package electrod
Formal analysis for the Electrod formal pivot language
Install
Dune Dependency
Authors
Maintainers
Sources
electrod-0.4.1.tbz
sha256=b0bce9cc7126672feda5a02d5ef0c1131ba54db57654f80c0768c2f8d043cef9
sha512=92cc22f81522435e190039324767b6f69fa0b7d9dbfc3fb5561919823136fe492244dae993caf98633828e0090b67f306eec6270b86a1b2ff8630642130a3081
doc/src/electrod.libelectrod/Smv.ml.html
Source file Smv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
(******************************************************************************* * electrod - a model finder for relational first-order linear temporal logic * * Copyright (C) 2016-2019 ONERA * Authors: Julien Brunel (ONERA), David Chemouil (ONERA) * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * SPDX-License-Identifier: MPL-2.0 * License-Filename: LICENSE.md ******************************************************************************) open Containers (* automatically generated by Dune *) let nuXmv_default_script = Scripts.nuXmv_default_script let nuSMV_default_script = Scripts.nuSMV_default_script let nuXmv_default_bmc_script = Scripts.nuXmv_default_bmc_script let nuSMV_default_bmc_script = Scripts.nuSMV_default_bmc_script module Make_SMV_LTL (At : Solver.ATOMIC_PROPOSITION) : Solver.LTL with module Atomic = At = struct module I = Solver.LTL_from_Atomic (At) include I module PP = struct open Fmtc let rainbow = let r = ref 0 in fun () -> let cur = !r in incr r; match cur with | 0 -> `Magenta | 1 -> `Yellow | 2 -> `Cyan | 3 -> `Green | 4 -> `Red | 5 -> r := 0; `Blue | _ -> assert false (* [upper] is the precedence of the context we're in, [this] is the priority for printing to do, [pr] is the function to make the printing of the expression *) let rainbow_paren ?(paren = false) ?(align_par = true) upper this out pr = (* parenthesize if specified so or if forced by the current context*) let par = paren || this < upper in (* if parentheses are specified, they'll be numerous so avoid alignment of closing parentheses *) (* let align_par = not paren && align_par in *) if par then ( (* add parentheses *) let color = rainbow () in if align_par then Format.pp_open_box out 0 else Format.pp_open_box out 2; styled color string out "("; if align_par then Format.pp_open_box out 2; (* we're adding parentheses so precedence goes back to 0 inside of them *) pr 0; if align_par then ( Format.pp_close_box out (); cut out () ); styled color string out ")"; Format.pp_close_box out () ) else (* no paremtheses *) (* so keep [this] precedence *) pr this let infixl ?(paren = false) ?(align_par = true) upper this middle left right out (m, l, r) = rainbow_paren ~paren ~align_par upper this out @@ fun new_this -> (* new_this is this or 0 if parentheses were added *) left new_this out l; sp out (); styled `Bold middle out m; sp out (); right (new_this + 1) out r (* left associativity => increment the precedence *) let infixr ?(paren = false) ?(align_par = true) upper this middle left right out (m, l, r) = rainbow_paren ~paren ~align_par upper this out @@ fun new_this -> left (new_this + 1) out l; sp out (); styled `Bold middle out m; sp out (); right new_this out r let infixn ?(paren = false) ?(align_par = true) upper this middle left right out (m, l, r) = rainbow_paren ~paren ~align_par upper this out @@ fun new_this -> left (new_this + 1) out l; sp out (); styled `Bold middle out m; sp out (); right (new_this + 1) out r let prefix ?(paren = false) ?(align_par = true) upper this pprefix pbody out (prefix, body) = rainbow_paren ~paren ~align_par upper this out @@ fun new_this -> styled `Bold pprefix out prefix; pbody (new_this + 1) out body let pp_atomic = At.pp let pp_tcomp out (t : tcomp) = pf out "%s" @@ match t with | Lte -> "<=" | Lt -> "<" | Gte -> ">=" | Gt -> ">" | Eq -> "=" | Neq -> "!=" (* From NuXmv documentation, from high to low (excerpt, some precedences are ignored because they are not used) ! - (unary minus) + - = != < > <= >= & | xor xnor (... ? ... : ...) <-> -> (the only right associative op) NOTE: precedences for LTL connectives are not specified, hence we force parenthesising of these. *) let pp ?(next_is_X = true) variables upper out f = let rec pp upper out f = assert (upper >= 0); match f with | True -> pf out "TRUE" | False -> pf out "FALSE" | Atomic at -> variables := Iter.cons at !variables; pf out "%a" pp_atomic at (* tweaks, here, to force parenthese around immediate subformulas of Imp and Iff as their precedence may not be easily remembered*) | Imp (p, q) -> infixr ~paren:true upper 1 string pp pp out ("->", p, q) | Iff (p, q) -> infixl ~paren:true upper 2 string pp pp out ("<->", p, q) | Ite (c, t, e) -> (* SMV's ...?...:... or case...esac expression cannot be used as nuXmv does not accept these when subexpressions are temporal (seen invarious tests). So we rewrite the formula into more basic terms. *) pp upper out @@ I.Infix.((c @=> lazy t) +&& lazy (I.not_ c @=> lazy e)) | Or (p, q) -> infixl ~paren:true upper 4 string pp pp out ("|", p, q) (* force parenthses as we're not used to see the Xor connective and so its precedence may be unclear *) | Xor (p, q) -> infixl ~paren:true upper 4 string pp pp out ("xor", p, q) | And (p, q) -> infixl ~paren:true upper 5 string pp pp out ("&", p, q) | Comp (op, t1, t2) -> infixn upper 6 pp_tcomp pp_term pp_term out (op, t1, t2) | Not p -> prefix upper 9 string pp out ("!", p) (* no known precedence for temporal operators so we force parentheses and use as the "this" precedence that of the upper context*) | U (p, q) -> infixl ~paren:true upper upper string pp pp out ("U", p, q) | R (p, q) -> infixl ~paren:true upper upper string pp pp out ("V", p, q) | S (p, q) -> infixl ~paren:true upper upper string pp pp out ("S", p, q) | T (p, q) -> infixl ~paren:true upper upper string pp pp out ("T", p, q) | X p when next_is_X -> prefix ~paren:true upper upper string pp out ("X ", p) | X p -> (* next_is _X= false *) styled `Bold string out "next"; pf out "@[(%a@])" (pp 0) p | F p -> prefix ~paren:true upper upper string pp out ("F ", p) | G p -> prefix ~paren:true upper upper string pp out ("G ", p) | Y p -> prefix ~paren:true upper upper string pp out ("Y ", p) | O p -> prefix ~paren:true upper upper string pp out ("O ", p) | H p -> prefix ~paren:true upper upper string pp out ("H ", p) and pp_term upper out (t : term) = match t with | Num n -> pf out "%d" n | Plus (t1, t2) -> infixl ~paren:true upper 7 string pp_term pp_term out ("+", t1, t2) | Minus (t1, t2) -> infixl ~paren:true upper 7 string pp_term pp_term out ("-", t1, t2) | Neg t -> prefix upper 8 string pp_term out ("- ", t) | Count ts -> styled `Bold string out "count"; pf out "@[(%a@])" (list ~sep:(const string ", ") (pp 0)) ts in pp upper out f end let pp_gather_variables ?(next_is_X = true) variables out f = Fmtc.pf out "@[<hov2>%a@]" (PP.pp ~next_is_X variables 0) f let pp out f = pp_gather_variables (ref Iter.empty) out f (* let () = *) (* begin *) (* let p = atomic @@ make_atomic (Name.name "P") (Tuple.of_list1 [Atom.atom "p"]) in *) (* let q = atomic @@ make_atomic (Name.name "Q") (Tuple.of_list1 [Atom.atom "q"]) in *) (* let r = atomic @@ make_atomic (Name.name "R") (Tuple.of_list1 [Atom.atom "r"]) in *) (* let s = atomic @@ make_atomic (Name.name "S") (Tuple.of_list1 [Atom.atom "s"]) in *) (* let f1 = and_ (and_ p @@ lazy q) (lazy r) in *) (* let f2 = implies (and_ p @@ lazy q) (lazy r) in *) (* let f3 = implies r (lazy (and_ p @@ lazy q)) in *) (* let f4 = implies (and_ p @@ lazy q) (lazy (and_ r (lazy s))) in *) (* let f5 = and_ (implies p @@ lazy q) (lazy (implies r @@ lazy s)) in *) (* let f6 = implies p (lazy (and_ (implies q @@ lazy r) (lazy (implies r @@ lazy s)))) in *) (* let f7 = implies p (lazy (and_ (implies (and_ q (lazy p)) @@ lazy r) (lazy (implies r @@ lazy s)))) in *) (* Fmt.epr "TEST PP@\n"; *) (* Fmt.epr "and_ (and_ p @@ lazy q) (lazy r) -->@ %a@\n" pp f1; *) (* Fmt.epr "implies (and_ p @@ lazy q) (lazy r) -->@ %a@\n" pp f2; *) (* Fmt.epr "implies r (lazy (and_ p @@ lazy q)) -->@ %a@\n" pp f3; *) (* Fmt.epr "implies (and_ p @@ lazy q) (lazy (and_ r (lazy s))) -->@ %a@\n" pp f4; *) (* Fmt.epr "and_ (implies_ p @@ lazy q) (implies_ r @@ lazy s) -->@ %a@\n" pp f5; *) (* Fmt.epr "implies p (lazy (and_ (implies q @@ lazy r) (lazy (implies r @@ lazy s)))) -->@ %a@\n" pp f6; *) (* Fmt.epr "implies p (lazy (and_ (implies (and_ q (lazy p)) @@ lazy r) (lazy (implies r @@ lazy s)))) -->@ %a@\n" pp f7; *) (* flush_all () *) (* end *) end module Make_SMV_file_format (Ltl : Solver.LTL) : Solver.MODEL with type ltl = Ltl.t and type atomic = Ltl.Atomic.t = struct type ltl = Ltl.t type atomic = Ltl.Atomic.t type t = { elo : Elo.t ; init : (string * ltl) Iter.t ; invariant : (string * ltl) Iter.t ; trans : (string * ltl) Iter.t ; property : string * ltl } let make ~elo ~init ~invariant ~trans ~property = { elo; init; invariant; trans; property } let pp_plain_decl vartype out atomic = Fmtc.pf out "%s %a : boolean;" vartype Ltl.Atomic.pp atomic (* for an enumerated declaration, all the may corresponding to the name must be created, even if some cases were cancelled out when printing formulas. Indeed, the enumeration also represents a typing invariant which would have been a formula too, one that would have spoken about all the part. Besides, for 'lone' relations a special value representing the absence must be added. *) let pp_enum_decl elo vartype out atoms = let module S = Iter in let tuple_to_string tuple = Fmtc.(strf "%a" @@ list ~sep:minus Atom.pp) (Tuple.to_list tuple) in let atom_name at = Option.get_exn @@ Ltl.Atomic.split at in let pp_one_decl atom = let name, _ = atom_name atom in let name_str = Name.to_string name in (* To avoid changin the generation of LTL formulas, we generate DEFINEs of the form `DEFINE x_a1_b1 := x_a1 = b1` (for x of domain arity 1) *) let may = Domain.may name elo.Elo.domain |> Tuple_set.to_seq in (* where to split tuples (if necessary)? *) let dom_ar = Ltl.Atomic.domain_arity atom in match dom_ar with | None -> assert false | Some n when n < 0 -> assert false | Some 0 -> (* an enumerated set *) let may_strings = S.map tuple_to_string may in (* add a value for none? *) let may_strings_with_empty = if Ltl.Atomic.is_partial atom then (* add __NONE__ at the end (better for SMV boolean encoding) *) S.snoc may_strings "__NONE__" else may_strings in S.iter (fun tuple_str -> Fmtc.( pf out "DEFINE %s-%s := __%s = %s;@\n" name_str tuple_str name_str tuple_str)) may_strings; Fmtc.( pf out "%s __%s : %a;@\n" vartype name_str (braces_ @@ S.pp_seq string) may_strings_with_empty) | Some n -> (* a partial or total function with domain arity n > 0 *) (* first we split all tuples depending on the arity, and regroup them in lists of pairs (dom, range) with the same dom *) let domains_ranges = may |> S.map (fun tuple -> Pair.map_same tuple_to_string @@ Tuple.split tuple n) |> S.group_by ~hash:(fun (dom, _) -> Hash.string dom) ~eq:(fun (dom1, _) (dom2, _) -> String.equal dom1 dom2) in (* Msg.debug (fun m -> * m "domains_Ranges = @[<v>%a@]" * Fmtc.(brackets_ @@ S.pp_seq * @@ brackets @@ list ~sep:comma * @@ pair string string) domains_ranges * ); *) (* print the DEFINEs *) S.iter (fun pairs -> List.iter (fun (dom_str, range_str) -> Fmtc.( pf out "DEFINE %s-%s-%s := __%s-%s = %s;@\n" name_str dom_str range_str name_str dom_str range_str)) pairs) domains_ranges; (* now print the vars: we walk along the lists of pairs (dom, range) (where every dom is the same) and we use the range to create `VAR x_dom : { ... range ...}` *) S.iter (fun pairs -> let dom_str = fst @@ List.hd pairs in Fmtc.( pf out "%s __%s-%s : %a;@\n" vartype name_str dom_str (braces_ @@ box @@ list ~sep:(sp **> comma) string) ( if Ltl.Atomic.is_partial atom then List.rev ("__NONE__" :: List.rev_map snd pairs) else List.map snd pairs ))) domains_ranges in atoms |> S.sort_uniq (* keep only atoms with different relation names *) ~cmp:(fun at1 at2 -> Name.compare (fst @@ atom_name at1) (fst @@ atom_name at2)) |> S.iter (fun at -> Fmtc.hardline out (); pp_one_decl at) let pp_count_variables ?(margin = 80) out { elo; init; invariant; trans; property } = let open Fmtc in let module S = Iter in (* to gather the variables along printing in the buffer *) let variables = ref S.empty in let old_margin = Format.pp_get_margin out () in Format.pp_set_margin out margin; pf out "-- Generated by electrod (C) ONERA 2016-2019@\n\ MODULE main@\n\ JUSTICE TRUE;@\n\ @\n"; (* INIT *) Format.pp_open_vbox out 0; S.iter (fun (elo_str, fml) -> pf out "%s@\nINIT@\n@[<hv2>%a@];@\n@\n" elo_str (Ltl.pp_gather_variables variables) fml) init; Format.pp_close_box out (); (* INVAR *) Format.pp_open_vbox out 0; S.iter (fun (elo_str, fml) -> pf out "%s@\nINVAR@\n@[<hv2>%a@];@\n@\n" elo_str (Ltl.pp_gather_variables variables) fml) invariant; Format.pp_close_box out (); (* TRANS *) Format.pp_open_vbox out 0; S.iter (fun (elo_str, fml) -> pf out "%s@\nTRANS@\n@[<hv2>%a@];@\n@\n" elo_str (Ltl.pp_gather_variables ~next_is_X:false variables) fml) trans; Format.pp_close_box out (); (* SPEC *) Format.pp_open_vbox out 0; let prop_str, ltlspec = property in pf out "%s@\nLTLSPEC@\n@[<hv2>%a@];@\n@\n" prop_str (Ltl.pp_gather_variables variables) ltlspec; Format.pp_close_box out (); (* HANDLING VARIABLES *) (* sorting before filtering (even when sorting after again) is more efficient on a few tests *) let sort_atomics atoms = S.sort_uniq ~cmp:Ltl.Atomic.compare atoms in variables := sort_atomics !variables; (* filter variables on frozen/var and plain/enum *) let r_plain, r_enum, f_plain, f_enum = S.fold (fun (acc_rp, acc_re, acc_fp, acc_fe) at -> if Ltl.Atomic.is_const at then (* rigid *) if Option.is_none @@ Ltl.Atomic.domain_arity at then (* plain *) (S.cons at acc_rp, acc_re, acc_fp, acc_fe) else (* enumerable *) (acc_rp, S.cons at acc_re, acc_fp, acc_fe) else if (* flexible *) Option.is_none @@ Ltl.Atomic.domain_arity at then (* plain *) (acc_rp, acc_re, S.cons at acc_fp, acc_fe) else (* enumerable *) (acc_rp, acc_re, acc_fp, S.cons at acc_fe)) (S.empty, S.empty, S.empty, S.empty) !variables |> fun (res_rp, res_re, res_fp, res_fe) -> (sort_atomics res_rp, res_re, sort_atomics res_fp, res_fe) in (* FROZENVAR / PLAIN *) S.iter (fun at -> pf out "%a@\n" (pp_plain_decl "FROZENVAR") at) r_plain; (* FROZENVAR / ENUM *) pp_enum_decl elo "FROZENVAR" out r_enum; (* VAR / PLAIN *) if not (S.is_empty r_plain || S.is_empty f_plain) then hardline out (); S.iter (fun at -> pf out "%a@\n" (pp_plain_decl "VAR") at) f_plain; (* VAR / ENUM *) pp_enum_decl elo "VAR" out f_enum; (* close printing *) Format.pp_print_flush out (); Format.pp_set_margin out old_margin; (* return the number of variables *) S.length !variables let pp ?(margin = 80) out { elo; init; invariant; trans; property } = ignore (pp_count_variables ~margin out { elo; init; invariant; trans; property }) (* write in temp file *) let make_model_file dir infile model = let src_file = Filename.basename infile in let tgt = Filename.temp_file ~temp_dir:dir (src_file ^ "-") ".smv" in let nbvars = ref 0 in IO.with_out tgt (fun out -> nbvars := pp_count_variables (Format.formatter_of_out_channel out) model); (tgt, !nbvars) let make_script_file bmc dir script = let tgt = Filename.temp_file ~temp_dir:dir "electrod-" ".scr" in let first_line = match bmc with | None -> "" | Some length -> "set bmc_length " ^ string_of_int length ^ "; " in ( match script with | Solver.File filename -> (* script given on the command line *) (* prepend first line then append given script *) IO.with_out tgt (fun out -> IO.write_line out first_line; IO.with_in filename (fun inp -> let chunks = IO.read_chunks_gen inp in IO.write_gen out chunks)) | Solver.Default default -> IO.with_out tgt (fun out -> IO.write_line out (first_line ^ default)) ); tgt let analyze ~conversion_time ~cmd ~script ~keep_files ~no_analysis ~elo ~file ~bmc model : Outcome.t = let keep_or_remove_files scr smv = if keep_files then if no_analysis then Logs.app (fun m -> m "@[<hv2>Keeping the script and SMV files at:@ %s@\n%s@]" scr smv) else Logs.app (fun m -> m "@[<hv2>Keeping the script and SMV files@]") else ( Logs.info (fun m -> m "@[<hv2>Removing files:@ %s@\n%s@]" scr smv); ( match script with | Solver.Default _ -> IO.File.remove_noerr scr | Solver.File _ -> () ); IO.File.remove_noerr smv ) in (* TODO check whether nuXmv is installed first *) let dir = Filename.dirname file in let scr = make_script_file bmc dir script in let before_generation = Mtime_clock.now () in let smv, nbvars = make_model_file dir file model in let after_generation = Mtime_clock.now () in Msg.info (fun m -> let size, unit_ = let s = float_of_int @@ Unix.((stat smv).st_size) in if Float.(s < 1_024.) then (s, "B") else if Float.(s < 1_048_576.) then (s /. 1_024., "KB") else if Float.(s < 1_073_741_824.) then (s /. 1_048_576., "MB") else (s /. 1_073_741_824., "GB") in m "SMV file (size: %.0f%s) generated in %a" (Float.round size) unit_ Mtime.Span.pp (Mtime.span before_generation after_generation)); if no_analysis then ( keep_or_remove_files scr smv; Outcome.no_trace nbvars conversion_time Mtime.Span.zero ) else (* Inspired by nunchaku-inria/logitest/src/Misc.ml (BSD licence). *) let sigterm_handler = Sys.Signal_handle (fun _ -> print_endline "Received termination signal!"; keep_or_remove_files scr smv; print_endline "Exiting"; Unix.kill 0 Sys.sigterm; (* kill children *) exit 1) in let previous_handler = Sys.signal Sys.sigterm sigterm_handler in (* TODO make things s.t. it's possible to set a time-out *) let to_call = Fmt.strf "%s -source %s %s" cmd scr smv in Logs.info (fun m -> m "Starting analysis:@[<h2>@ %s@]" to_call); let before_run = Mtime_clock.now () in let okout, errout, errcode = CCUnix.call "%s" to_call in let after_run = Mtime_clock.now () in (* go back to default behavior *) Sys.set_signal Sys.sigterm previous_handler; let analysis_time = Mtime.span before_run after_run in if errcode <> 0 then Msg.Fatal.solver_failed (fun args -> args cmd scr smv errcode errout) else (* running nuXmv goes well: parse its output *) Msg.info (fun m -> m "Analysis done in %a" Mtime.Span.pp analysis_time); (* check for the "UNSAT" problems when relying on UMC or BMC *) let validity_check line = match bmc with | None -> String.suffix ~suf:"is true" line | Some length -> let valid_bmc_string = "-- no counterexample found with bound " ^ string_of_int length in String.equal valid_bmc_string line in let spec = String.lines_gen okout |> Gen.drop_while (fun line -> (not @@ String.suffix ~suf:"is false" line) && (not @@ validity_check line)) in keep_or_remove_files scr smv; let spec_s = match Gen.get spec with | None -> failwith ( "Incorrectly handled SMV string:" ^ Fmt.to_to_string (Gen.pp String.pp) spec ) | Some s -> s in if validity_check spec_s then Outcome.no_trace nbvars conversion_time analysis_time else (* nuXmv says there is a counterexample so we parse it on the standard output *) (* first create a trace parser (it is parameterized by [base] below which tells the parser the "must" associated to every relation in the domain, even the ones not present in the SMV file because they have been simplified away in the translation. This goes this way because the trace to return should reference all relations, not just the ones grounded in the SMV file.). NOTE: the parser expects a nuXmv trace using the "trace plugin" number 1 (classical output (i.e. no XML, no table) with information on all variables, not just the ones that have changed w.r.t. the previous state.). *) let module P = Smv_trace_parser.Make (struct let base = Domain.musts ~with_univ_and_ident:false elo.Elo.domain end) in let trace = spec (* With this trace output, nuXmv shows a few uninteresting lines first, that we have to gloss over *) |> Gen.drop_while (fun line -> not @@ String.prefix ~pre:"Trace" line) |> Gen.drop_while (String.prefix ~pre:"Trace") |> String.unlines_gen (* |> Fun.tap print_endline *) |> fun trace_str -> let lexbuf = Lexing.from_string trace_str in P.trace (Smv_trace_scanner.main Ltl.Atomic.split_string) lexbuf in if not @@ Outcome.loop_is_present trace then Msg.Fatal.solver_bug (fun args -> args cmd "trace is missing a loop state.") else let atom_back_renaming = List.map (fun (x, y) -> (y, x)) elo.atom_renaming in let name_back_renaming = List.map (fun (x, y) -> (y, x)) elo.name_renaming in Outcome.trace (atom_back_renaming, name_back_renaming) nbvars conversion_time analysis_time trace end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>