package electrod
Formal analysis for the Electrod formal pivot language
Install
Dune Dependency
Authors
Maintainers
Sources
electrod-1.0.0.tbz
sha256=4da251e58d97c797d6e940e586d225a09715777fbb1b25c5527a6a2e1e3c2d58
sha512=89c45ebd0d3401b17eac4217289ed21ec87135ab5fa62bf63b2bed1ad1435a381e3434582c2ec99c2e6d8d87ce23cecfa7ba14d76234493992ae06879b808dd2
doc/src/electrod.libelectrod/Tuple_set.ml.html
Source file Tuple_set.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
(******************************************************************************* * electrod - a model finder for relational first-order linear temporal logic * * Copyright (C) 2016-2020 ONERA * Authors: Julien Brunel (ONERA), David Chemouil (ONERA) * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * SPDX-License-Identifier: MPL-2.0 * License-Filename: LICENSE.md ******************************************************************************) open Containers (*$ ;; inject open Test *) module TS = Tuple.Set type t = TS.t let pp out b = Fmtc.pf out "@[<hov 2>{"; TS.pp (* ~start:"" ~stop:"" *) ~pp_sep:Fmtc.(const string " ") Tuple.pp out b; Fmtc.pf out "}@]" module P = Intf.Print.Mixin (struct type nonrec t = t let pp = pp end) include P let to_list = TS.elements let to_iter = TS.to_iter let of_iter = TS.of_iter let empty = TS.empty let of_tuples tuples = match tuples with | [] -> empty | t :: ts -> let ar = Tuple.arity t in assert (List.for_all (fun t2 -> Tuple.arity t2 = ar) ts); TS.of_list tuples let is_empty = TS.is_empty let inferred_arity b = if is_empty b then 0 else Tuple.arity @@ TS.choose b let singleton = TS.singleton let add = TS.add let tuples t = t let inter b1 b2 = TS.inter b1 b2 let size bnd = TS.cardinal bnd let subset b1 b2 = TS.subset b1 b2 let equal b1 b2 = TS.equal b1 b2 (* |> Fun.tap (fun res -> *) (* Msg.debug *) (* (fun m -> m "equal %a %a -> %B" *) (* pp b1 pp b2 res)) *) let compare b1 b2 = TS.compare b1 b2 let product b1 b2 = let prod = Iter.product (TS.to_iter b1) (TS.to_iter b2) |> Iter.map Fun.(uncurry Tuple.( @@@ )) |> TS.of_iter in assert (TS.cardinal prod = TS.cardinal b1 * TS.cardinal b2); prod let union b1 b2 = TS.union b1 b2 let diff = TS.diff let map f ts = TS.to_iter ts |> Iter.map f |> TS.of_iter let filter = TS.filter (*$Q transpose any_tupleset (fun ts -> \ let ar = inferred_arity ts in\ Q.assume (ar = 2 || ar = 0);\ equal ts (transpose @@ transpose ts)) *) let transpose b = let ar = inferred_arity b in assert (ar = 2 || ar = 0); map Tuple.transpose b (* r ++ s (so we need the first column of s) *) let override r s = let in_r_but_not_in_s1 = filter (fun tr -> not @@ TS.exists (fun ts1 -> Tuple.(Atom.equal (ith 0 tr) (ith 0 ts1))) s) r in TS.union s in_r_but_not_in_s1 (* [s <: r] *) let lproj s r = filter (fun tr -> TS.mem Tuple.([ ith 0 tr ] |> of_list1) s) r let rproj r s = lproj s @@ transpose r let diagonal b = map Tuple.(fun e -> e @@@ e) b (*$Q join any_tupleset1 (fun ts -> \ Q.assume (size ts <> 0);\ let diag = diagonal ts in\ equal diag @@ join diag diag\ ) *) let join b1 b2 = let module S = Iter in let ar1 = inferred_arity b1 in let ar2 = inferred_arity b2 in assert (ar1 <> 1 || ar2 <> 1); let s1 = to_iter b1 in let s2 = to_iter b2 in S.product s1 s2 |> S.filter_map (fun (t1, t2) -> if Atom.equal (Tuple.ith (ar1 - 1) t1) (Tuple.ith 0 t2) then Some (Tuple.join t1 t2) else None) |> of_iter let transitive_closure b = let ar = inferred_arity b in assert (ar = 2 || ar = 0); if ar = 0 then b else let old = ref b in let cur = ref (union b (join b b)) in let b_to_the_k = ref (join b b) in while not @@ TS.equal !old !cur do old := !cur; b_to_the_k := join b !b_to_the_k; cur := union !cur !b_to_the_k (* Msg.debug (fun m -> *) (* m "current 2 = %a " pp !cur); *) (* Msg.debug (fun m -> *) (* m "old 2 = %a " pp !old); *) (* Msg.debug (fun m -> m "egalité? %b " (TS.equal !old !cur)) *) done; !cur (*$Q transitive_closure_is any_tupleset2 (fun ts -> \ equal (transitive_closure_is ts) (transitive_closure ts)\ ) *) (* computes the transitive closure of tue tuple set b using iterative squares *) let transitive_closure_is b = let ar = inferred_arity b in assert (ar = 2 || ar = 0); if ar = 0 then b else let old = ref b in let cur = ref (union b (join b b)) in while not @@ TS.equal !old !cur do old := !cur; cur := union !cur (join !cur !cur) (* Msg.debug (fun m -> *) (* m "current 2 = %a " pp !cur); *) (* Msg.debug (fun m -> *) (* m "old 2 = %a " pp !old); *) (* Msg.debug (fun m -> m "egalité? %b " (TS.equal !old !cur)) *) done; !cur (* let mem_aux (t, bnd) = *) (* TS.mem t bnd *) (* let mem t bnd = *) (* CCCache.(with_cache *) (* (lru ~eq:(Pair.equal Tuple.equal equal) *) (* ~hash:(Hash.pair Tuple.hash hash) 597) *) (* mem_aux) (t, bnd) *) let mem t bnd = TS.mem t bnd let rename atom_renaming ts = TS.map (Tuple.rename atom_renaming) ts
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>