package electrod
Formal analysis for the Electrod formal pivot language
Install
Dune Dependency
Authors
Maintainers
Sources
electrod-0.4.1.tbz
sha256=b0bce9cc7126672feda5a02d5ef0c1131ba54db57654f80c0768c2f8d043cef9
sha512=92cc22f81522435e190039324767b6f69fa0b7d9dbfc3fb5561919823136fe492244dae993caf98633828e0090b67f306eec6270b86a1b2ff8630642130a3081
doc/src/electrod.libelectrod/Solver.ml.html
Source file Solver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
(******************************************************************************* * electrod - a model finder for relational first-order linear temporal logic * * Copyright (C) 2016-2019 ONERA * Authors: Julien Brunel (ONERA), David Chemouil (ONERA) * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * SPDX-License-Identifier: MPL-2.0 * License-Filename: LICENSE.md ******************************************************************************) open Containers [@@@warning "-4"] [@@@warning "-32"] (* fragile patterns, lots of them as we short-circuit *) module type ATOMIC_PROPOSITION = sig type t val make : Domain.t -> Name.t -> Tuple.t -> t val compare : t -> t -> int val compare_string : t -> t -> int val equal : t -> t -> bool val hash : t -> int (* None if non-enumerable; otw Some ar with ar >= 0 *) val domain_arity : t -> int option val is_const : t -> bool val is_partial : t -> bool val split_string : string -> (Name.t * Tuple.t) option val split : t -> (Name.t * Tuple.t) option val pp : Format.formatter -> t -> unit end module type LTL = sig module Atomic : ATOMIC_PROPOSITION type tcomp = | Lte | Lt | Gte | Gt | Eq | Neq type t = private | Comp of tcomp * term * term | True | False | Atomic of Atomic.t | Not of t | And of t * t | Or of t * t | Imp of t * t | Iff of t * t | Xor of t * t | Ite of t * t * t | X of t | F of t | G of t | Y of t | O of t | H of t | U of t * t | R of t * t | S of t * t | T of t * t and term = private | Num of int | Plus of term * term | Minus of term * term | Neg of term | Count of t list val true_ : t val false_ : t val atomic : Atomic.t -> t val not_ : t -> t val and_ : t -> t Lazy.t -> t val or_ : t -> t Lazy.t -> t val implies : t -> t Lazy.t -> t val xor : t -> t -> t val iff : t -> t -> t val conj : t list -> t val disj : t list -> t val wedge : range:'a Iter.t -> ('a -> t Lazy.t) -> t val vee : range:'a Iter.t -> ('a -> t Lazy.t) -> t val ifthenelse : t -> t -> t -> t val next : t -> t val always : t -> t val eventually : t -> t val yesterday : t -> t val once : t -> t val historically : t -> t val until : t -> t -> t val releases : t -> t -> t val since : t -> t -> t val trigerred : t -> t -> t val num : int -> term val plus : term -> term -> term val minus : term -> term -> term val neg : term -> term val count : t list -> term val comp : tcomp -> term -> term -> t val lt : tcomp val lte : tcomp val gt : tcomp val gte : tcomp val eq : tcomp val neq : tcomp module Infix : sig (* precedence: from strongest to weakest *) (* 1 *) val ( !! ) : t -> t (* 2 *) val ( +|| ) : t -> t Lazy.t -> t val ( +&& ) : t -> t Lazy.t -> t (* 3 *) val ( @=> ) : t -> t Lazy.t -> t val ( @<=> ) : t -> t -> t end val pp : Format.formatter -> t -> unit val pp_gather_variables : ?next_is_X:bool -> Atomic.t Iter.t ref -> Format.formatter -> t -> unit end module LTL_from_Atomic (At : ATOMIC_PROPOSITION) : LTL with module Atomic = At = struct module Atomic = At type tcomp = | Lte | Lt | Gte | Gt | Eq | Neq (* let hash_tcomp = function *) (* | Lte -> 3 *) (* | Lt -> 5 *) (* | Gte -> 7 *) (* | Gt -> 11 *) (* | Eq -> 13 *) (* | Neq -> 17 *) type t = | Comp of tcomp * term * term | True | False | Atomic of Atomic.t | Not of t | And of t * t | Or of t * t | Imp of t * t | Iff of t * t | Xor of t * t | Ite of t * t * t | X of t | F of t | G of t | Y of t | O of t | H of t | U of t * t | R of t * t | S of t * t | T of t * t and term = | Num of int | Plus of term * term | Minus of term * term | Neg of term | Count of t list let pp _ _ = (* default impl. for pp; to override later *) failwith "Solver.LTL_from_Atomic.pp not implemented (on purpose)" let pp_gather_variables ?(next_is_X = true) _ = let _ = next_is_X in pp (* default impl. for pp; to override later *) (* let equal_tcomp_node x y = match x, y with *) (* | Lte, Lte *) (* | Lt, Lt *) (* | Gte, Gte *) (* | Gt, Gt *) (* | Eq, Eq *) (* | Neq, Neq -> true *) (* | _ -> false *) let lt = Lt let lte = Lte let gt = Gt let gte = Gte let eq = Eq let neq = Neq let atomic at = Atomic at let true_ = True let false_ = False let rec and_ p q = match (p, q) with | False, _ -> false_ | True, (lazy q) -> q | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 -> p | _, (lazy q) -> (match q with False -> false_ | True -> p | _ -> And (p, q)) and or_ p1 p2 = match (p1, p2) with | True, _ -> true_ | False, (lazy p) -> p | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 -> p1 | _, (lazy q) -> (match q with False -> p1 | True -> true_ | _ -> Or (p1, q)) and not_ p = match p with | True -> false_ | False -> true_ (* | And (p, q) -> or_ (not_ p) (lazy (not_ q)) * | Or (p, q) -> and_ (not_ p) (lazy (not_ q)) * | Imp (p, q) -> and_ p (lazy (not_ q)) *) | Not q -> q | _ -> Not p and implies p q = match (p, q) with | False, _ -> true_ | True, (lazy q2) -> q2 | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 -> true_ | _, (lazy q2) -> (match q2 with True -> true_ | False -> not_ p | _ -> Imp (p, q2)) let xor p1 p2 = Xor (p1, p2) let iff p q = match (p, q) with | Atomic at1, Atomic at2 when Atomic.equal at1 at2 -> true_ | False, False | True, True -> true_ | False, True | True, False -> false_ | _, _ -> Iff (p, q) let conj fmls = List.fold_left (fun a b -> and_ a (lazy b)) true_ fmls let disj fmls = List.fold_left (fun a b -> or_ a (lazy b)) false_ fmls let ifthenelse c t e = match c with True -> t | False -> e | _ -> Ite (c, t, e) let next p = X p let always p = G p let eventually p = F p let yesterday p = Y p let once p = O p let historically p = H p let until p1 p2 = U (p1, p2) let releases p1 p2 = R (p1, p2) let since p1 p2 = S (p1, p2) let trigerred p1 p2 = T (p1, p2) let comp op t1 t2 = match (op, t1, t2) with | Eq, Num n, Num m when n = m -> true_ | Lt, Num n, Num m when n < m -> true_ | Lte, Num n, Num m when n <= m -> true_ | Gt, Num n, Num m when n > m -> true_ | Gte, Num n, Num m when n >= m -> true_ | Neq, Num n, Num m when n <> m -> true_ | (Lt | Lte | Gt | Gte | Neq), Num n, Num m when n = m -> false_ | Eq, Num n, Num m when n <> m -> false_ | _ -> Comp (op, t1, t2) (* OPTIMIZATIONS REMOVED *) (* let not_ p = Not p *) (* let and_ p (lazy q) = And (p, q) *) (* let or_ p (lazy q) = Or (p, q) *) (* let implies p (lazy q) = Imp (p, q) *) (* let iff p q = Iff (p, q) *) (* let plus t1 t2 = Plus (t1, t2) *) (* let minus t1 t2 = Minus (t1, t2) *) (* let neg t = Neg t *) (* let comp op t1 t2 = Comp (op, t1, t2) *) let num n = Num n let plus t1 t2 = match (t1, t2) with Num 0, _ -> t2 | _, Num 0 -> t1 | _ -> Plus (t1, t2) let minus t1 t2 = match t2 with Num 0 -> t1 | _ -> Minus (t1, t2) let neg t = match t with Neg _ -> t | _ -> Neg t let count ps = match List.filter (function False -> false | _ -> true) ps with | [] -> num 0 | props -> Count props (* END term hashconsing *) let wedge ~range f = Iter.fold (fun fml tuple -> and_ fml @@ f tuple) true_ range let vee ~range f = Iter.fold (fun fml tuple -> or_ fml @@ f tuple) false_ range module Infix = struct (* precedence: from strongest to weakest *) (* 1 *) let ( !! ) x = not_ x (* 2 *) let ( +|| ) x y = or_ x y let ( +&& ) x y = and_ x y (* 3 *) let ( @=> ) x y = implies x y let ( @<=> ) x y = iff x y end end type script_type = | Default of string | File of string module type MODEL = sig type ltl type atomic type t = private { elo : Elo.t ; init : (string * ltl) Iter.t ; invariant : (string * ltl) Iter.t ; trans : (string * ltl) Iter.t ; property : string * ltl } val make : elo:Elo.t -> init:(string * ltl) Iter.t -> invariant:(string * ltl) Iter.t -> trans:(string * ltl) Iter.t -> property:string * ltl -> t val analyze : conversion_time:Mtime.span -> cmd:string -> script:script_type -> keep_files:bool -> no_analysis:bool -> elo:Elo.t -> file:string -> bmc:int option -> t -> Outcome.t val pp : ?margin:int -> Format.formatter -> t -> unit end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>