (diff f l1 l2, diff f r1 r2) else if m1 < m2 && match_prefix p2 p1 m1 then if zero_bit p2 m1 then merge (diff f l1 s2, r1) else merge (l1, diff f r1 s2) else if m1 > m2 && match_prefix p1 p2 m2 then if zero_bit p1 m2 then diff f s1 l2 else diff f s1 r2 else s1 let to_list s = let rec elements_aux acc = function | Empty -> acc | Leaf (k,x) -> (k,x) :: acc | Branch (_,_,l,r) -> elements_aux (elements_aux acc l) r in List.sort (fun (k1,_) (k2,_) -> Stdlib.compare k1 k2) (elements_aux [] s) let pp f fmt m = let l = to_list m in Elpi_util.Util.(pplist (pp_pair Int.pp f) " " fmt l) let show f m = let b = Buffer.create 20 in let fmt = Format.formatter_of_buffer b in pp f fmt m; Buffer.contents b
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>