package electrod
Formal analysis for the Electrod formal pivot language
Install
Dune Dependency
Authors
Maintainers
Sources
electrod-0.4.1.tbz
sha256=b0bce9cc7126672feda5a02d5ef0c1131ba54db57654f80c0768c2f8d043cef9
sha512=92cc22f81522435e190039324767b6f69fa0b7d9dbfc3fb5561919823136fe492244dae993caf98633828e0090b67f306eec6270b86a1b2ff8630642130a3081
doc/src/electrod.libelectrod/Raw_to_ast.ml.html
Source file Raw_to_ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
(******************************************************************************* * electrod - a model finder for relational first-order linear temporal logic * * Copyright (C) 2016-2019 ONERA * Authors: Julien Brunel (ONERA), David Chemouil (ONERA) * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * SPDX-License-Identifier: MPL-2.0 * License-Filename: LICENSE.md ******************************************************************************) open Containers open Raw module TS = Tuple_set (******************************************************************************* * Domain computation *******************************************************************************) let split_indexed_id infile id = let name = Raw_ident.basename id in match String.Split.right ~by:"$" name with | None -> assert false (* comes from the lexer so cannot be None*) | Some (left, right) -> let rightnum = try int_of_string right with | Failure _ -> Msg.Fatal.wrong_suffix (fun args -> args infile id) in (left, rightnum) (* check whether [atoms] contains duplicate atoms, warn about them and return the de-duplicated list *) let check_duplicate_atoms infile atoms = (* sort and remove duplicates *) let dedup = List.sort_uniq ~cmp:Atom.compare atoms in (* check whether we lost elements by doing this*) if List.length atoms > List.length dedup then Msg.Warn.univ_duplicate_atoms (fun args -> args infile (List.sort Atom.compare atoms) dedup); dedup let interval_to_atoms infile (first, last) = let firstbasename, firstnum = split_indexed_id infile first in let lastbasename, lastnum = split_indexed_id infile last in if String.compare firstbasename lastbasename <> 0 then Msg.Fatal.different_prefixes (fun args -> args infile first last) else if firstnum > lastnum then Msg.Fatal.not_an_interval (fun args -> args infile first last) else let open List in firstnum -- lastnum |> map (fun num -> Atom.atom @@ Printf.sprintf "%s$%d" firstbasename num) let compute_univ infile raw_univ = let open List in let atoms = flat_map (function | UIntvl intvl -> interval_to_atoms infile intvl | UPlain id -> [ Atom.of_raw_ident id ]) raw_univ in let dedup = check_duplicate_atoms infile atoms in let bound = List.map Tuple.tuple1 dedup |> TS.of_tuples in Relation.(const Name.univ 1 @@ Scope.exact bound) (* 1 = arity *) (* returns a list of tuples (possibly 1-tuples corresponding to plain atoms) *) let compute_tuples infile domain = function (* a list of 1-tuples (coming from indexed id's) *) | EIntvl intvl -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_tuples:EIntvl"); *) let atoms = interval_to_atoms infile intvl in let absent = (* compute 1-tuples/atoms absent from univ, if there are *) List.flat_map (fun t -> if not @@ TS.mem (Tuple.tuple1 t) @@ Domain.univ_atoms domain then [ t ] else []) atoms in ( if not @@ List.is_empty absent then Msg.Fatal.undeclared_atoms @@ fun args -> args infile (Location.span @@ Pair.map_same Raw_ident.location intvl) absent ); let dedup = check_duplicate_atoms infile atoms in List.map Tuple.tuple1 dedup | ETuple [] -> assert false (* grammatically impossible *) (* a single n-ary tuple *) | ETuple ids -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_tuples:ETuple"); *) let atoms = List.map (fun id -> Raw_ident.basename id |> Atom.atom) ids in (* to check if all atoms in the tuple are in univ, we do as if every atom was a 1-tuple and then check whether this 1-tuple is indeed in univ *) let absent = (* compute 1-tuples/atoms absent from univ, if there are *) List.flat_map (fun t -> if not @@ TS.mem (Tuple.tuple1 t) @@ Domain.univ_atoms domain then [ t ] else []) atoms in ( if not @@ List.is_empty absent then Msg.Fatal.undeclared_atoms @@ fun args -> args infile ( Location.span @@ Pair.map_same Raw_ident.location List.(hd ids, hd @@ last 1 ids) ) absent ); [ Tuple.of_list1 atoms ] let check_tuples_arities_and_duplicates infile id = function | [] -> TS.empty | t :: ts as tuples -> let ar = Tuple.arity t in (* List.iter (fun t -> Msg.debug (fun m -> m "ar(%a) = %d" Tuple.pp t ar)) tuples; *) if List.exists (fun t2 -> Tuple.arity t2 <> ar) ts then Msg.Fatal.incompatible_arities (fun args -> args infile id); TS.of_tuples tuples (* [`Inf] and [`Sup] tell whether we are computing a lower of upper bound: this is important as a bound may be defined out of other ones, so we should know whether we need the lower or upper bound of the relations referred to. The variants are in an [option] which is set to [None] if the scope is exact (in which case, the variants are of no use); [Some] otherwise. We also pass the [id] of the concerned relation (useful for error message). *) let compute_bound infile domain (which : [ `Inf | `Sup | `Exact ]) id raw_bound = let open Relation in let open Scope in let rec walk = function | BUniv -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_bound:BUniv"); *) Domain.univ_atoms domain | BRef ref_id -> ( (* Msg.debug (fun m -> m "Raw_to_ast.compute_bound:BRef"); *) match Domain.get (Name.of_raw_ident ref_id) domain with | None -> Msg.Fatal.undeclared_id (fun args -> args infile ref_id) | Some rel -> ( match rel with | Const { scope = Exact b; _ } when TS.inferred_arity b = 1 -> b | Const { scope = Inexact _ as sc; _ } -> let sup = Scope.sup sc in if TS.inferred_arity sup = 1 then match which with | `Inf -> Scope.inf sc | `Sup -> sup | `Exact -> Msg.Fatal.inexact_ref_used_in_exact_scope @@ fun args -> args infile id ref_id else Msg.Fatal.should_denote_a_constant_set @@ fun args -> args infile ref_id | Const { scope = Exact _; _ } | Var _ -> Msg.Fatal.should_denote_a_constant_set @@ fun args -> args infile ref_id ) ) | BProd (_, Some _, _) -> Msg.Fatal.no_multiplicity_allowed_here (fun args -> args infile id) | BProd (rb1, None, rb2) -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_bound:BProd"); *) let b1 = walk rb1 in let b2 = walk rb2 in TS.product b1 b2 | BUnion (rb1, rb2) -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_bound:BUnion"); *) let b1 = walk rb1 in let b2 = walk rb2 in if TS.inferred_arity b1 = TS.inferred_arity b2 then TS.union b1 b2 else Msg.Fatal.incompatible_arities @@ fun args -> args infile id | BElts elts -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_bound:BElts"); *) let tuples = List.flat_map (compute_tuples infile domain) elts in let bnd = check_tuples_arities_and_duplicates infile id tuples in if TS.size bnd <> List.length tuples then Msg.Warn.duplicate_elements (fun args -> args infile id which TS.pp bnd); bnd in walk raw_bound let compute_scope infile domain id = function | SExact (BProd (_, Some _, _)) -> Msg.Fatal.multiplicity_only_in_a_sup (fun args -> args infile id) | SExact raw_b -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_scope:SExact"); *) Scope.exact @@ compute_bound infile domain `Exact id raw_b (* handle when we have a partial/total "function" with empty domain: r : {} (l)one (sthg) *) | SInexact (raw_inf, Some function_type, raw_sup) -> let inf = compute_bound infile domain `Inf id raw_inf in if not @@ TS.is_empty inf then Msg.Fatal.inf_must_be_empty @@ fun args -> args infile id else let sup = compute_bound infile domain `Sup id raw_sup in ( match function_type with | `Lone -> Scope.(fun s -> inexact @@ partial_function 0 s) sup | `One -> Scope.(fun s -> inexact @@ total_function 0 s) sup ) (* handle when we have a partial/total "function" with nonempty domain: r : {} (sthg -> (l)one sthg) REMARK: we rely on -> being declared *left associative* in the parser!, so that the multiplicity indeed appears on the toplevel arrow of a scope declaration! *) | SInexact (raw_inf, None, BProd (rb1, Some function_type, rb2)) -> let inf = compute_bound infile domain `Inf id raw_inf in if not @@ TS.is_empty inf then Msg.Fatal.inf_must_be_empty @@ fun args -> args infile id else let sup1 = compute_bound infile domain `Sup id rb1 in let sup2 = compute_bound infile domain `Sup id rb2 in let dom_ar = TS.inferred_arity sup1 in let sup = TS.product sup1 sup2 in ( match function_type with | `Lone -> Scope.(fun s -> inexact @@ partial_function dom_ar s) sup | `One -> Scope.(fun s -> inexact @@ total_function dom_ar s) sup ) | SInexact (raw_inf, None, raw_sup) -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_scope:SInexact"); *) let inf = compute_bound infile domain `Inf id raw_inf in let sup = compute_bound infile domain `Sup id raw_sup in let ar_inf = TS.inferred_arity inf in let ar_sup = TS.inferred_arity sup in if ar_inf <> ar_sup && not (TS.is_empty inf) then Msg.Fatal.incompatible_arities (fun args -> args infile id); if not @@ TS.subset inf sup then Msg.Fatal.inf_not_in_sup (fun args -> args infile id TS.pp inf sup); if TS.is_empty sup then Msg.Warn.empty_scope_declared (fun args -> args infile id); if TS.equal inf sup then Scope.exact sup else Scope.(fun i s -> inexact @@ plain_relation i s) inf sup let check_name infile id domain = let name = Name.of_raw_ident id in if Domain.mem name domain then Msg.Fatal.rel_name_already_used @@ fun args -> args infile id let decide_arity infile id specified_arity computed_arity = match specified_arity with | None when computed_arity < 1 -> Msg.Fatal.cannot_decide_arity (fun args -> args infile id) | Some ar when ar <> computed_arity && computed_arity <> 0 -> Msg.Fatal.specified_computed_arities_discrepancy (fun args -> args infile id ar computed_arity) | None -> computed_arity | Some ar -> ar let compute_decl infile domain = function | DConst (id, specified_arity, raw_scope) -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_decl:DConst"); *) check_name infile id domain; let scope = compute_scope infile domain id raw_scope in (* deal with posisble mismatch btw the computed arity and that declared *) let computed_arity = Scope.inferred_arity scope in let arity = decide_arity infile id specified_arity computed_arity in Relation.const (Name.of_raw_ident id) arity scope | DVar (id, specified_arity, init, fby) -> (* Msg.debug (fun m -> m "Raw_to_ast.compute_decl:DVar"); *) check_name infile id domain; let init_scope = compute_scope infile domain id init in let fby_scope = CCOpt.map (compute_scope infile domain id) fby in let init_arity = Scope.inferred_arity init_scope in let computed_arity = match CCOpt.map Scope.inferred_arity fby_scope with | None | Some 0 -> init_arity (* 0 : arity cannot be inferred *) | Some ar when ar <> init_arity && init_arity <> 0 -> Msg.Fatal.init_and_fby_incompatible_arities (fun args -> args infile id init_arity ar) | Some ar -> ar in let arity = decide_arity infile id specified_arity computed_arity in Relation.var (Name.of_raw_ident id) arity init_scope fby_scope let compute_domain (pb : Raw.raw_problem) = let univ = compute_univ pb.file pb.raw_univ in let univ_ts = Relation.must univ in (* corresponding tuple set *) let iden = Relation.const Name.iden 2 @@ Scope.exact @@ TS.diagonal univ_ts in let init = Domain.add Name.univ univ Domain.empty |> Domain.add Name.iden iden in (* updating the domain, given a previous domain and a raw_decl *) let update dom decl = let name = Name.of_raw_ident @@ Raw.decl_id decl in let rel = compute_decl pb.file dom decl in Domain.add name rel dom (* |> tap Msg.debug *) (* (fun m -> m "Raw_to_ast.compute_domain:update add %a ⇒ %a" *) (* Name.pp name (Fmtc.hbox @@ Domain.pp) newdom) *) in List.fold_left update init pb.raw_decls (******************************************************************************* * Compute instances and check they comply with the respective relations. *******************************************************************************) let check_assignment_in_scope infile domain id tupleset = let name = Name.of_raw_ident id in match Domain.get name domain with | None -> Msg.Fatal.undeclared_id (fun args -> args infile id) | Some (Relation.Var _) -> Msg.Fatal.instance_is_var (fun args -> args infile id) | Some (Relation.Const { scope; _ }) when not @@ Scope.included_in tupleset scope -> Msg.Fatal.instance_not_in_scope (fun args -> args infile id) | Some (Relation.Const _) -> () (* [domain]: already-computed domain *) let compute_instances domain (pb : Raw.raw_problem) = let compute_assignment (id, raw_tuples) = let name = Name.of_raw_ident id in let tupleset = raw_tuples |> List.map CCFun.(List.map Atom.of_raw_ident %> Tuple.of_list1) |> CCFun.tap (check_tuples_arities_and_duplicates pb.file id) |> TS.of_tuples |> CCFun.tap (check_assignment_in_scope pb.file domain id) in (name, tupleset) in List.fold_left (fun acc asgn -> compute_assignment asgn |> fun (n, ts) -> if Instance.mem n acc then Msg.Fatal.instance_already_declared (fun args -> args pb.file @@ fst asgn) else Instance.add n ts acc) Instance.empty pb.raw_inst (****************************************************************************** * Compute the symmetries. *****************************************************************************) (* Compute the symmetry contraints *) let compute_symmetries (pb : Raw.raw_problem) = let compute_single_sym_term (id, raw_tuple) = let name = Name.of_raw_ident id in let tuple = Tuple.of_list1 @@ List.map Atom.of_raw_ident raw_tuple in (name, tuple) in let compute_single_sym (sym : (Raw_ident.t * Raw.raw_tuple) list * (Raw_ident.t * Raw.raw_tuple) list) = match sym with | [], [] -> Symmetry.make [] [] (* impossible case: only one side of the symmetry is empty *) | [], _ | _, [] -> assert false | l1, l2 -> let len1 = List.length l1 in let len2 = List.length l2 in if len1 <> len2 then let id, _ = List.hd l1 in Msg.Fatal.symmetry_wrongly_defined (fun args -> args pb.file id) else Symmetry.make (List.map compute_single_sym_term l1) (List.map compute_single_sym_term l2) in List.map compute_single_sym pb.raw_syms (******************************************************************************* * Walking along raw goals to get variables and relation names out of raw_idents *******************************************************************************) let refine_identifiers raw_pb = let open Gen_goal in let rec walk_fml ctx fml = let ctx2, f = walk_prim_fml ctx fml.prim_fml in (ctx2, { fml with prim_fml = f }) and walk_prim_fml ctx = function | Quant (q, sim_bindings, blk) -> let ctx2, sim_bindings2 = walk_sim_bindings ctx sim_bindings in let _, blk2 = walk_block ctx2 blk in (ctx, quant q sim_bindings2 blk2) | True -> (ctx, true_) | False -> (ctx, false_) | Block b -> (ctx, Pair.map_snd block (walk_block ctx b)) | LUn (op, fml) -> (ctx, Pair.map_snd (lunary op) (walk_fml ctx fml)) | LBin (f1, op, f2) -> (ctx, lbinary (snd @@ walk_fml ctx f1) op (snd @@ walk_fml ctx f2)) | Qual (q, r) -> (ctx, qual q @@ walk_exp ctx r) | RComp (e1, op, e2) -> (ctx, rcomp (walk_exp ctx e1) op (walk_exp ctx e2)) | IComp (e1, op, e2) -> (ctx, icomp (walk_iexp ctx e1) op (walk_iexp ctx e2)) | FIte (c, t, e) -> ( ctx , fite (snd @@ walk_fml ctx c) (snd @@ walk_fml ctx t) (snd @@ walk_fml ctx e) ) | Let (bindings, blk) -> let ctx2, bindings2 = walk_bindings ctx bindings in let _, blk2 = walk_block ctx2 blk in (ctx, let_ bindings2 blk2) and walk_bindings ctx = function | [] -> (ctx, []) | b :: bs -> let ctx2, b2 = walk_binding ctx b in let ctx3, bs2 = walk_bindings ctx2 bs in (ctx3, b2 :: bs2) and walk_binding ctx (v, exp) = let exp2 = walk_exp ctx exp in let var = Var.fresh_of_raw_ident v in ((v, Ast.var_ident var) :: ctx, (Ast.bound_var var, exp2)) and walk_sim_bindings ctx = function | [] -> (ctx, []) | sb :: sbs -> let ctx2, sb2 = walk_sim_binding ctx sb in let ctx3, sbs2 = walk_sim_bindings ctx2 sbs in (ctx3, sb2 :: sbs2) and walk_sim_binding ctx (disj, vs, exp) = let disj2 = if disj && List.length vs = 1 then ( Msg.Warn.disj_with_only_one_variable (fun args -> args raw_pb.file (List.hd vs)); false ) else disj in let exp2 = walk_exp ctx exp in let bvars = List.map (fun v -> Ast.bound_var (Var.fresh (Raw_ident.basename v))) vs in let vars = List.map Ast.var_ident_of_bound_var bvars in (List.(combine vs vars |> rev) @ ctx, (disj2, bvars, exp2)) and walk_block ctx blk = (ctx, List.map (fun fml -> snd @@ walk_fml ctx fml) blk) and walk_exp ctx exp = { exp with prim_exp = walk_prim_exp ctx exp.prim_exp } and walk_prim_exp ctx = function | Ident id -> ( try ident @@ CCList.Assoc.get_exn ~eq:Raw_ident.eq_name id ctx with | Not_found -> Msg.Fatal.undeclared_id @@ fun args -> args raw_pb.file id ) | None_ -> none | Univ -> univ | Iden -> iden | RUn (op, e) -> runary op @@ walk_exp ctx e | RBin (e1, op, e2) -> rbinary (walk_exp ctx e1) op (walk_exp ctx e2) | RIte (c, t, e) -> rite (snd @@ walk_fml ctx c) (walk_exp ctx t) (walk_exp ctx e) | BoxJoin (e, args) -> boxjoin (walk_exp ctx e) @@ List.map (walk_exp ctx) args | Prime e -> prime (walk_exp ctx e) | Compr (sim_bindings, blk) -> let ctx2, sim_bindings2 = walk_sim_bindings ctx sim_bindings in let _, blk2 = walk_block ctx2 blk in compr sim_bindings2 blk2 and walk_iexp ctx iexp = { iexp with prim_iexp = walk_prim_iexp ctx iexp.prim_iexp } and walk_prim_iexp ctx = function | Num n -> num n | Card e -> card @@ walk_exp ctx e | IUn (op, e) -> iunary op @@ walk_iexp ctx e | IBin (e1, op, e2) -> ibinary (walk_iexp ctx e1) op (walk_iexp ctx e2) in (* initial context is made of relation names declared in the domain (+ univ) *) let init_ctx = List.map (fun decl -> Pair.dup_map (fun id -> Ast.name_ident (Name.of_raw_ident id)) @@ Raw.decl_id decl) raw_pb.raw_decls @ [ ( Raw_ident.ident "univ" Lexing.dummy_pos Lexing.dummy_pos , Ast.name_ident Name.univ ) ] in let walk_goal = function | Run (fml, expect) -> run (List.map Fun.(snd % walk_fml init_ctx) fml) expect in let walk_invariants invs = snd @@ walk_block init_ctx invs in (walk_invariants raw_pb.raw_invar, walk_goal raw_pb.raw_goal) (******************************************************************************* * Check arities *******************************************************************************) (* computes the arity of a join *) let join_arity ar1 ar2 = match (ar1, ar2) with | Some a1, Some a2 -> let res = a1 + a2 - 2 in if res > 0 then Some res else None | Some _, None | None, Some _ | None, None -> None let str_exp = Fmtc.to_to_string (Fmtc.hbox2 Ast.pp_exp) let compute_arities elo = let open Ast in let open Gen_goal in (* ctx is a map from identifiers to their arity *) let rec walk_fml ctx fml = { fml with prim_fml = walk_prim_fml ctx fml.prim_fml } and walk_prim_fml ctx = function | (True | False) as b -> b | Qual (ROne, exp) -> let exp' = walk_exp ctx exp in if Option.is_none exp'.arity then Msg.Fatal.arity_error (fun args -> args elo.Ast.file exp @@ Fmtc.strf "enclosing formula is false as %s is always empty" (str_exp exp)) else qual rone exp' | Qual (RSome, exp) -> let exp' = walk_exp ctx exp in if Option.is_none exp'.arity then Msg.Fatal.arity_error (fun args -> args elo.Ast.file exp @@ Fmtc.strf "enclosing formula is false as %s is always empty" (str_exp exp)) else qual rsome exp' | Qual (q, exp) -> qual q @@ walk_exp ctx exp | RComp (e1, op, e2) -> let e1' = walk_exp ctx e1 in let e2' = walk_exp ctx e2 in let ar1 = e1'.arity in let ar2 = e2'.arity in if (not @@ Option.equal ( = ) ar1 ar2) && Option.is_some ar1 && Option.is_some ar2 then Msg.Fatal.arity_error (fun args -> args elo.Ast.file e2 (Fmtc.strf "arity of %s (%a) incompatible with that of %s (%a)" (str_exp e1) Fmtc.(option ~none:(const string "none") int) ar1 (str_exp e2) Fmtc.(option ~none:(const string "none") int) ar2)) else rcomp e1' op e2' | IComp (e1, op, e2) -> let e1' = walk_iexp ctx e1 in let e2' = walk_iexp ctx e2 in icomp e1' op e2' | LUn (op, fml) -> lunary op @@ walk_fml ctx fml | LBin (f1, op, f2) -> lbinary (walk_fml ctx f1) op (walk_fml ctx f2) | Quant (q, sbs, blk) -> let sbs', ctx' = walk_sim_bindings ctx sbs in quant q sbs' @@ walk_block ctx' blk | Let (bindings, blk) -> let bindings', ctx' = walk_bindings ctx bindings in let_ bindings' @@ walk_block ctx' blk | FIte (c, t, e) -> fite (walk_fml ctx c) (walk_fml ctx t) (walk_fml ctx e) | Block blk -> block @@ walk_block ctx blk and walk_block ctx blk = List.map (walk_fml ctx) blk and walk_bindings ctx = function | [] -> ([], ctx) | (BVar v, exp) :: bs -> let exp' = walk_exp ctx exp in let ar = exp'.arity in let ctx' = ctx#update [ (v, ar) ] in let bs', ctx'' = walk_bindings ctx' bs in ((bound_var v, exp') :: bs', ctx'') and walk_sim_bindings ctx = function | [] -> ([], ctx) | (disj, vs, exp) :: sbs -> let exp' = walk_exp ctx exp in let ar = exp'.arity in let ctx' = ctx#update @@ List.map (fun (BVar v) -> (v, ar)) vs in let sbs', ctx'' = walk_sim_bindings ctx' sbs in ((disj, vs, exp') :: sbs', ctx'') and walk_exp ctx exp = match walk_prim_exp ctx exp with | Ok exp' -> exp' | Error msg -> Msg.Fatal.arity_error (fun args -> args elo.Ast.file exp msg) and return_exp exp ar pe = assert (not @@ Option.equal ( = ) ar (Some 0)); Result.return { exp with arity = ar; prim_exp = pe } (* this function returns a [result] to factor the error messages out and also to enable to display the expression (i.e [exp], not [prim_exp]) concerned by the error*) (* IMPORTANT: the function receives an *expression*, not a *primitive* one; in order to easily set the mutable fields of the said expression. *) and walk_prim_exp ctx exp = match exp.prim_exp with | None_ -> return_exp exp None none | Univ -> let arity = ctx#arity (name_ident Name.univ) in return_exp exp arity univ | Iden -> let arity = ctx#arity (name_ident Name.iden) in return_exp exp arity iden | Ident id -> let arity = ctx#arity id in return_exp exp arity (ident id) | RUn (op, e) -> let e' = walk_exp ctx e in let ar = e'.arity in if not @@ Option.equal ( = ) ar (Some 2) then Result.fail "arity should be 2" else return_exp exp ar (runary op e') | RBin (e1, op, e2) -> let e1' = walk_exp ctx e1 in let e2' = walk_exp ctx e2 in let ar1 = e1'.arity in let ar2 = e2'.arity in ( match op with | Union when Option.equal ( = ) ar1 ar2 || Option.is_none ar2 -> return_exp exp ar1 @@ rbinary e1' op e2' | Union when Option.is_none ar1 -> return_exp exp ar2 @@ rbinary e1' op e2' | Union -> Result.fail (Fmtc.strf "incompatible arities between %s and %s" (str_exp e1') (str_exp e2')) | Diff when Option.is_none ar1 -> return_exp exp None @@ rbinary e1' op e2' | Diff when Option.equal ( = ) ar1 ar2 || Option.is_none ar2 -> return_exp exp ar1 @@ rbinary e1' op e2' | Diff -> Result.fail (Fmtc.strf "incompatible arities between %s and %s" (str_exp e1') (str_exp e2')) | Inter when Option.is_none ar1 || Option.is_none ar2 -> return_exp exp None @@ rbinary e1' op e2' | Inter when Option.equal ( = ) ar1 ar2 -> return_exp exp ar1 @@ rbinary e1' op e2' | Inter -> Result.fail (Fmtc.strf "incompatible arities between %s and %s" (str_exp e1') (str_exp e2')) | Over when Option.equal ( = ) ar1 ar2 -> if CCOpt.compare CCInt.compare ar1 (Some 1) <= 0 then Result.fail (Fmtc.strf "arity of %s is < 2" (str_exp e1')) else return_exp exp ar1 @@ rbinary e1' op e2' | Over when Option.is_none ar1 -> return_exp exp ar2 @@ rbinary e1' op e2' | Over when Option.is_none ar2 -> return_exp exp ar1 @@ rbinary e1' op e2' | Over -> Result.fail (Fmtc.strf "incompatible arities between %s and %s" (str_exp e1') (str_exp e2')) | LProj when Option.is_none ar1 -> return_exp exp None @@ rbinary e1' op e2' | LProj when Option.equal ( = ) ar1 (Some 1) -> return_exp exp ar2 @@ rbinary e1' op e2' | LProj -> Result.fail "left projection should be on a set" | RProj when Option.is_none ar2 -> return_exp exp None @@ rbinary e1' op e2' | RProj when Option.equal ( = ) ar2 (Some 1) -> return_exp exp ar1 @@ rbinary e1' op e2' | RProj -> Result.fail "right projection should be on a set" | Prod -> ( match (ar1, ar2) with | Some a1, Some a2 -> let ar = Some (a1 + a2) in return_exp exp ar @@ rbinary e1' op e2' | None, _ | _, None -> return_exp exp None @@ rbinary e1' op e2' ) | Join -> let ar_join = join_arity ar1 ar2 in if Option.is_none ar_join then Result.fail @@ Fmtc.strf "wrong arities for the dot join of %s and %s" (str_exp e1') (str_exp e2') else return_exp exp ar_join @@ rbinary e1' op e2' ) | RIte (c, t, e) -> let c' = walk_fml ctx c in let t' = walk_exp ctx t in let e' = walk_exp ctx e in ( match (t'.arity, e'.arity) with | Some a1, Some a2 when a1 = a2 -> return_exp exp e'.arity (rite c' t' e') | Some a, None | None, Some a -> return_exp exp (Some a) (rite c' t' e') | None, None -> return_exp exp None (rite c' t' e') | Some _, Some _ -> Result.fail "incompatible arities in the bodies of 'then' and 'else'" ) | BoxJoin (call, args) -> (* build the iterated "plain" join to get arity/must/sup *) let call' = walk_exp ctx call in let args' = List.map (walk_exp ctx) args in let res = List.fold_right (fun arg r -> Gen_goal.exp Option.(map2 ( + ) (pure (-2)) @@ map2 ( + ) arg.arity r.arity) Location.(span (arg.exp_loc, r.exp_loc)) @@ rbinary arg join r) args' call' in if Option.is_none res.arity || Option.equal ( = ) res.arity (Some 0) then Result.fail "wrong arities for the box join" else return_exp exp res.arity @@ boxjoin call' args' | Compr (sbs, blk) -> let sbs', ctx2 = walk_sim_bindings ctx sbs in ( match List.( flat_map (fun (_, vs, _) -> map (fun v -> ctx2#arity @@ var_ident_of_bound_var v) vs)) sbs' with | [] -> assert false | hd :: tl -> let ar = List.fold_left Option.(map2 ( + )) hd tl in let blk' = walk_block ctx2 blk in return_exp exp ar @@ compr sbs' blk' ) | Prime e -> let e' = walk_exp ctx e in return_exp exp e'.arity @@ prime e' and walk_iexp ctx iexp = { iexp with prim_iexp = walk_prim_iexp ctx iexp.prim_iexp } and walk_prim_iexp ctx = function | Num n -> num n | Card exp -> card @@ walk_exp ctx exp | IUn (op, iexp) -> iunary op @@ walk_iexp ctx iexp | IBin (iexp1, op, iexp2) -> ibinary (walk_iexp ctx iexp1) op (walk_iexp ctx iexp2) in let init = object val arities = Domain.arities elo.Ast.domain |> List.map (fun (n, a) -> (name_ident n, Some a)) (* |> Fun.tap (fun ars -> *) (* Msg.debug (fun m -> *) (* m "compute_arities.initial arities = %a" *) (* Fmtc.(brackets @@ *) (* list ~sep:sp *) (* @@ pair ~sep:(const string "→") *) (* Ast.pp_ident (option int)) ars )) *) val domain = elo.Ast.domain method update pairs = (* Msg.debug (fun m -> *) (* m "compute_arities.update %a" *) (* Fmtc.(list ~sep:sp @@ pair Var.pp (option int)) pairs); *) {<arities = List.map (fun (v, ar) -> (var_ident v, ar)) pairs @ arities>} method arity ident = List.Assoc.get_exn ~eq:Ast.equal_ident ident arities (* |> Fun.tap (fun ar -> *) (* Msg.debug (fun m -> m "compute_arities.arity %a --> %a" *) (* Ast.pp_ident ident *) (* Fmtc.(option int) ar *) (* )) *) end in let walk_goal ctx = function | Run (fmls, expec) -> run (List.map (walk_fml ctx) fmls) expec in Ast. { elo with invariants = List.map (walk_fml init) elo.invariants ; goal = walk_goal init elo.goal } (******************************************************************************* * Declaration of the whole transformation *******************************************************************************) let whole raw_pb = let domain = compute_domain raw_pb in let syms = compute_symmetries raw_pb in let instance = compute_instances domain raw_pb in let invars, goal = refine_identifiers raw_pb in Ast.make raw_pb.file domain instance syms invars goal |> compute_arities let transfo = Transfo.make "raw_to_elo" whole (* temporary *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>