package electrod
Formal analysis for the Electrod formal pivot language
Install
Dune Dependency
Authors
Maintainers
Sources
electrod-1.0.0.tbz
sha256=4da251e58d97c797d6e940e586d225a09715777fbb1b25c5527a6a2e1e3c2d58
sha512=89c45ebd0d3401b17eac4217289ed21ec87135ab5fa62bf63b2bed1ad1435a381e3434582c2ec99c2e6d8d87ce23cecfa7ba14d76234493992ae06879b808dd2
doc/src/electrod.libelectrod/Elo_to_ltl1.ml.html
Source file Elo_to_ltl1.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
(******************************************************************************* * electrod - a model finder for relational first-order linear temporal logic * * Copyright (C) 2016-2020 ONERA * Authors: Julien Brunel (ONERA), David Chemouil (ONERA) * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * SPDX-License-Identifier: MPL-2.0 * License-Filename: LICENSE.md ******************************************************************************) (** Functor that provides a {!Elo_to_LTL_intf.S} converter given an implementation of LTL *) open Containers open Exp_bounds module G = Elo module TS = Tuple_set type stack = Tuple.t list let pp_subst out subst = Fmtc.(brackets @@ list @@ parens @@ pair int Tuple.pp) out (List.mapi (fun i tuple -> (i, tuple)) subst) let all_different ~eq xs = let rec walk acc = function | [] -> true | [ hd ] -> not @@ List.mem ~eq hd acc | hd :: tl -> (not @@ List.mem ~eq hd acc) && walk (hd :: acc) tl in walk [] xs module Make (Ltl : Solver.LTL) = struct open Ltl open Ltl.Infix type atomic = Ltl.Atomic.t type ltl = Ltl.t type goal = G.t (***************************************************************** * Semantic function ****************************************************************) (* FIRST: some functions used for the semantics of a transitive closure. *) (* given a 2-tuple set ts, this function computes the domain and the co-domain of ts, i.e., the set (sequence) of atoms that are the first elements of a 2-tuple in ts, and the set (sequence) of atoms thare are the second elements of a 2-tuple in ts *) let compute_domain_codomain ts = let ar = TS.inferred_arity ts in assert (ar = 2); let module S = Iter in let s = TS.to_iter ts in let split_seq (s1_acc, s2_acc) tup = (S.cons (Tuple.ith 0 tup) s1_acc, S.cons (Tuple.ith 1 tup) s2_acc) in S.fold split_seq (S.empty, S.empty) s |> Fun.tap @@ fun res -> Msg.debug (fun m -> m "compute_domain_codomain(%a) --> (ar = %d)@ = %a" TS.pp ts ar ( Fmtc.parens @@ Pair.pp ~pp_sep:Fmtc.(const string ", ") (Fmtc.braces_ @@ S.pp_seq ~sep:", " Atom.pp) (Fmtc.braces_ @@ S.pp_seq ~sep:", " Atom.pp) ) res) (* given a 2-tuple set, this function computes the maximum length of a path (x1, ... xn) such that each 2-tuple (xi, xi+1) is in the tuple set. Used to compute the number of iterations needed for transitive closure term. *) let compute_tc_length ts = let tsarity = TS.inferred_arity ts in Msg.debug (fun m -> m "compute_tc_length: arity of relation : %d\n" tsarity); assert (tsarity = 2 || tsarity = 0); if tsarity = 0 then 0 else let module S = Iter in let dom, cod = compute_domain_codomain ts in let core_ats = S.inter ~eq:Atom.equal ~hash:Atom.hash dom cod in Msg.debug (fun m -> m "compute_tc_length: inter %a %a = %a\n" (Fmtc.braces_ @@ S.pp_seq ~sep:", " Atom.pp) dom (Fmtc.braces_ @@ S.pp_seq ~sep:", " Atom.pp) cod (Fmtc.braces_ @@ S.pp_seq ~sep:", " Atom.pp) core_ats); let core_length = S.length core_ats in (* is it possible that x1 is not in the core (intersection of the domain and the codomain) ? *) let first_elt_in_core = S.subset ~eq:Atom.equal ~hash:Atom.hash dom core_ats in Msg.debug (fun m -> m "compute_tc_length: first_elt_in_core = %B\n" first_elt_in_core); (* is it possible that xn is not in the core (intersection of the domain and the codomain) ? *) let last_elt_in_core = S.subset ~eq:Atom.equal ~hash:Atom.hash cod core_ats in Msg.debug (fun m -> m "compute_tc_length: last_elt_in_core = %B\n" last_elt_in_core); ( match (first_elt_in_core, last_elt_in_core) with | true, true -> core_length | false, false -> core_length + 2 | _ -> core_length + 1 ) |> Fun.tap (fun res -> Msg.debug (fun m -> m "compute_tc_length --> length = %d" res)) (* computes the transitive closure of the term acc_term by k iterative squares (t+t.t)+(t+t.t)(t+t.t) + ... *) let rec iter_squares (acc_term : G.exp) k = match k with | 0 -> G.none | 1 -> acc_term | _ -> let ar = G.arity acc_term in let new_exp = G.(rbinary ~ar acc_term union @@ rbinary ~ar acc_term join acc_term) in iter_squares new_exp (max (k lsr 1) ((k + 1) lsr 1)) (* computes the transitive closure of the term t by k joins (alternative to iter_squares) t + t.t + t.t.t + ... *) (* let iter_tc (t : G.exp) k = if k = 0 then G.none else let ar = G.arity t in let t_to_the_k = ref t in let tc = ref t in for _ = 2 to k do t_to_the_k := G.(rbinary ~ar !t_to_the_k join t); tc := G.(rbinary ~ar !tc union !t_to_the_k); done; !tc *) (* computes the transitive closure of the term t by t.(iden + t).(iden.t^2).(iden+(t^2)^2)... *) (* let ioannidis_tc (t : G.exp) k = let ar = G.arity t in let prev_t = ref t in let term = ref G.(rbinary ~ar t join (rbinary ~ar iden union t)) in let i = ref 1 in (* 0 for (iden + t) *) let max_pow = ref 2 in (* 1 for t^1 + 1 for first 't.'*) while !max_pow <= k do prev_t := G.(rbinary ~ar !prev_t join !prev_t); term := G.(rbinary ~ar !term join (rbinary ~ar iden union !prev_t)); i := 2 * !i; max_pow := !max_pow + !i done; !term *) (* utility function for build_Join *) let eligible_pairs ((tuple, r_sup, s_sup) : Tuple.t * TS.t * TS.t) : (Tuple.t * Tuple.t) Iter.t = let open Iter in let r_sup_seq = TS.to_iter r_sup in (* filtering candidates (sharing a prefix or suffix with tuple) may be good *) let s_sup_seq = TS.to_iter s_sup in fold (fun pairs x_r -> find (* find the *at most one* (for fixed tuple and x_r) x_s s.t. tuple = x_r . x_s *) (fun x_s -> if Tuple.is_in_join tuple x_r x_s then Some (x_r, x_s) else None) s_sup_seq |> function Some pair -> cons pair pairs | None -> pairs) empty r_sup_seq class environment (elo : Elo.t) = (* Atomic.make is a cached function for its last two arguments (out of 3), so we compute it for its first argument to avoid unnecessary recomputations *) let make_atom_aux = Atomic.make elo.Elo.domain in object (_ : 'self) val bounds_exp_aux = Exp_bounds.make_bounds_exp elo.Elo.domain method must_may_sup (subst : stack) (exp : G.exp) = bounds_exp_aux (exp, subst) method relation_arity name = match Domain.get name elo.Elo.domain with | None -> assert false | Some rel -> Relation.arity rel method make_atom (name : Name.t) (t : Tuple.t) = assert (Domain.mem name elo.Elo.domain); Ltl.atomic @@ make_atom_aux name t method is_const (name : Name.t) = assert (Domain.mem name elo.Elo.domain); Domain.get_exn name elo.Elo.domain |> Relation.is_const end class ['subst] converter (env : environment) = object (self : 'self) constraint 'subst = stack (* a stack *) inherit ['self] Elo_recursor.recursor method build_Add (_ : stack) (a : term) (b : term) : term = plus a b method build_All (_ : stack) = G.all method build_And (_ : stack) (a : ltl) (b : ltl) : ltl = and_ a (lazy b) method build_Block (_ : stack) = conj method build_Card subst r r' = let { must; may; _ } = env#must_may_sup subst r in let must_card = num @@ TS.size must in let may_card = count @@ List.map r' @@ TS.to_list may in plus must_card may_card (* re-defining this method to avoid going down in the block as a substitution must be made first *) method! visit_Compr env _visitors_c0 _visitors_c1 = let _visitors_r0 = self#visit_list (fun env (_visitors_c0, _visitors_c1, _visitors_c2) -> let _visitors_r0 = (fun _visitors_this -> _visitors_this) _visitors_c0 in let _visitors_r1 = (fun _visitors_this -> _visitors_this) _visitors_c1 in let _visitors_r2 = self#visit_'exp env _visitors_c2 in (_visitors_r0, _visitors_r1, _visitors_r2)) env _visitors_c0 in let _visitors_r1 = [ true_ ] in self#build_Compr env _visitors_c0 _visitors_c1 _visitors_r0 _visitors_r1 method private allocate_sbs_to_tuples (ranges : G.exp list) (tuple : Tuple.t) : Tuple.t list = let rec walk ranges atoms = match ranges with | [] -> [] | hd :: tl -> let xs, ys = List.take_drop (G.arity hd) atoms in Tuple.of_list1 xs :: walk tl ys in walk ranges @@ Tuple.to_list tuple (* check if the disj's in the comprehension sim_bindings are respected *) method private check_compr_disj (sbs : (bool * int * G.exp) list) (split_tuples : Tuple.t list) : bool = let rec walk sbs tuples = match sbs with | [] -> true | (true, nbvars, _) :: tl -> let xs, ys = List.take_drop nbvars tuples in let alldiff = all_different ~eq:Tuple.equal xs in Msg.info (fun m -> m "check_compr_disj (true, %d, _) tuples = %a alldiff = %B" nbvars Fmtc.(brackets @@ list ~sep:sp @@ Tuple.pp) tuples alldiff); alldiff && walk tl ys | (false, nbvars, _) :: tl -> let ys = List.drop nbvars tuples in walk tl ys in walk sbs split_tuples (* shape: [{ sb1, sb2,... | b }]. Each [sb] is of shape [disj nbvar: e] . The first item implies that we have to fold over the [sb]'s to substitute previously-bound variables. In the following function, we perform these substitutions and then compute separately the semantics of every binding, before computing the whole resulting formula. *) method build_Compr (subst : stack) (sbs : (bool * int * G.exp) list) (body : G.fml list) __sbs' __body' tuple = let compr_ar = List.fold_left (fun acc (_, n, r) -> acc + (n * G.arity r)) 0 sbs in let depth = List.length subst in if Tuple.arity tuple <> compr_ar then Msg.err (fun m -> m "%s.build_Compr [[{%a@ |@ %a}]]_%a(%a): tuple arity (%d) \ incompatible with expression arity (%d)" __MODULE__ (G.pp_sim_bindings depth) sbs (G.pp_block depth) body pp_subst subst Tuple.pp tuple (Tuple.arity tuple) compr_ar); (* the tuple is (in principle) of arity equal to the sum of arities of ranges of bound variables. To build the corresponding substitutions, we must first split this tuple into as many tuples as variables, each one with the adequate arity *) let ranges = List.flat_map (fun (_, nbvars, range) -> List.repeat nbvars [ range ]) sbs in let split_tuples = self#allocate_sbs_to_tuples ranges tuple in if self#check_compr_disj sbs split_tuples then (* semantics of [b] is [[ b [tuples / variables] ]] *) let b' = self#visit_fml (List.rev split_tuples @ subst) @@ G.block body in (* every single sim_binding contains possibly many variables and they may depend over previous bindings of the same comprehension. Because of the many variables, we use [fold_flat_map] which is like a fold returning a pair of an accumulator and a list, the latter undergoing flattening *) let _, ranges' = List.fold_flat_map (fun (acc_split_tuples, acc_subst) (_, nbvars, r) -> let boundvars, remaining = List.take_drop nbvars acc_split_tuples in let r' = self#visit_exp acc_subst r (Tuple.concat boundvars) in (* copy range nbvars times *) let rs' = List.repeat nbvars [ r' ] in let new_subst = List.rev boundvars @ acc_subst in ((remaining, new_subst), rs')) (split_tuples, subst) sbs in conj (b' :: ranges') else ( Msg.debug (fun m -> m "build_Compr --> false (disj case)"); false_ ) method build_Diff (_ : stack) (_ : G.exp) (_ : G.exp) e' f' (tuple : Tuple.t) = e' tuple +&& lazy (not_ (f' tuple)) method build_F (_ : stack) (a : ltl) : ltl = eventually a method build_FIte (_ : stack) _ _ _ (c : ltl) (t : ltl) (e : ltl) : ltl = ifthenelse c t e method build_False (_ : stack) : ltl = false_ method build_G (_ : stack) (a : ltl) : ltl = always a method build_Gt (_ : stack) : tcomp = gt method build_Gte (_ : stack) : tcomp = gte method build_H (_ : stack) (a : ltl) : ltl = historically a method build_IBin (_ : stack) _ _ _ i1' op' i2' = op' i1' i2' method build_IComp (_ : stack) __e1 _ __e2 e1_r op e2_r = comp op e1_r e2_r method build_IEq (_ : stack) : tcomp = eq method build_INEq (_ : stack) : tcomp = neq method build_IUn (_ : stack) _ _ op' i' = op' i' method build_Iden (_ : stack) tuple = (* FIXME *) assert (Tuple.arity tuple = 2); if Atom.equal (Tuple.ith 0 tuple) (Tuple.ith 1 tuple) then true_ else false_ method build_Iff (_ : stack) (a : ltl) (b : ltl) : ltl = iff a b method build_Imp (_ : stack) (a : ltl) (b : ltl) : ltl = implies a (lazy b) method build_In subst r (__s : G.exp) r' s' = let { must; may; _ } = env#must_may_sup subst r in wedge ~range:(TS.to_iter must) (fun t -> lazy (s' t)) +&& lazy (wedge ~range:(TS.to_iter may) (fun bs -> lazy (r' bs @=> lazy (s' bs)))) method build_Inter (_ : stack) _ _ e1 e2 tuple = e1 tuple +&& lazy (e2 tuple) method build_Join subst r s r' s' tuple = let sup_r = (env#must_may_sup subst r).sup in let sup_s = (env#must_may_sup subst s).sup in let pairs = eligible_pairs (tuple, sup_r, sup_s) in vee ~range:pairs (fun (bs, cs) -> lazy (r' bs +&& lazy (s' cs))) method build_LBin (_ : stack) _ _ _ f1' op' f2' = op' f1' f2' method build_LProj (_ : stack) _ _ s' r' tuple = (s' @@ Tuple.(of_list1 [ ith 0 tuple ])) +&& lazy (r' tuple) method build_LUn (_ : stack) _ _ op' f' = op' f' method build_Lt (_ : stack) : tcomp = lt method build_Lte (_ : stack) : tcomp = lte method build_Name (subst : stack) rel _ tuple = let { must; may; _ } = env#must_may_sup subst @@ G.name ~ar:(env#relation_arity rel) rel in if TS.mem tuple must then true_ else if TS.mem tuple may then env#make_atom rel tuple else false_ method build_Neg (_ : stack) (a : term) : term = neg a method build_No (_ : stack) = G.no_ method build_None_ (_ : stack) __tuple = false_ method build_Not (_ : stack) (a : ltl) : ltl = not_ a method build_NotIn (subst : stack) r s r' s' = not_ @@ self#build_In subst r s r' s' method build_Num (_ : stack) n _ = num n method build_O (_ : stack) (a : ltl) : ltl = once a method build_Or (_ : stack) (a : ltl) (b : ltl) : ltl = or_ a (lazy b) method build_Over (subst : stack) __r s r' s' tuple = let { must; may; _ } = env#must_may_sup subst s in let proj1 x = Tuple.(of_list1 [ ith 0 x ]) in let mustpart = wedge ~range:(TS.to_iter must) (fun t -> lazy (if Tuple.equal (proj1 t) (proj1 tuple) then false_ else true_)) in (* [newmay] helps compute the last AND above: it removes duplicate tuples that may appear in this translation: *) let newmay = let mktup t = let _, from_snd_elt = Tuple.split t 1 in Tuple.(proj1 tuple @@@ from_snd_elt) in TS.map mktup may in let maypart = not_ @@ vee ~range:(TS.to_iter newmay) (fun t -> lazy (s' t)) in s' tuple +|| lazy (mustpart +&& lazy (r' tuple +&& lazy maypart)) method build_P (_ : stack) (a : ltl) : ltl = yesterday a method build_Prime (_ : stack) _ e' tuple = next @@ e' tuple method build_Prod (_ : stack) r s r' s' tuple = (* we need to split [tuple] so we need the arity of [r]. If the arity is [None] (for 'none'), then we must just return false. Otherwise the tuple is split. *) match (G.arity r, G.arity s) with | 0, _ | _, 0 -> false_ | ar_r, _ -> let t1, t2 = Tuple.split tuple ar_r in r' t1 +&& lazy (s' t2) method! visit_Quant subst q sb block = let q' = self#visit_quant subst q in let sb' = (fun (disj, nbvars, range) -> let range' = self#visit_'exp subst range in (disj, nbvars, range')) sb in let range' = [ true_ ] in self#build_Quant subst q sb block q' sb' range' method build_Quant subst quant (disj, nbvars, s) blk _ (_, _, s') _ = let tuples_of_sim_binding (dom : Tuple.t list) : Tuple.t list Iter.t = let open List in (* create as many copies as necessary (= nb of variables) of the domain *) init nbvars (fun __idx -> dom) (* take their cartesian product *) |> cartesian_product (* remove lines where there are tuples in common if [disj = true] *) |> ( if disj then filter (fun l -> let sorted = sort_uniq ~cmp:Tuple.compare l in length l = length sorted) else Fun.id ) |> to_iter in (* [pos_or_neg] tells whether the quantifier was a [no ...], in which case we consider the whole as [all ... | not ...]. [link] tells how to connect a premise and a test in the may part of the formula. *) let bigop, smallop, link, pos_or_neg = match quant with | G.All -> (wedge, and_, implies, Fun.id) | G.Some_ -> (vee, or_, and_, Fun.id) | G.No -> (wedge, and_, implies, not_) in let sem_of_substituted_blk tuples = lazy ( pos_or_neg @@ (self#visit_fml @@ List.rev tuples @ subst) (* [[...]] *) @@ G.block blk ) in let { must; may; _ } = env#must_may_sup subst s in let mustpart = bigop ~range:(tuples_of_sim_binding @@ TS.to_list must) (fun tuples -> sem_of_substituted_blk tuples) in let maypart = lazy (bigop ~range:(tuples_of_sim_binding @@ TS.to_list may) (fun tuples -> (* if several variables were bound to the same range, then we must apply the characteristic function thereof to every candidate tuples for these variables; and then take the conjunction. Note: if several variables range in the same set, then we will apply the characteristic function many times to the same tuples: as an optimization, we keep --only in the computation of the premise-- only unique tuples to avoid this superfluous repetition. *) let premise = wedge ~range: List.(to_iter @@ sort_uniq ~cmp:Tuple.compare tuples) (fun tuple -> lazy (s' tuple)) in (* Msg.debug (fun m -> m "(build_Quant.premise) %a" Ltl.pp premise); *) lazy (link premise @@ sem_of_substituted_blk tuples))) in smallop mustpart maypart method build_R (_ : stack) (a : ltl) (b : ltl) : ltl = releases a b method build_RBin (_ : stack) (a : G.exp) (_ : G.rbinop) (b : G.exp) a' op' b' tuple = op' a b a' b' tuple method build_RComp (_ : stack) f1 __op f2 f1' op' f2' = op' f1 f2 f1' f2' method build_REq subst r s r' s' = let r_bounds = env#must_may_sup subst r in let s_bounds = env#must_may_sup subst s in let inter = TS.inter r_bounds.may s_bounds.may in wedge ~range:(TS.to_iter r_bounds.must) (fun t -> lazy (s' t)) +&& lazy (wedge ~range:(TS.to_iter s_bounds.must) (fun t -> lazy (r' t))) +&& lazy (wedge ~range:(TS.to_iter inter) (fun bs -> lazy (r' bs @<=> s' bs))) +&& lazy (wedge ~range:(TS.to_iter @@ TS.diff r_bounds.may inter) (fun bs -> lazy (r' bs @=> lazy (s' bs)))) +&& lazy (wedge ~range:(TS.to_iter @@ TS.diff s_bounds.may inter) (fun bs -> lazy (s' bs @=> lazy (r' bs)))) method build_RIte (_ : stack) (__c : G.fml) (__t : G.exp) __e c' t' e' tuple = (c' @=> lazy (t' tuple)) +&& lazy (not_ c' @=> lazy (e' tuple)) method build_RNEq (subst : stack) r s r' s' = not_ @@ self#build_REq subst r s r' s' method build_RProj (_ : stack) _ _ r' s' tuple = let lg = Tuple.arity tuple in (s' @@ Tuple.of_list1 [ Tuple.ith (lg - 1) tuple ]) +&& lazy (r' tuple) method build_RTClos subst r _ tuple = (* FIXME *) assert (Tuple.arity tuple = 2); self#visit_Iden subst tuple +|| lazy (self#visit_RUn subst G.tclos r tuple) method build_RUn (_ : stack) (_ : G.runop) (e : G.exp) op' e' = op' e e' method build_S (_ : stack) (a : ltl) (b : ltl) : ltl = since a b method build_Some_ (_ : stack) = G.some method build_Sub (_ : stack) (a : term) (b : term) : term = minus a b method build_T (_ : stack) (a : ltl) (b : ltl) : ltl = triggered a b method build_TClos subst r __r' tuple = assert (Tuple.arity tuple = 2); Msg.debug (fun m -> m "%s.build_TClos <-- %a" __MODULE__ G.(pp_exp (arity r)) r); let { sup; _ } = env#must_may_sup subst r in let k = compute_tc_length sup in Msg.debug (fun m -> m "TC bound: %d" k); (* let tc_naif = iter_tc r k in let fml_tc_naif = self#visit_exp subst tc_naif tuple in *) let tc_square = iter_squares r k in let fml_tc_square = self#visit_exp subst tc_square tuple in (* let tc_ioannidis = ioannidis_tc r k in let fml_tc_ioannidis = self#visit_exp subst tc_ioannidis tuple in *) let term, fml = (tc_square, fml_tc_square) in Msg.debug (fun m -> m "TC term: %a" G.(pp_exp (arity term)) term); Msg.debug (fun m -> m "TC formula: @[<h2> %a@]" (Fmtc.hbox2 Ltl.pp) fml); fml method build_Transpose (_ : stack) _ r' tuple = r' @@ Tuple.transpose tuple method build_True (_ : stack) = true_ method build_U (_ : stack) (a : ltl) (b : ltl) : ltl = until a b method build_Union (_ : stack) _ _ e1 e2 x = e1 x +|| lazy (e2 x) method build_Univ (_ : stack) __tuple = true_ (* FIXME *) method build_Var (subst : stack) idx _ tuple = match List.get_at_idx idx subst with | None -> Fmtc.kstrf failwith "%s.build_Var: variable %d not found in %a" __MODULE__ idx pp_subst subst | Some value -> if Tuple.equal value tuple then true_ else false_ method build_X (_ : stack) (a : ltl) : ltl = next a method build_oexp (_ : stack) __e e' __ar tuple = e' tuple end (* class *) let formula_as_comment fml = let str = Fmt.to_to_string (Elo.pp_fml 0) fml in "-- " ^ String.replace ~which:`All ~sub:"\n" ~by:"\n-- " str (* Converts an Ast formula to an LTL formula, gathering at the same time the rigid and flexible variables having appeared during the walk. *) let convert elo elo_fml = let comment = formula_as_comment elo_fml in Msg.debug (fun m -> m "----------------------------------------------------------------------\n\ %s" comment); let before_conversion = Mtime_clock.now () in let env = new environment elo in let ltl_fml = (new converter env)#visit_fml [] elo_fml in let conversion_time = Mtime.span before_conversion @@ Mtime_clock.now () in Msg.debug (fun m -> m "Conversion done in %a@." Mtime.Span.pp conversion_time); (comment, ltl_fml) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>