package elpi
ELPI - Embeddable λProlog Interpreter
Install
Dune Dependency
Authors
Maintainers
Sources
elpi-2.0.7.tbz
sha256=80233ebd92babd696148ed553238961ec7b6de6bf157045aae1c7090840aeded
sha512=00c9ec01fabde9db1de4a58cb37480035e6f926d83b8360553419bcb99e9199f0720dde975f97ac9942ce528884d3d59d025cfbd471f12d57547429f15684d49
doc/src/elpi.compiler/compiler_data.ml.html
Source file compiler_data.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
open Elpi_util open Elpi_parser open Elpi_runtime open Util module F = Ast.Func module Scope = struct type language = string [@@ deriving show, ord] type type_decl_id = int [@@ deriving show, ord] let dummy_type_decl_id = 0 let fresh_type_decl_id = let i = ref 0 in fun () -> incr i; !i let is_dummy_type_decl_id x = x <= 0 type t = | Bound of language (* bound by a lambda, stays bound *) | Global of { escape_ns : bool; (* when true name space elimination does not touch this constant *) (* mutable decl_id : type_decl_id; [@equal fun _ _ -> true XXX since it is broken ] type checking assigns a unique id *) } [@@ deriving show, ord] module Map = Map.Make(struct type t = F.t * language [@@ deriving show, ord] end) module Set = Set.Make(struct type t = F.t * language [@@ deriving show, ord] end) let mkGlobal ?(escape_ns=false) ?(decl_id = dummy_type_decl_id) () = Global { escape_ns (*; decl_id*) } end let elpi_language : Scope.language = "lp" module ScopeContext = struct type ctx = { vmap : (Scope.language * F.t * F.t) list; uvmap : (F.t * F.t) list ref } let empty () = { vmap = []; uvmap = ref [] } let eq_var { vmap } language c1 c2 = List.mem (language,c1,c2) vmap let purge language f c l = List.filter (fun (l,x,y) -> l = language && not @@ F.equal (f (x,y)) c) l let push_ctx language c1 c2 ctx = { ctx with vmap = (language,c1 , c2) :: (purge language fst c1 @@ purge language snd c2 ctx.vmap) } let eq_uvar ctx c1 c2 = if List.exists (fun (x,_) -> F.equal x c1) !(ctx.uvmap) || List.exists (fun (_,y) -> F.equal y c2) !(ctx.uvmap) then List.mem (c1,c2) !(ctx.uvmap) else begin ctx.uvmap := (c1,c2) :: !(ctx.uvmap); true end end module ScopedTypeExpression = struct open ScopeContext module SimpleType = struct type t_ = | Any | Con of F.t | App of F.t * t * t list | Arr of t * t and t = { it : t_; loc : Loc.t } [@@ deriving show] end type t_ = | Any | Const of Scope.t * F.t | App of Scope.t * F.t * e * e list | Arrow of Ast.Structured.variadic * e * e | Pred of Ast.Structured.functionality * (Ast.Mode.t * e) list and e = { it : t_; loc : Loc.t } [@@ deriving show] open Format let arrs = 0 let app = 1 let lvl_of = function | Arrow _ | Pred _ -> arrs | App _ -> app | _ -> 2 let rec pretty_e fmt = function | Any -> fprintf fmt "any" | Const(_,c) -> F.pp fmt c | App(_,f,x,xs) -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist (pretty_e_parens ~lvl:app) " ") (x::xs) | Arrow(NotVariadic,s,t) -> fprintf fmt "@[<hov 2>%a ->@ %a@]" (pretty_e_parens ~lvl:arrs) s pretty_e_loc t | Arrow(Variadic,s,t) -> fprintf fmt "%a ..-> %a" (pretty_e_parens ~lvl:arrs) s pretty_e_loc t | Pred(_,[]) -> fprintf fmt "prop" | Pred(_,l) -> fprintf fmt "pred %a" (Util.pplist pretty_ie ", ") l and pretty_ie fmt (i,e) = fprintf fmt "%s:%a" (match i with Ast.Mode.Input -> "i" | Output -> "o") pretty_e_loc e and pretty_e_parens ~lvl fmt = function | t when lvl >= lvl_of t.it -> fprintf fmt "(%a)" pretty_e_loc t | t -> pretty_e_loc fmt t and pretty_e_loc fmt { it } = pretty_e fmt it let pretty_e fmt (t : e) = Format.fprintf fmt "@[%a@]" pretty_e_loc t let rec of_simple_type = function | SimpleType.Any -> Any | Con c -> Const(Scope.mkGlobal (),c) | App(c,x,xs) -> App(Scope.mkGlobal (),c,of_simple_type_loc x,List.map of_simple_type_loc xs) | Arr(s,t) -> Arrow(NotVariadic,of_simple_type_loc s, of_simple_type_loc t) and of_simple_type_loc { it; loc } = { it = of_simple_type it; loc } type v_ = | Lam of F.t * v_ | Ty of e [@@ deriving show] type t = { name : F.t; value : v_; nparams : int; loc : Loc.t; indexing : Ast.Structured.tattribute option } [@@ deriving show] let pretty fmt { value } = let rec pretty fmt = function | Lam(_,x) -> pretty fmt x | Ty e -> pretty_e fmt e in Format.fprintf fmt "@[%a@]" pretty value let rec eqt ctx t1 t2 = match t1.it, t2.it with | Const(Global _ as b1,c1), Const(Global _ as b2,c2) -> Scope.compare b1 b2 == 0 && F.equal c1 c2 | Const(Bound l1,c1), Const(Bound l2,c2) -> Scope.compare_language l1 l2 == 0 && eq_var ctx l1 c1 c2 | App(Global _,c1,x,xs), App(Global _,c2,y,ys) -> F.equal c1 c2 && eqt ctx x y && Util.for_all2 (eqt ctx) xs ys | App(Bound _,_,_,_), _ -> assert false | _, App(Bound _,_,_,_) -> assert false | Arrow(b1,s1,t1), Arrow(b2,s2,t2) -> b1 = b2 && eqt ctx s1 s2 && eqt ctx t1 t2 | Pred(f1,l1), Pred(f2,l2) -> f1 = f2 && Util.for_all2 (fun (m1,t1) (m2,t2) -> Ast.Mode.compare m1 m2 == 0 && eqt ctx t1 t2) l1 l2 | Any, Any -> true | _ -> false let rec eq ctx t1 t2 = match t1, t2 with | Lam(c1,b1), Lam(c2,b2) -> eq (push_ctx "lp" c1 c2 ctx) b1 b2 | Ty t1, Ty t2 -> eqt ctx t1 t2 | _ -> false let equal { name = n1; value = x } { name = n2; value = y } = F.equal n1 n2 && eq (empty ()) x y let compare _ _ = assert false let rec smart_map_scoped_loc_ty f ({ it; loc } as orig) = let it' = smart_map_scoped_ty f it in if it' == it then orig else { it = it'; loc } and smart_map_scoped_ty f orig = match orig with | Any -> orig | Const((Scope.Bound _| Scope.Global { escape_ns = true }),_) -> orig | Const(Scope.Global _ as g,c) -> let c' = f c in if c == c' then orig else Const(g,c') | App(Bound _,_,_,_) -> assert false | App(Global g as s, c,x,xs) -> let c' = if g.escape_ns then c else f c in let x' = smart_map_scoped_loc_ty f x in let xs' = smart_map (smart_map_scoped_loc_ty f) xs in if c' == c && x' == x && xs' == xs then orig else App(s,c',x',xs') | Arrow(v,x,y) -> let x' = smart_map_scoped_loc_ty f x in let y' = smart_map_scoped_loc_ty f y in if x' == x && y' == y then orig else Arrow(v,x',y') | Pred(c,l) -> let l' = smart_map (fun (m,x as orig) -> let x' = smart_map_scoped_loc_ty f x in if x' == x then orig else m,x') l in if l' == l then orig else Pred(c,l') let rec smart_map_tye f = function | Lam(c,t) as orig -> let t' = smart_map_tye f t in if t == t' then orig else Lam(c,t') | Ty t as orig -> let t' = smart_map_scoped_loc_ty f t in if t == t' then orig else Ty t' let smart_map f ({ name; value; nparams; loc; indexing } as orig) = let name' = f name in let value' = smart_map_tye f value in if name == name' && value' == value then orig else { name = name'; value = value'; nparams; loc; indexing } end module MutableOnce : sig type 'a t [@@ deriving show] val make : F.t -> 'a t val create : 'a -> 'a t val set : 'a t -> 'a -> unit val unset : 'a t -> unit val get : 'a t -> 'a val is_set : 'a t -> bool val pretty : Format.formatter -> 'a t -> unit end = struct type 'a t = F.t * 'a option ref [@@ deriving show] let make f = f, ref None let create t = F.from_string "_", ref (Some t) let is_set (_,x) = Option.is_some !x let set (_,r) x = match !r with | None -> r := Some x | Some _ -> anomaly "MutableOnce" let get (_,x) = match !x with Some x -> x | None -> anomaly "get" let unset (_,x) = x := None let pretty fmt (f,x) = match !x with | None -> Format.fprintf fmt "%a" F.pp f | Some _ -> anomaly "pp" end module TypeAssignment = struct type 'a overloading = | Single of 'a | Overloaded of 'a list [@@ deriving show, fold, iter] type 'a t_ = | Prop | Any | Cons of F.t | App of F.t * 'a t_ * 'a t_ list | Arr of Ast.Structured.variadic * 'a t_ * 'a t_ | UVar of 'a [@@ deriving show, fold, ord] type skema = Lam of F.t * skema | Ty of F.t t_ [@@ deriving show, ord] type overloaded_skema = skema overloading [@@ deriving show] type skema_w_id = int * skema [@@ deriving show, ord] type overloaded_skema_with_id = skema_w_id overloading [@@ deriving show] type t = Val of t MutableOnce.t t_ [@@ deriving show] let nparams (_,t : skema_w_id) = let rec aux = function Ty _ -> 0 | Lam(_,t) -> 1 + aux t in aux t let rec subst map = function | (Prop | Any | Cons _) as x -> x | App(c,x,xs) -> App (c,subst map x,List.map (subst map) xs) | Arr(v,s,t) -> Arr(v,subst map s, subst map t) | UVar c -> match map c with | Some x -> x | None -> anomaly "TypeAssignment.subst" let fresh ((id,sk): skema_w_id) = let rec fresh map = function | Lam(c,t) -> fresh (F.Map.add c (UVar (MutableOnce.make c)) map) t | Ty t -> if F.Map.is_empty map then (id, Obj.magic t), map else (id, subst (fun x -> F.Map.find_opt x map) t), map in fresh F.Map.empty sk let fresh_overloaded = function | Single sk -> Single (fst @@ fresh sk) | Overloaded l -> Overloaded (List.map (fun x -> fst @@ fresh x) l) let rec apply m sk args = match sk, args with | Ty t, [] -> if F.Map.is_empty m then Obj.magic t else subst (fun x -> F.Map.find_opt x m) t | Lam(c,t), x::xs -> apply (F.Map.add c x m) t xs | _ -> assert false (* kind checker *) let apply (_,sk:skema_w_id) args = apply F.Map.empty sk args let eq_skema_w_id (_,x) (_,y) = compare_skema x y = 0 let diff_id_check ((id1:int),_) (id2,_) = assert (id1<>id2) let diff_ids_check e = List.iter (diff_id_check e) let rec remove_mem e acc = function | [] -> List.rev acc | x::xs when eq_skema_w_id e x -> diff_ids_check x xs; List.rev_append acc xs | x::xs -> remove_mem e (x::acc) xs let rec merge_skema t1 t2 = match t1, t2 with | Single x, Single y when eq_skema_w_id x y -> t1 | Single x, Single y -> diff_id_check x y; Overloaded [x;y] | Single x, Overloaded ys -> Overloaded (x :: remove_mem x [] ys) | Overloaded xs, Single y when List.exists (eq_skema_w_id y) xs -> t1 | Overloaded xs, Single y -> diff_ids_check y xs; Overloaded(xs@[y]) | Overloaded xs, Overloaded _ -> List.fold_right (fun x -> merge_skema (Single x)) xs t2 let unval (Val x) = x let rec deref m = match unval @@ MutableOnce.get m with | UVar m when MutableOnce.is_set m -> deref m | x -> x let set m v = MutableOnce.set m (Val v) exception Not_monomorphic let is_monomorphic (Val t) = let rec map = function | UVar r when MutableOnce.is_set r -> map (deref r) | UVar _ -> raise Not_monomorphic | Prop -> Prop | Any -> Any | Cons c -> Cons c | App(c,x,xs) -> App(c,map x, List.map map xs) | Arr(b,s,t) -> Arr(b,map s,map t) in try let t = map t in Some (Ty (Obj.magic t : F.t t_)) (* No UVar nodes *) with Not_monomorphic -> None let rec is_arrow_to_prop = function | Prop -> true | Any | Cons _ | App _ -> false | Arr(_,_,t) -> is_arrow_to_prop t | UVar _ -> false let rec is_predicate = function | Lam (_,t) -> is_predicate t | Ty t -> is_arrow_to_prop t let is_predicate = function | Single (_,t) -> is_predicate t | Overloaded l -> List.exists (fun (_,x) -> is_predicate x) l open Format let arrs = 0 let app = 1 let lvl_of = function | Arr _ -> arrs | App _ -> app | _ -> 2 let rec pretty fmt = function | Prop -> fprintf fmt "prop" | Any -> fprintf fmt "any" | Cons c -> F.pp fmt c | App(f,x,xs) -> fprintf fmt "@[<hov 2>%a@ %a@]" F.pp f (Util.pplist (pretty_parens ~lvl:app) " ") (x::xs) | Arr(NotVariadic,s,t) -> fprintf fmt "@[<hov 2>%a ->@ %a@]" (pretty_parens ~lvl:arrs) s pretty t | Arr(Variadic,s,t) -> fprintf fmt "%a ..-> %a" (pretty_parens ~lvl:arrs) s pretty t | UVar m when MutableOnce.is_set m -> pretty fmt @@ deref m | UVar m -> MutableOnce.pretty fmt m and pretty_parens ~lvl fmt = function | UVar m when MutableOnce.is_set m -> pretty_parens ~lvl fmt @@ deref m | t when lvl >= lvl_of t -> fprintf fmt "(%a)" pretty t | t -> pretty fmt t let pretty fmt t = Format.fprintf fmt "@[%a@]" pretty t let vars_of (Val t) = fold_t_ (fun xs x -> if MutableOnce.is_set x then xs else x :: xs) [] t end module ScopedTerm = struct open ScopeContext (* User Visible *) module SimpleTerm = struct type t_ = | Impl of bool * t * t (* `Impl(true,t1,t2)` ≡ `t1 => t2` and `Impl(false,t1,t2)` ≡ `t1 :- t2` *) | Const of Scope.t * F.t | Discard | Var of F.t * t list | App of Scope.t * F.t * t * t list | Lam of (F.t * Scope.language) option * ScopedTypeExpression.SimpleType.t option * t | Opaque of CData.t | Cast of t * ScopedTypeExpression.SimpleType.t and t = { it : t_; loc : Loc.t } [@@ deriving show] type constant = int let mkGlobal ~loc c = { loc; it = Const(Scope.mkGlobal ~escape_ns:true (),F.from_string @@ Constants.Map.find c Data.Global_symbols.table.c2s) } let mkBound ~loc ~language n = { loc; it = Const(Bound language,n)} let mkAppGlobal ~loc c x xs = { loc; it = App(Scope.mkGlobal ~escape_ns:true (),F.from_string @@ Constants.Map.find c Data.Global_symbols.table.c2s,x,xs) } let mkAppBound ~loc ~language n x xs = { loc; it = App(Bound language,n,x,xs) } let mkVar ~loc n l = { loc; it = Var(n,l) } let mkOpaque ~loc o = { loc; it = Opaque o } let mkCast ~loc t ty = { loc; it = Cast(t,ty) } let mkDiscard ~loc = { loc; it = Discard } let mkLam ~loc n ?ty t = { loc; it = Lam(n,ty,t) } let mkImplication ~loc s t = { loc; it = Impl(true,s,t) } let mkPi ~loc n ?ty t = { loc; it = App(Scope.mkGlobal ~escape_ns:true (),F.pif,{ loc; it = Lam (Some (n,elpi_language),ty,t) },[]) } let mkConj ~loc = function | [] -> { loc; it = Const(Scope.mkGlobal ~escape_ns:true (), F.truef) } | [x] -> x | x :: xs -> { loc; it = App(Scope.mkGlobal ~escape_ns:true (), F.andf, x, xs)} let mkEq ~loc a b = { loc; it = App(Scope.mkGlobal ~escape_ns:true (), F.eqf, a,[b]) } let mkNil ~loc = { it = Const(Scope.mkGlobal ~escape_ns:true (),F.nilf); loc } let mkCons ?loc a b = let loc = match loc with Some x -> x | None -> Loc.merge a.loc b.loc in { loc; it = App(Scope.mkGlobal ~escape_ns:true (),F.consf,a,[b]) } let list_to_lp_list ~loc l = let rec aux = function | [] -> mkNil ~loc | hd::tl -> let tl = aux tl in mkCons hd tl in aux l let ne_list_to_lp_list l = match List.rev l with | [] -> anomaly "Ast.list_to_lp_list on empty list" | h :: _ -> list_to_lp_list ~loc:h.loc l let rec lp_list_to_list = function | { it = App(Global { escape_ns = true }, c, x, [xs]) } when F.equal c F.consf -> x :: lp_list_to_list xs | { it = Const(Global { escape_ns = true },c) } when F.equal c F.nilf -> [] | { loc; it } -> error ~loc (Format.asprintf "%a is not a list" pp_t_ it) end type spill_info = | NoInfo (* before typing *) | Main of int (* how many arguments it stands for *) | Phantom of int (* phantom term used during type checking *) [@@ deriving show] type t_ = | Impl of bool * t * t (* `Impl(true,t1,t2)` ≡ `t1 => t2` and `Impl(false,t1,t2)` ≡ `t1 :- t2` *) | Const of Scope.t * F.t | Discard | Var of F.t * t list | App of Scope.t * F.t * t * t list | Lam of (F.t * Scope.language) option * ScopedTypeExpression.e option * t | CData of CData.t | Spill of t * spill_info ref | Cast of t * ScopedTypeExpression.e and t = { it : t_; loc : Loc.t; ty : TypeAssignment.t MutableOnce.t } [@@ deriving show] let type_of { ty } = assert(MutableOnce.is_set ty); TypeAssignment.deref ty open Format let lam = 0 let app = 1 let lvl_of = function | App _ -> app | Lam _ -> lam | _ -> 2 let rec pretty fmt { it } = pretty_ fmt it and pretty_ fmt = function | Impl(true,t1,t2) -> fprintf fmt "(%a => %a)" pretty t1 pretty t2 | Impl(_,t1,t2) -> fprintf fmt "(%a :- %a)" pretty t1 pretty t2 | Const(_,f) -> fprintf fmt "%a" F.pp f | Discard -> fprintf fmt "_" | Lam(None,None,t) -> fprintf fmt "_\\ %a" pretty t | Lam(None,Some ty,t) -> fprintf fmt "_ : %a\\ %a" ScopedTypeExpression.pretty_e ty pretty t | Lam(Some (f,_),None,t) -> fprintf fmt "%a\\ %a" F.pp f pretty t | Lam(Some (f,_),Some ty,t) -> fprintf fmt "%a : %a\\ %a" F.pp f ScopedTypeExpression.pretty_e ty pretty t | App(Global _,f,x,[]) when F.equal F.spillf f -> fprintf fmt "{%a}" pretty x | App(_,f,x,xs) -> fprintf fmt "%a %a" F.pp f (Util.pplist ~pplastelem:(pretty_parens_lam ~lvl:app) (pretty_parens ~lvl:app) " ") (x::xs) | Var(f,[]) -> fprintf fmt "%a" F.pp f | Var(f,xs) -> fprintf fmt "%a %a" F.pp f (Util.pplist (pretty_parens ~lvl:app) " ") xs | CData c -> fprintf fmt "%a" CData.pp c | Spill (t,{ contents = NoInfo }) -> fprintf fmt "{%a}" pretty t | Spill (t,{ contents = Main _ }) -> fprintf fmt "{%a}" pretty t | Spill (t,{ contents = Phantom n}) -> fprintf fmt "{%a}/*%d*/" pretty t n | Cast (t,ty) -> fprintf fmt "(%a : %a)" pretty t ScopedTypeExpression.pretty_e ty (* TODO pretty *) and pretty_parens ~lvl fmt { it } = if lvl >= lvl_of it then fprintf fmt "(%a)" pretty_ it else pretty_ fmt it and pretty_parens_lam ~lvl fmt x = match x.it with Lam _ -> pretty_ fmt x.it | _ -> pretty_parens ~lvl fmt x let equal ?(types=true) t1 t2 = let rec eq ctx t1 t2 = match t1.it, t2.it with | Const(Global _ as b1,c1), Const(Global _ as b2,c2) -> b1 = b2 && F.equal c1 c2 | Const(Bound l1,c1), Const(Bound l2,c2) -> l1 = l2 && eq_var ctx l1 c1 c2 | Discard, Discard -> true | Var(n1,l1), Var(n2,l2) -> eq_uvar ctx n1 n2 && Util.for_all2 (eq ctx) l1 l2 | App(Global _ as b1,c1,x,xs), App(Global _ as b2,c2,y,ys) -> b1 = b2 && F.equal c1 c2 && eq ctx x y && Util.for_all2 (eq ctx) xs ys | App(Bound l1,c1,x,xs), App(Bound l2,c2,y,ys) -> l1 = l2 && eq_var ctx l1 c1 c2 && eq ctx x y && Util.for_all2 (eq ctx) xs ys | Lam(None,ty1, b1), Lam (None,ty2, b2) -> eq ctx b1 b2 && (not types || Option.equal (ScopedTypeExpression.eqt (empty ())) ty1 ty2) | Lam(Some (c1,l1),ty1,b1), Lam(Some (c2,l2),ty2, b2) -> l1 = l2 && eq (push_ctx l1 c1 c2 ctx) b1 b2 && (not types || Option.equal (ScopedTypeExpression.eqt (empty ())) ty1 ty2) | Spill(b1,n1), Spill (b2,n2) -> n1 == n2 && eq ctx b1 b2 | CData c1, CData c2 -> CData.equal c1 c2 | Cast(t1,ty1), Cast(t2,ty2) -> eq ctx t1 t2 && (not types || ScopedTypeExpression.eqt (empty ()) ty1 ty2) | Impl(b1,s1,t1), Impl(b2,s2,t2) -> b1 = b2 && eq ctx t1 t2 && eq ctx s1 s2 | _ -> false in eq (empty ()) t1 t2 let compare _ _ = assert false let in_scoped_term, out_scoped_term, is_scoped_term = let open CData in let { cin; cout; isc } = declare { data_name = "hidden_scoped_term"; data_pp = pretty; data_compare = (fun _ _ -> assert false); data_hash = Hashtbl.hash; data_hconsed = false; } in cin, cout, isc let rec of_simple_term ~loc = function | SimpleTerm.Discard -> Discard | Impl(b,t1,t2) -> Impl(b,of_simple_term_loc t1, of_simple_term_loc t2) | Const(s,c) -> Const(s,c) | Opaque c -> CData c | Cast(t,ty) -> Cast(of_simple_term_loc t, ScopedTypeExpression.of_simple_type_loc ty) | Lam(c,ty,t) -> Lam(c,Option.map ScopedTypeExpression.of_simple_type_loc ty,of_simple_term_loc t) | App(s,c,x,xs) when F.equal c F.implf || F.equal c F.implf -> begin match xs with | [y] -> Impl(F.equal c F.implf,of_simple_term_loc x, of_simple_term_loc y) | _ -> error ~loc "Use of App for Impl is allowed, but the length of the list in 3rd position must be 1" end | App(s,c,x,xs) -> App(s,c,of_simple_term_loc x, List.map of_simple_term_loc xs) | Var(c,xs) -> Var(c,List.map of_simple_term_loc xs) and of_simple_term_loc { SimpleTerm.it; loc } = match it with | Opaque c when is_scoped_term c -> out_scoped_term c | _ -> { it = of_simple_term ~loc it; loc; ty = MutableOnce.make (F.from_string "Ty") } let unlock { it } = it (* naive, but only used by macros *) let fresh = ref 0 let fresh () = incr fresh; F.from_string (Format.asprintf "%%bound%d" !fresh) let rec rename l c d t = match t with | Impl(b,t1,t2) -> Impl(b,rename_loc l c d t1, rename_loc l c d t2) | Const(Bound l',c') when l = l' && F.equal c c' -> Const(Bound l,d) | Const _ -> t | App(Bound l',c',x,xs) when l = l' && F.equal c c' -> App(Bound l,d,rename_loc l c d x, List.map (rename_loc l c d) xs) | App(g,v,x,xs) -> App(g,v,rename_loc l c d x, List.map (rename_loc l c d) xs) | Lam(Some (c',l'),_,_) when l = l' && F.equal c c' -> t | Lam(v,ty,t) -> Lam(v,ty,rename_loc l c d t) | Spill(t,i) -> Spill(rename_loc l c d t,i) | Cast(t,ty) -> Cast(rename_loc l c d t,ty) | Var(v,xs) -> Var(v,List.map (rename_loc l c d) xs) | Discard | CData _ -> t and rename_loc l c d { it; ty; loc } = { it = rename l c d it; ty; loc } let beta t args = let rec fv acc { it } = match it with | Const(Bound l,c) -> Scope.Set.add (c,l) acc | Impl(_,a,b) -> List.fold_left fv acc [a;b] | Var (_,args) -> List.fold_left fv acc args | App(Bound l,c,x,xs) -> List.fold_left fv (Scope.Set.add (c,l) acc) (x::xs) | App(Global _,_,x,xs) -> List.fold_left fv acc (x::xs) | Lam(None,_,t) -> fv acc t | Lam(Some (c,l),_,t) -> Scope.Set.union acc @@ Scope.Set.remove (c,l) (fv Scope.Set.empty t) | Spill(t,_) -> fv acc t | Cast(t,_) -> fv acc t | Discard | Const _ | CData _ -> acc in let rec load_subst ~loc t (args : t list) map fvset = match t, args with | Lam(None,_,t), _ :: xs -> load_subst_loc t xs map fvset | Lam(Some c,_,t), x :: xs -> load_subst_loc t xs (Scope.Map.add c x map) (fv fvset x) | t, xs -> app ~loc (subst map fvset t) xs and load_subst_loc { it; loc } args map fvset = load_subst ~loc it args map fvset and subst (map : t Scope.Map.t) fv t = match t with | Impl(b,t1,t2) -> Impl(b,subst_loc map fv t1, subst_loc map fv t2) | Lam(None,ty,t) -> Lam(None,ty,subst_loc map fv t) | Lam(Some (c,l),ty,t) when not @@ Scope.Map.mem (c,l) map && not @@ Scope.Set.mem (c,l) fv -> Lam(Some (c,l),ty,subst_loc map fv @@ t) | Lam(Some (c,l),ty,t) -> let d = fresh () in Lam(Some (d,l),ty,subst_loc map fv @@ rename_loc l c d t) | Const(Bound l,c) when Scope.Map.mem (c,l) map -> unlock @@ Scope.Map.find (c,l) map | Const _ -> t | App(Bound l,c,x,xs) when Scope.Map.mem (c,l) map -> let hd = Scope.Map.find (c,l) map in unlock @@ app_loc hd (List.map (subst_loc map fv) (x::xs)) | App(g,c,x,xs) -> App(g,c,subst_loc map fv x, List.map (subst_loc map fv) xs) | Var(c,xs) -> Var(c,List.map (subst_loc map fv) xs) | Spill(t,i) -> Spill(subst_loc map fv t,i) | Cast(t,ty) -> Cast(subst_loc map fv t,ty) | Discard | CData _ -> t and subst_loc map fv { it; ty; loc } = { it = subst map fv it; ty; loc } and app_loc { it; loc; ty } args : t = { it = app ~loc it args; loc; ty } and app ~loc t (args : t list) = if args = [] then t else match t with | Const(g,c) -> App(g,c,List.hd args,List.tl args) | App(g,c,x,xs) -> App(g,c,x,xs @ args) | Var(c,xs) -> Var(c,xs @ args) | Impl(_,_,_) -> error ~loc "cannot apply impl" | CData _ -> error ~loc "cannot apply cdata" | Spill _ -> error ~loc "cannot apply spill" | Discard -> error ~loc "cannot apply discard" | Cast _ -> error ~loc "cannot apply cast" | Lam _ -> load_subst ~loc t args Scope.Map.empty Scope.Set.empty in load_subst_loc t args Scope.Map.empty Scope.Set.empty module QTerm = struct include SimpleTerm let apply_elpi_var_from_quotation ({ SimpleTerm.it; loc } as o) l = if l = [] then o else let l = List.map of_simple_term_loc l in match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Var(f,xs); loc = loc'; ty } -> { SimpleTerm.loc; it = SimpleTerm.Opaque (in_scoped_term @@ { it = Var(f,xs @ l); loc = loc'; ty }) } | { it = Const(Bound g,f); loc = loc'; ty } when g = elpi_language -> { SimpleTerm.loc; it = SimpleTerm.Opaque (in_scoped_term @@ { it = App(Bound g,f,List.hd l, List.tl l); loc = loc'; ty }) } | x -> anomaly ~loc (Format.asprintf "The term is not an elpi varible coming from a quotation: @[%a@]" pretty x) end | x -> anomaly ~loc (Format.asprintf "The term is not term coming from a quotation: @[%a@]" pp_t_ x) let extend_spill_hyp_from_quotation { SimpleTerm.it; loc } hyps = match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Spill(t,i); loc } -> let impl = { loc; it = Impl(true, list_to_lp_list ~loc hyps, { loc; it = Opaque (in_scoped_term t) }) } in { loc; it = Opaque(in_scoped_term @@ { it = Spill(of_simple_term_loc impl,i); loc; ty = MutableOnce.make (F.from_string "Ty") })} | _ -> anomaly ~loc (Format.asprintf "The term is not a spill coming from a quotation: @[%a@]" pp_t_ it) end | x -> anomaly ~loc (Format.asprintf "The term is not coming from a quotation: @[%a@]" pp_t_ x) let is_spill_from_quotation { SimpleTerm.it } = match it with | SimpleTerm.Opaque o when is_scoped_term o -> begin match out_scoped_term o with | { it = Spill _ } -> true | _ -> false end | _ -> false end end module TypeList = struct type t = ScopedTypeExpression.t list [@@deriving show, ord] let pretty fmt l = pplist ScopedTypeExpression.pretty ";" fmt l let make t = [t] let smart_map = smart_map let append x t = x :: List.filter (fun y -> not @@ ScopedTypeExpression.equal x y) t let merge t1 t2 = List.fold_left (fun acc x -> append x acc) (List.rev t1) t2 let fold = List.fold_left end module State = Data.State module QuotationHooks = struct type quotation = language:Scope.language -> State.t -> Ast.Loc.t -> string -> ScopedTerm.SimpleTerm.t type descriptor = { named_quotations : quotation StrMap.t; default_quotation : quotation option; singlequote_compilation : (string * quotation) option; backtick_compilation : (string * quotation) option; } let new_descriptor () = ref { named_quotations = StrMap.empty; default_quotation = None; singlequote_compilation = None; backtick_compilation = None; } let declare_singlequote_compilation ~descriptor name f = match !descriptor with | { singlequote_compilation = None } -> descriptor := { !descriptor with singlequote_compilation = Some(name,f) }; name | { singlequote_compilation = Some(oldname,_) } -> error("Only one custom compilation of 'ident' is supported. Current: " ^ oldname ^ ", new: " ^ name) let declare_backtick_compilation ~descriptor name f = match !descriptor with | { backtick_compilation = None } -> descriptor := { !descriptor with backtick_compilation = Some(name,f) }; name | { backtick_compilation = Some(oldname,_) } -> error("Only one custom compilation of `ident` is supported. Current: " ^ oldname ^ ", new: " ^ name) let set_default_quotation ~descriptor f = descriptor := { !descriptor with default_quotation = Some f } let register_named_quotation ~descriptor ~name:n f = descriptor := { !descriptor with named_quotations = StrMap.add n f !descriptor.named_quotations }; n end module Arity = struct type t = int * Loc.t [@@deriving show, ord] end exception CompileError of Loc.t option * string let error ?loc msg = raise (CompileError(loc, msg))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>